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ABSTRACT

Homrat El-Girigab area located at Northern Eastern Desert which, characterized by abundant intrusion
of calc-alkaline and alkaline/peralkaline granitoids and their associated volcanics. These granitoids have a
particular geodynamic interest as they provide an outstanding opportunity to tell how continental crust of
ANS was formed. Homrat El-Girigab area is covered by Dokhan volcanics (andesite & dacites), which
intruded by alkali-feldspar granites. The chemistry of biotites indicates that, the alkali-feldspar granites
were crystallized from alkaline crustal source under oxidized conditions (i.e. nickel-nickel oxide buffer or
NNO). They were crystallized under conditions including, temperatures range from 700 to 750 °C,
pressures 3 to 4 kbar, depths of emplacement range from 7 to 11 km and under Oxygen fugacity (log fO,)
ranges from -15 to -16. Homrat El-Girigab alkali-feldspar granites (HGAFGs) are alkaline, ferroan
anorogenic (i.e. extensional) A-type granites. They were emplaced during the late post-collisional crustal
extensional stage at which the effect of lithospheric delamination, and thus asthenospheric uprise, likely
diminishes. At this stage the mantle-derived mafic melts start intraplating the lower crustal levels, that
facilitated by the abundance of strike-slip faults and shear zones. This lithospheric intraplating caused
widespread melting producing the alkaline magma of HGAFGs. The studied granites were derived from
lower crustal amphibolitic source and evolved mainly by fractional crystallization.
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INTRODUCTION

The Arabian Nubian Shield (ANS), represents the biggest Neoproterozoic juvenile continental crust
belt on Earth. The evolution ANS juvenile crust includes three subsequent stages: 1) subduction (~870-
670 Ma), including the formation of island arc volcano-sedimentary sequences, plutonic rocks and
amalgamation of these accreted terrains onto East Gondwana continental block (Abdelsalam & Stern,
1996; Condie et al., 2009); 2) continental collisional (650-640 Ma) between the juvenile accreted ANS
crust with pre-Neoproterozoic continental blocks of West Gondwana (Abdelsalam et al., 2002), which
characterized by formation of calc-alkaline gabbros and granodiorites; 3) late to post-collisional (590-550
Ma), which follow collision involving extensional collapse of the thickened lithosphere (Avigad et al.,
2005; El-Bialy, 2010; Eyal et al., 2010; Be’eri-Shlevin et al., 2011), including formation of volcanics and
calc-alkaline to alkaline/peralkaline granitic rocks.

The Egyptian granitoids were classified into: 1) older, syn-orogenic calc-alkaline, I-type granitoids
(880-610 Ma), which related to the end of Pan-African orogeny; 2) younger post-orogenic either not
strictly anorogenic, calc-alkaline/alkaline granitoids (640-610 Ma) or alkaline/peralkaline, true anorogenic
A-type granites (600-550 Ma). The later are related to rifting (Bielski et al., 1979; Moghazi, 1999, Azer,
2013). Different models have been proposed for the sources of the post-collisional A-type granites in
ANS, which invoke contrasting continental crust and mantle reservoirs (Ali et al., 2009, 2014; Be’eri-
Shlevin et al., 2009, 2010; El-Bialy & Hassen, 2012; Eyal et al., 2010; Farahat & Azer, 2011; Moghazi et
al., 2011, 2012).

Homrat El-Girigab is located at northern Eastern Desert terrain, which characterized by abundant
intrusion of calc-alkaline and alkaline/peralkaline granitoids and their associated volcanics, constituting
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~80% of the basement outcrops, therefore, these granitoids have a particular geodynamic interest as they
provides an outstanding opportunity to tell how continental crust forms. In addition, some of late to post-
collisional A-type granite plutons in ANS are considered specialized granites (Drysdall et al., 1984;
Kiister, 2009; Johnson et al., 2011). A-type granites in ANS received much attention due the potential
economic significance of their elevated abundances of REE, U, Th, Ta and Nb. Homrat El-Girigab area
got more attention due to the high radioactivity of both its uraniferrous granite and the stream sediment
along the main Wadi (Salman et al., 1995; Abd El-Ghafour et al., 2001). Furthermore, the granitic rocks in
the area are mined for feldspar at latitude 27° 45" 30" and longitude 33° 18" 20" as raw material for
ceramic industry. Wetait et al. (2014) described the granitic rocks in Homrat El-Girigab as calc-alkaline I-
type granites, which were derived in a post-orogenic tectonic environment.

The aim of the present work is to detect the petrogenesis of the Homrat El-Girigab alkali-feldspar
granites through their mineralogical and geochemical characteristics.

GEOLOGIC SETTING

Homrat El-Girigab area located in the northern part of Esh El-Mallaha range, Northern Eastern Desert.
The area lies about 70 km to southeast of Ras Ghareb city, 15 km to southwest of Cairo- Hurghada Road.
It is located between latitude 27° 44 27°- 27° 47" 15 N and longitude 33° 16" 55.33" - 33° 19" 56.55 E.
Homrat El-Girigab area is covered by moderate relief peaks of Dokhan volcanics (DVs), which are
intruded by high relief hills of alkali-feldspar granites (Fig. 1& Fig. 2a). Dokhan volcanics are hard,
massive and non-foliated rocks. They show grey, greenish grey to dark black colors and they are
represented by andesite and dacites varities.
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Fig.1: Geological map of
Homrat El-Girigab area.
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HGAFGs peaks are surrounded by Dokhan volcanic hills. They are hard massive with reddish pink to
red color, locally weathered, well jointed and show exfoliation joints (Fig. 2b). HGAFGs are dissected by
acidic dykes (i.e. felsite and porphyritic rhyolite). These granitic rocks contain sub-rounded xenoliths of
Dokhan volcanics. The area is dissected by major faults trending NW-SE and NE-SW and subordinate
NNW-SSE and E-W trends.
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Fig. 2. a) Photographs showing, HGAFGs
intrude Dokhan Volcanics (DVs); b)
Photograph showing, well jointed HGAFGs,
which show exfoliation joints;

PETROGRAPHY

HGAFGs are medium to coarse-grained hypidiomorphic rocks, being composed mainly of K-feldspar,
quartz, plagioclase with subordinate amount of biotite. The accessory minerals are sphene, zircon, apatite,
allanite and fluorite, while the secondary minerals are kaolinite, sericite and chlorite. The rock shows
porphyritic, rapakivi and granophyric textures.

K-feldspars are represented by subhedral crystals of orthoclase-perthite and microcline. Some perthite
crystals are mantled by oligoclase forming rapakivi texture (Fig. 3a). Quartz occurs as subhedral to
anhedral crystals, which invade with reaction rim along their contacts. Granophyric intergrowth between
K-feldspar and quartz is common (Fig. 3b). Plagioclase occurs either as medium to coarse subhedral
tabular crystals. Plagioclase crystals are corroded and enclosed ophitically by other mineral constituents.
Biotite occurs as subhedral to anhedral flacks (Fig. 3¢), which are partly altered to chlorite. Sphene occurs
as subhedral crystals filling the interstices between quartz and feldspar (Fig. 3d. Zircon occurs as
subhedral to euhedral crystals which associated with apatite and allanite (Fig. 3e). Apatite form colorless
euhedral prismatic crystals. Allanite occurs as subhedral crystals which are sending anastomosing cracks
along its surrounding minerals. Fluorite occurs as subhedral to anhedral grains associated with biotite (Fig.
3e).

Analytical techniques

A total of 7 spots in biotite from alkali-feldspar granites were analyzed by microprobe analyses (Table
1). The microprobe analyses were carried out using Cameca SX-100 Electron probe Microanalyzer, at
Department of Electron Microanalysis, Geological Institute of Dionyz Stiir, Bratislava, Slovak Republic.
The microprobe was operated at an acceleration voltage of 15 kv, beam current of 20 nA, electron beam
diameter of 5 pm and using ZAF corrections. The chemical analyses of 6 fresh representative samples
from HGAFGs (Table 2) were carried out using Panalytical Axios Advanced X-ray fluorescence (XRF).
The analytical precision is 2-5%. The chemical analyses were carried out at Central Metallurgical
Research and Development Institute (CMRDI), El-Tebbin, Helwan, Egypt.

Mineral chemistry

The analyzed biotites show a limited variation in composition and comparable contents of Al,Os, TiO,,
FeO and MgO (Table 1). Fluorine content ranges from 0.44 to 1.86 (Table 1). According to FeO +MnO -
10*TiO,- MgO ternary diagram (Nachit et al., 2005) the studied trioctahedral micas are of primary
magmatic origin (Fig. 4a). By using Al'-Fe*"/(Fe*"+Mg) binary diagram (Rieder et al., 1999), the studied
micas were classified as biotite (Fig. 4b).
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Fig. 3 a-e): Photomicrographs of HGAFGs showing a)
perthite phenocryst (Per) surrounded by oligoclase rim
(OIR), forming rapakivi texture, CN; b) Granophyric
intergrowth (Grn) between perthite (per) and quartz, CN; c)
Subhedral biotite (Bt) and allanite (Alt) crystals, PPL; d)
Subhedral sphene (Sph) filling the interstices between
perthite and quartz, CN; e) Biotite crystals (Bt), which
associated with subhedral to anhedral fluorite grains (Flu),
CN.

As aluminum play an important role in the alkalinity of the magma and could be used as a factor
controlling alkalinity, acidity and as an indicator for pressure prevailing during the process of
crystallization, thus the biotite composition could be used to detect the nature of magmatic source. On
Mg- Al' binary diagram (Nachit et al., 1985), the biotite in HGAFGs implies crystallization from an
alkaline magma (Fig. 3c). Fe*'/(Fe*" * Fe’") ratios range from 0.86 to 0.90 (Table 1). Furthermore, the
analyzed biotite samples were clustered around nickel-nickel oxide (NNO) buffer in Fe*'- Fe’*- Mg
ternary diagram (Wones & Eugester, 1965), which suggest a moderate oxidation conditions (Fig. 4d). The
calculated Oxygen fugacity buffers (Log fO,) of the studied biotite range from -14.92 to -16.28 according
to the equilibrium equation of Huebner & Sato (1970) (Table 1). By using the calculated Oxygen fugacity
buffer and the Fe*/(Fe** + Fe*™* 100) ratio the biotite analyses were plotted on T°C- Log fO, diagram
(Wones & Eugester, op. cit.). The studied biotites follow the oxidizing trend (Fig. 4e), which represent the
undersaturated conditions during the crystallization of biotites from the melt (Wones & Eugester, 1965).
The temperatures of crystallization that calculated from the chemistry of biotites range from 700 to 750.

GEOCHEMISTRY
Major and trace element

As shown in Table (2), HGAFGs have limited compositional variation, exhibiting narrow ranges of
Si0; (70.01- 72.91 wt. %), ALOs (13.68- 14.25 wt. %), CaO (0.66- 0.96 wt. %) and TiO, contents (0.11-
0.23 wt. %). They are rich in alkalis (Na,O +K,0), (10.67-11.41 wt. %) and depleted in MgO (0.13-0.31
wt. %). The enrichment of Fe,O5' relative to MgO indicates A-type signature (Frost et al., 2001). The
presence of sodium metasilicates (NS = 1, on average; Table 2) in the CIPW normative values is a
characteristic feature of peralkaline rocks.
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Table 1. Microprobe analyses (wt. %) of and structural formula (apfu) biotite in HGAFGs

Sample 21 33 18

ot No.
Oxides 1 2 3 1 2 1 2
Si0, 36.13 35.72 35.52 35.77 35.77 35.83 35.51
TiO, 3.54 3.36 3.12 3.08 3.08 2.95 3.76
ALO; 11.42 11.26 11.42 11.22 13.31 13.23 13.47
FeO 27.54 28.89 29.66 29.08 29.48 29.53 28.76
MgO 5.57 5.18 5.44 5.52 2.59 2.43 2.56
MnO 0.58 0.53 0.40 0.42 0.49 0.50 0.45
CaO 0.02 0.01 0.01 0.00 0.03 0.01 0.05
Na,O 0.03 0.03 0.13 0.10 0.11 0.10 0.16
K,0 8.79 8.99 8.44 8.61 8.92 8.92 8.84
F 1.13 1.10 0.97 0.44 1.29 1.86 1.52
Cl 0.37 0.42 0.41 0.42 0.47 0.47 0.52
H,0 1.45 1.51 1.48 1.68 1.46 1.24 1.39
Total 96.17 96.44 96.21 96.05 96.34 95.97 96.24
Structural Formula based on 22 Oxygen atoms
Si 6.02 5.88 5.88 5.84 5.89 6.09 5.86
AI(IV) 1.98 2.12 2.12 2.16 2.11 1.91 2.14
Al(VI) 0.26 0.06 0.11 0.00 0.47 0.74 0.47
Ti 0.44 0.42 0.39 0.38 0.38 0.38 0.47
Fe'' 0.48 0.44 0.43 0.43 0.53 0.55 0.55
Mn 0.08 0.07 0.06 0.06 0.07 0.07 0.06
Mg 1.38 1.27 1.34 1.34 0.64 0.62 0.63
Fe’* 3.35 3.54 3.67 3.54 3.53 3.65 3.42
Na 0.01 0.01 0.04 0.03 0.03 0.03 0.05
K 1.87 1.89 1.78 1.79 1.87 1.93 1.86
Ca 0.00 0.00 0.00 0.00 0.01 0.00 0.01
Fe’'/Fe’ 'Fe’* 0.87 0.89 0.90 0.89 0.87 0.87 0.86
T°C 750.56 737.33 729.59 727.20 700.41 700 728.69
Log (fO2) -14.92 -15.09 -15.36 -15.51 -16.09 -16.28 -15.53

Homrat El-Girigab granites classified as alkali-feldspar granite (Fig. 5a) on ANOR-Q diagram
(Streckeisen & Le Maitre, 1979). Eyal et al. (2010) distinguished two sub-stages of alkaline suites in
Sinai: a) an early sub-stage (~610—600 Ma) formed syenogranites, which were preceded by monzodiorite;
b) a later alkaline sub-stage (~608-580 Ma) including syenogranites, alkali-feldspar granites and
peralkaline riebekite granites. This later sub-stage was heralded by extensive volcanic activity (i.e.
comparable with Dokhan volcanics in Homrat El-Girigab area). Furthermore, they suggested that, the
alkaline granites were evolved mainly by fractional crystallization. The composition of the studied
granites is compared Umm Shommer and Sharm alkali-feldspar granites (from Eyal et al., op. cit.).
HGAFGs are so close in their composition to later sub-stage rocks (Table 2).

High Agpaitic Index value (Al = 1.1) of HGAFGs, enhances their alkaline natures (Liégeois et al.,
1998). This alkaline affinity is further confirmed on SiO, - Na,O + K,0 - CaO diagram (Frost & Frost,
2008; Frost et al., 2001) and major elements discrimination diagram of Sylvester (1989), (Figs. 5b & c,
respectively). They are typical ferroan A-type granites as deduced from Figure 5d (Frost et al., 2001). This
conclusion is strengthened by applying the classification diagrams of Whalen et al. (1987) and Eby,
(1992), where they plot consistently in the fields of A-type granites (Figs. Se and 4f, respectively). Their
plotting in Field A, (4f after Eby, 1992) implies their mantle-derived origin in an anorogenic tectonic
setting.

H,0 were determined by stoichiometry calculations. Fe*'/ Fe*" were calculated based on the method of
Lin and Peng (1994); (T °C) temperature of crystallization and Oxygen fugacity buffer Log (fO2) of
biotites calculated according to the equation of Huebner & Sato (1970).
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Table 2. Major elements (wt. %), trace elements (ppm) analyses of HGAFGs.

Rock Alkali-feldspar granites [N SH

' Sample No. 33 71 20 18 14 9 Average AFG AFG
Oxides
SiO, 70.01 70.78 71.97 70.74 72.41 7291 71.47 69.5 71.69
TiO, 0.23 0.20 0.11 0.17 0.13 0.14 0.16 0.55 0.30
ALO; 13.73 14.25 13.79 13.68 13.85 13.79 13.85 14 13.41
Fe,05t 1.78 1.71 0.81 1.44 0.93 1.30 1.33 1 1.69
MnO 0.04 0.03 0.01 0.03 0.02 0.03 0.03 0.06 0.08
MgO 0.31 0.24 0.16 0.24 0.18 0.13 0.21 0.2 0.29
CaO 0.96 0.60 0.75 0.68 0.66 0.80 0.74 0.6 0.83
Na20 5.40 6.03 5.78 5.43 6.30 5.33 5.71 4.6 4.16
K,0 5.85 5.38 5.21 5.49 4.54 5.34 5.30 5.2 5.53
P,0s 0.05 0.03 0.01 0.01 0.01 0.01 0.02 - 0.06
L.O.I 1.10 0.30 0.80 1.70 0.60 0.60 0.85 0.3 0.61
Total 99.46 99.55 99.40 99.62 99.65 100.37 99.68 99.85 99.97
F 1310 1620 1720 1380 1680 1690 1566.67 - -
Ga 50 30 30 40 40 45 39.17 16 25
Ba 240 120 102 94 35 105 116.00 332 317.5
Rb 300 280 330 410 200 250 295.00 135 137.5
Sr 90 60 50 67 30 25 53.67 57 43
Nb 70 90 110 140 110 100 103.33 15 42.5
Y 89 90 78 74 69 87 81.17 24 50
Zr 290 310 250 270 200 230 258.33 180
Zn 30 60 30 30 40 40 46.67
Th 10 30 50 20 20 15 24.17 12.7 15.25
Q 20.15 19.17 22.19 21.32 22.33 23.52 21.45
Or 34.58 31.79 30.77 32.47 26.82 31.58 31.34
Ab 38.01 43.34 41.92 39.77 45.99 41.17 41.70
Ns 1.79 1.79 1.63 1.43 1.70 0.92 1.54
Hy 0.76 0.59 0.40 0.60 0.46 0.32 0.52
11 0.08 0.06 0.02 0.06 0.04 0.07 0.06
Ru 0.19 0.17 0.10 0.14 0.11 0.10 0.14
Ap 0.12 0.08 0.02 0.03 0.03 0.01 0.05
Fr 1.24 0.78 1.03 0.93 0.90 1.10 1.00
mg # 25.42 21.50 28.18 24.76 28.20 16.34 24.07
Al 1.11 1.10 1.10 1.09 1.10 1.06 1.09 0.94 0.92
T ,°C 741.4 757.8 737.9 747.7 717.1 737.4 739.88
P kbar 3.81 3.54 4.11 3.46 2.77 2.60 3.38
Depth km 10.27 9.57 11.08 9.33 7.48 7.01 9.12
rl -3.80 -4.18 -2.69 -3.07 -2.49 -2.87 -3.18
2 -6.69 -6.57 -5.16 -5.64 -5.01 -4.78 -5.64

US AFG: Umm Shommer Alkali-feldspar granites; SH AFG: Sharm Alkali-feldspar granite (from Eyal et al., 2010);
Al: Agpaitic Index = molar Al/Na+K); T C: Zircon saturation thermometer calculated according to Watson &
Harrison 1983 and Boehnke et al. 2013; P kbar and Depth km: Crystallization pressures and depth of emplacement
were calculated according to Yang (2017); rl, r2 discrimination values calculated by Agrawal (1995).

Conditions of crystallization

The crystallization temperatures of HGAFGs were calculated using zircon saturation (T C)
thermometer (Watson & Harrison, 1983; Boehnke et al., 2013). They range from 717 to 758°C. The
pressures of crystallization of HGAFGs were estimated by using the following equation proposed by Yang
(2017):

P =0.2426 x (ab + or)*- 46.397x (ab + or)* + 2981.3 x (ab + or) — 64224

The pressures range from 2.60 to 4.11 (Table 2), while the depths of emplacement of HGAFGs
were calculated depending on the estimated pressure by using Yang (op. cit.) calculations of the depth,
which suppose that 1 kb, equivalent to 2.7 km depth assuming that, the density of continental crust is 2.85
g/cm3 and the pressure is entirely lithostatic. They range from 7 to 11 km (Table 2).
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Fig. 4: (a-e) a) 10*TiO, - FeO
+MnO - MgO diagram (Nachit et
al., 2005), distinguishing between
magmatic, re-equilibrated and
neoformed biotite; b) Alt versus
Fe’'/(Fe**+Mg) diagram (Rieder
et al., 1999) for classification of
the studied trioctahedral micas; c)
Alt-Mg biotite diagram (Nachit et
al., 1985); d) Fe*'—Fe**-Mg
diagram (Wones & Eugster,
1965), Oxygen fugacity buffers:
quartz — fayalite- magnetite
(QFM), nickel - nickel oxide
(NNO), hematite-magnetite
(HM).; e) Log fO2 - TC ternary
diagram for the biotite stability as
a function of Fe/(Fet+tMg) at
pressure of 2070 bars (Wones &
Eugester, 1965), Arrows
represent oxidizing and reducing
trends.
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DISCUSSION
Tectonic setting

On rl-r2 multivariate discriminant diagram (Agrawal, 1995), HGAFGs fall in anorogenic granite field
(Fig. 6a). In SiO,-log [CaO/(Na,0O + K,0)] diagram (Brown, 1982), HGAFGs samples are plotted on
extensional tectonic setting (Fig. 6b). According to K,0O-Na,O- 3* CaO ternary diagram (Liégeois et al.,
1998). HGAFGs fall in Late-Shear Alkaline granite series (Fig. 6d). Alkaline magmatism is linked to
major lithospheric structures, whether it is post-collisional (Liégeois & Black, 1987; Duchesne et al.,
1997) or anorogenic (Black et al., 1985; Moreau et al., 1994). Alkaline magmatism is not always present
in post-collisional settings, but when it occurs it is very similar to true anorogenic alkaline manifestations
(Black et al., op. cit.; Sylvester, 1989). Nb/Y- Rb/Y diagram (Pearce et al., 1990), the HGAFGs samples
plot in between lower crust composition and they follow Within-Plate enrichment trend (Fig. 6c¢).
According to Sr-Rb diagram (Condie, 1973), HGAFGs magmatic source was generated at depth more
than 30 km (Fig. 6d) and emplaced later at shallower depth. The ANS crustal thickness is around 40 km
(Al-Damegh et al., 2005).
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Petrogenesis

Ab- Q- Or-H,O- F plots of normative compositions show that the HGAFGs fall just close to the
minima melt at 5 kbar with water pressure apyo 0.5 and at 2%, F (Fig. 7a), suggesting that the HGAFGs
does not represent 100% liquid composition, or that the melt was water-undersaturated (Johannes & Holtz,
1990). This trend is consistent with the moving positions of the minima for the water-saturated Q-Ab-Or
system with increasing fluorine and water content. Many studies refer to the role halogens (F and Cl) as
complexing agents for REE, Y and HFSE (Charoy & Raimbault, 1994; Audétat et al., 2000; Agangi et al.,
2010). The origin of the F-rich fluids either are primary magmatic origin (Dostal & Chatterjee, 1995;
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Agangi op. cit.) or as secondary metasomatic origin (Nurmi & Haapala, 1986). HGAFGs are fluorine-rich
(1.5 F wt. %, on average; Table 2). The appearance of fluorite in CIPW normative values (Table 2) and
presence fluorite, support that, the fluorine has a role of in the genesis of these granites. In addition, MFW
plot of Ohta and Arai (2007) used to differentiate between fresh magmatic and altered samples. All
HGAFGs samples follow the magmatic trend (Fig. 7b). In addition, there is no any unusual F-rich rocks
surrounds HGAFGs to be a source for leaching fluorine through hydrothermal processes. Furthermore, the
lack of any metasomatic alteration (i.e. albitization) support the magmatic origin of F-rich fluids. Agangi
et al. (2010) supposed the following scenario of F-rich fluids formation, which start with the
crystallization of quartz and feldspar from the magmatic source, yielding a late-stage magmatic fluid
enriched in F and to lesser extent in water content with fractionation of anhydrous quartzo-feldspathic
components. Fluorine dissolved in the magma during late stages of magmatic evolution, causing REE and
HFSE complexing and mobilizing.

Fig. 7. a) Ab-Q-Or-H,O-F, dotted
lines show the location of minima
melt composition at saturated water
pressure ranging from 0.5 to 10
kbar (Winkler et al., 1975). Solid
line shows the minima melt at 1
kbar with excess H,O at 1%, 2%,
4% F (Manning, 1981); b) FMW
diagram (Ohta and Arai, 2007) for
chemical weathering of igneous
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Finally, these F-enriched fluids migrate toward the roof of the pluton, giving rise to formation of
accessory minerals, in interstices spaces between early formed minerals (i.e. feldspar and quartz).
According to Moreno et al. (2014) the F-rich melt could be formed through carbonatite and amphibole-
rich mantle wedge as it broke down generates F-rich melt.

Si0,-Al,O; binary diagram (Bread & Lofgren, 1991) shows the compositional similarities between the
investigated HGAFGs analyses and experimental results of 20-25 % dehydration melting of
amphibolitic/basaltic sources (i.e. no H,O added). HGAFGs samples fall in the field of amphibolitic
source at 1, 3, 7 kbar (Fig. 6¢). Both SiO,- Rb/Sr (Fig. 7d after Blevin, 2004) and Zr- Th/Nb (Fig. 6e after
Nicolae and Saccani, 2003) diagrams reveal that, fractional crystallization was probably the main process
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to be accounted for the evolution of HGAFGs. Fractionation of plagioclase and K-feldspar could be
responsible for the depletion of Ba (from 240 to 35 ppm) and Sr (90 to 25 ppm) and the enrichment of Rb
(from 200 to 410 ppm, cf. Table 2 and Fig. 71).

Geodynamic implications

The widely distributed calc-alkaline and alkaline coeval rocks in the ANS explained by extensional
collapse that follows continental collision (650—600 Ma) between the East and West Gondwana
(Abdelsalam et al. 2002, Fig. 8a). From one side, the continental collision led to extensive crustal
thickening (Stern 1994, 2002; Abdelsalam& Stern 1996; Stoeser & Frost 2006; Stern 2008; Avigad &
Gvirtzman 2009, Fig. 8b). On the other side, the extensional collapse (600-550Ma) led to thinning of
lithosphere (Fig. 7¢). Extensional collapse was controlled by lithospheric delamination and slab breakoff
(Davies & von Blackenburg, 1995; Farahat et al. 2007; Avigad & Gvirtzman op. cit.; Eyal et al. 2010).

During late collisional stage (630-610 Ma), due to the begging of the slab breakoff, a slab window
opened, which enhancing the heat flux provided by the upwelling asthenosphere, causing melting process
(Bonin, 2004; Fig. 8b). This melts produced late-collisional calc-alkaline magmatism in the northern ANS
(Fig. 8b).

The next late collisional to early post-collisional stage (610-590 Ma) commenced ~20 m.y. later on, the
rapid uplift of the crust due to the slab detachment caused decompression melting in the lithosphere. This
mafic mantle-derived melt underplate the juvenile crust, causing widespread magmatism and producing
coeval calc-alkaline/alkaline magmas (Fig. 8c).

Collisional stage mantle-crustal thickening (650-600 Ma)
Suture —
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I
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Fig. 8: Sketch showing the tectono-
magmatic evolution of late post-collisional
alkali-feldspar granites of Homrat El-
Girigab (modified after Elwan et al.,
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During the late post-collisional crustal extensional stage (590-550 Ma), the effect of lithospheric
delamination, and thus asthenospheric uprise, likely diminishes. Due to the rapid uplift mantle-derived
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melts intraplate the middle-lower crustal levels forming alkaline/peralkaline magmatism of HGAFGs,
which facilitated by the abundance of strike-slip faults and shear zones (Fig. 8d)

As the HGAFGs supposed to represent A; anorogenic granites, they most probably originated in
crustal extension regime (Grebennikov, 2014). They formed in a within-plate settings; either in the
intracontinental system or near the divergent boundaries, where formation of igneous rocks is related to
faulting, shear zones and mantle melts penetration (Dobretsov, 2003). HGAFGs represent late shear
alkaline granites (Figs. 5c, and 7d), where mantle-derived mafic melts intraplate the lower crustal levels,
facilitated by the abundance of strike-slip faults and shear zones. HGAFGs were generated from lower
crustal amphibolitic source through fractional crystallization (Figs. 5 d & e, 6 ¢, d & f). The abundant
amphibole and carbonatite in the mantle wedge (Moreno et al., 2014) broke down to generate F-rich melt.
Partial melting of the hot juvenile lower crust injected with such melt then produced granite with A-type
characteristics. The mantle components in the mafic melt were metasomatized by subduction released
fluids (i.e. F-rich melts) are easier to be partially melted, which consequently eliminated subduction
signatures and formed HGAFGs magma.

CONCLUSION

1- Homrat El-Girigab area located at northern Eastern Desert and it is covered by Dokhan volcanics,
which intruded by alkali-feldspar granites.

2- The biotite in Homrat El-Girigab alkali-feldspar granites were crystallized from alkaline source under
NNO Oxygen buffer and oxygen fugacity (log fO2) range from -14.92 to -16.28 i.e. oxidized
conditions.

3- Homrat El-Girigab alkali-feldspar granites are alkaline, ferroan anorogenic A-type granites. They are
belong to Al-subtype anorogenic granites.

4- Alkali-feldspar granites were crystallized under temperatures range from 700 to 758°C, pressures 3 to 4
kbar and emplaced at depths range from 7 tol1 km.

The alkali-feldspar granites were emplaced during the late post-collisional crustal extensional stage,
where mantle-derived mafic melts intraplate the lower crustal levels, which facilitated by the abundance of
strike-slip faults and shear zones. Homrat EI-Girigab granites were derived from lower crustal
amphibolitic source and evolved by fractional crystallization.
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