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Abstract:

Whilst considerable attention has been paid fo determining the number of
classes in a latent class analysis less attention has been directed at the optimal
selection of indicator variables. Indicator selection reduces redundancy and
complexity, and can provide a way forward in cases where the number of
indicators is large. However, determination of the optimal indicator set and the
optimal number of classes is not straightforward, as the two are heavily
interrelated.

This paper reports on a reformulation and extension of the Dean and
Raftery algorithm. By treating subset selection -as an imposition of sets of
constraints on the class membership probabilities, the BIC ( or any other
information criterion) becomes informative both for determining the optimal
subset selection and for determining the number of classes. The procedure is

illustrated by a dataset on the presence or absence of psychiatric symptoms in 30

psychiatric patients.
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1- Introduction:

Latent class analysis is now heavily used in medicine as a method for
determining subgroup structure in a set of indicator variables. Common uses
include medical diagnosis and symptom classification [8][19], investigation of
response patterns in medical surveys [20], and assessment of differential need in
patient groﬁps[Zl].

Whilst considerable attention has been paid to determining the number of classes

in a latent class analysis, less attention has been directed at the optimal selection

of indicator variables, Indicator selection reduces redundancy and complexity,

and can provide a way forward in cases where the number of indicators is large.
However, joint determination of the optimal indicator set and the optimal
number of classes is not straightforward, as the two are heavily interrelated.

Work on this topic has been carried out by Dean and Raftery [5]. Their method
essentially consists of two stages. They first propose the use of the BIC to
determine the number of groups based on a sequence of latent class analyses
which use all of the indicator variables. Then, once the number of groups has
been selected, a “headlong search” or stepwise algorithm is used to compare the
BICs of latent class analyses on subsets of variables, leading to a best subset of
variables. However, this two-step approach which involves first finding the
number of groups and then the best subset of indicator variables may not be
optimal. In addition, the headlong search algorithm is difficult to implement in
practice, as it involves fitting pairs of latent class models with different numbers
of indicator variables. This paper therefore proposes a modification and
extension to the Dean and Raftery algorithm which simultaneously determines
both the optimal number of groups and the optimal subset of indicators. In

addition, a reformulation of the headlong algorithm improves its usability in
standard software.

The paper proceeds as follows. Section 2 introduces the notation for the paper

and the basic latent class model. Section 3 describes earlier approaches to
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variable selection in latent class analysis and the Dean and Raftery headlong
search algorithm. Section 4 introduces our algorithmic approach. Section 5

describes the dataset used , and Section 6 presents the results of the analysis. -

The paper concludes with a short discussion.

2. The Latent Class Model

The latent class model has been described by many others [11},[13],[14]
and is summarized here to introduce the notation. We consider a set of J
indicator variables, with each indicator representing a binary outcome on a
particular characteristic or response. For individual i (i=1...n), we let Yy
represent the random indicator variable j which takes the value 1 or 0. We
assume the existence of K latent classes. We also let {Yii} = {yi;} represent the

full set of responses over all individuals and indicator variables. Then the basic
latent class model can be written as

P({v}l{ay]) = T Tk me T, qy (1- _qﬂc)l_y” (1)

where q; is the probability of a ‘1’ response for indicator j for an individual in
class &, and the m; represent the class sizes , with Y, = 1. The parameters
[qik} and {my} are unknown. The likelihood in the model parameters 1 =
(K. {q jk}, {m;}) is then straightforward: '

QLo
L(2) = [Ty Xk=1 7 Z;=1 q}’,‘! (1 - qik) 7 v (2)

Maximization of the likelihood for fixed K can be carried out either using the EM
algorithm, a Newton-Raphson approach, or hybrid schemes combining EM with
Newton steps, such as that used in the Latent Gold package [9]. In general, the
likelihood surface is multi-modal, and so it is essential that multiple start values
are used. Typically, a large number of different random start values of the
model parameters are chosen, in order to best prevent a local rather than a
global maximum of the likelihood being reached.

Once estimation is complete, the posterior probability p;, of individual i
belonging to class & can be obtained:

1-yy

¥t
Pt = Ty Zj:l qﬂ!(l_‘bk) (3)
ik — ¥ 1o vae
' T im Zf=1 q;;? (1-au)” Y
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In order to determine the number of classes K, a common procedure is to use the
BIC

BIC(K)= -2 log L(K) + p log(n) . u(4)

where p is the number of parameters being estimated in the model, and choosing
the value of K which produces the lowest value of BIC

3. Previous Approaches to Variable Selection in Latent Class Models,

Work on the general problem of variable selection in model-based
clustering (sometimes known as subspace clustering) is becoming of increasing
interest. Early work by Friedman and Meulman [9] on attribute selection in
cluster analysis was followed by an important paper by Raftery and Dean [18],
who, in the context of model-based clustering suggested a greedy search
algorithm that simultaneously chose the number of classes K, the optimal subset
of variables and the clustering model, based on the BIC criterion, and illustrated
it in the context of a Gaussian mixture model. Other forms of penalised
likelihood have been proposed; Xie et al [24] proposed a I.; norm penalisation,
and Wang and Zhu [25] suggested that penalisation should be based on
grouping parameters together within a variable. More recently Guo et al [10]
recommended that a pairwise penalty on pairs of cluster centres should be
used. Nearly all of this work has been focused on the Gaussian mixture model.

Specific work on indicator selection in latent class analysis however, is
sparse. The major work is by Dean and Raftery [5], and is an extension of
their 2006 paper referred to above. Very recently, an online paper by Bartolucci
et al [2] has addressed a latent class analysis problem on the quality of life of
elderly nursing home patients with large N and J. These two papers form the

motivation for our work. Dean and Raftery [5] proposed the following procedure
for variable selection.

Stage 1. Determination of the initial number of classes.
Dean and Raftery state that the number of classes chosen should be “the
largest number of classes that can be identified” from a latent class model
with all variables. In practice, this is taken to be the number of classes K
that minimises the BIC over a range of different values of K.
When fitting a latent class model, Dean and Raftery, in common with

others writing on latent class models, suggest taking a number of starting
values to avoid local maxima of the likelihood.

Stage 2. Identification of a small initial set of indicator variables.
First, we determine the smallest number of variables J* that allow a
latent class model with X classes to be identified. This is achieved by using
Goodman’s formula for identifiability of a latent class model [11]. For
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binary indicator variables, this states that the inequality below must be
satisfied

2> 2«J—J+1)xK o o(5)

Once J' has been determined, the indicator variables are ranked into
order according to the variance of the G across the K classes. The J=*
variables with the highest variance are taken to be the initial set. (An
alternative scheme is also proposed in cases where the data cannot
identify a latent class model for K> 1).  The initial set of variables is
denoted by Y(clust); all other indicator variables are in the set Y(other).

Stage 3. The iterative headlong search algorithm

Generally, at any iteration in the headlong algorithm , a stepwise
procedure is performed, allowing both additions to and subtractions from
Y(clust). Firstly, each of the variables in Y(other) are examined singly
for potential inclusion into Y(clust). We call this candidate variable Y(?).
Two quantities are constructed to test whether the new variable is
important — the first is the BIC for the K-class latent class analysis for the
indicator  variables including  Y(?) which we denote by
BICk[Y(clust)+Y(?)], and the second is the sum of two BIC values- the
BIC for the K-class latent class analysis without Y(?), and the BIC for the
single class latent class analysis for Y(?) - we denote this second quantity
as BICk{Y(clust)] + BIC({Y(?)]. The difference between these two
quantities is then calculated, and if it is negative, the inclusion step stops
and Y(?) is placed in the set Y(clust).

A exclusion step is then carried out. Each of the variables in Y(clust) is
examined to see if they can be removed from the K-class latent class
analysis. Again we label the candidate variable to be excluded by Y(?).
The two quantities calculated now become BICk[Y(clust)] - the BIC for
the K-class latent class analysis including Y(?) - and BICk[Y(clust)-Y(?)]
+ BIC{[Y(?)] — the sum of the BICs for the K-class latent class analysis
without Y(?), and the BIC for the single —class latent class analysis for
Y(?). The difference is then examined and if the difference is positive,

then the variable Y(?) is placed in the set Y(other) and the exclusion step
stops

Thus at each iteration of stage 3, the set Y(clust) can both be augmented
by one variable and reduced by removal of a second variable. The exclusion step
is omitted at any iteration if the number of variables in Y(clust) is equal to J* (in
other words, the latent class model could not be estimated with fewer variables).
The algorithm (and thus the procedure) stops when there is no change in the
membership of Y(clust) between successive iterations,

The Dean and Raftery algorithm can however be criticised on a number
of criteria. Firstly, there is no attempt to estimate K as part of the algorithm; as
the size and membership of Y(clust) may be different for different values of K.
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Secondly, the algorithm is

not easy to implement in practice using standard
software-

the criterion of inclusion or exclusion at each iteration of stage 3 is
based on differences between two quantities rather than on an absolute
Thirdly, the algorithm does
each iteration,

fit in each step
In the next section,

criterion.
not choose the best variable to include or exclude at

but instead chooses the first variable that gives an improvement in

we therefore propose a new algorithmic approach

using constrained model fitting which addresses each of these concerns. We build

on recent work by the paper by Bartolucci et al [2] who have made two

important modifications to the Dean and Raftery algorithm. Firstly, they

suggest that, for large numbers of indicators, starting the algorithm with

different numbers of indictor variables may be worthwhile. Secondly, they point

out that the absolute value of the sum of the BIC values rather than the

difference between BICs is a better criterion and which can be used fo select
both indicators and the number of classes,

4. The Proposed Algorithm.

- The starting point of our approach is to recognize that exclusion of an
indicator variable from a latent class analysis has exactly the same meaning as
placing a constraint on some of the 9jx- More exactly, the sum of the two BIC
measures used in the headlong search algorithm — the BIC for the latent class
model with Y(?) omitted together with the BIC for the single class latent class
analysis for Y(?) alone - is exactly equal to the absolute BIC measure for a latent

class analysis for Y(?) included {Y(clust), Y(?)} but with equality constraints
placed on the g, relating to the indicator Y.

To see this, we suppose that variable Y(?) is a candidate variable for removal at

an exclusion step, and the index for this variable is Jour.  The equality constraint
we propose requires that

qioutk = qjout . v k '"(6)
Without loss of generality, we suppose that Y(clust) consists of the set of
all J indicator variables, and that the candidate variable is J, the last variable of
the set. This simplifies the mathematics and atlows us to avoid set notation. The
 likelihood for the model for {Y (clust),Y(?)} with equality constraints on Qi is
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n K
L(2) = Z Tk Z a (1~ gp) Y+ a7 (1~ q.) "
=1 k=1
n K J-1 : n K
= Ttk Z J’u (1 qﬂc)l Yy + l__lzn'k J’q (1 QI )1 J"U]
i=1k=1 |[j=1 i=1 k=1

= [Tie1 k=1 o [Zj iqﬁ] (1- qlk) yq] + T q]u (1-aq,. )1 .

(7

This is the sum of the likelihood of a K-class latent class model on Y{clust)
without Y(?) and the likelihood for a single class latent class model for Y(?) alone
( ie a Bernoulli likelihood). This means that we no longer need to fit sequences
of latent class models with different sets of variables in Y(clust); instead we can
fit latent class models to the full set of J variables, but with constraints on the
qy, which relate to subsets of the J variables. Moreover, the absolute value of
BIC under different constraint can be used to determine the best model.

Moreover, the absolute value of BIC can be used to simultaneously
determine the best choice of model for different values of the number of classes X
— we can optimise over both K and membership of Y(clust).

- Unlike Dean and Raftery, we take a backward search approach as this
avoids the selection of an initial starting set of variables.

We therefore propose a new procedure:

Stage 1.

Fit a one-class latent class analysis to all J variables, and calculate the
BIC. Call this BIC,.

Stage 2.

Increase the number of latent classes by 1.

Stage 3.

For a K-class latent class analysis, we define three sets of indicator
variables — Y(clust) — the set of variables included in the K-class analysis,
Y(?) - the variable under consideration, and Y(out) - the set of variables
omitted from the K-class analysis. At the start, Y(out) is null, and Y{clust)
consists of all J indicator variables, We first fit a full J-variable latent
class analysis and calculate the BIC —call this BICk(J) . We then perform
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a series of backward elimination steps, testing each of the J variables in
turn by setting Y(?)=Y(j) for J=1...J, setting the appropriate equality
constraints on the gy, fitting the constrained latent class model and
recording the resulting value of BIC. We set the lowest value of BIC at
this step to be BICk(J-1) and record the index of the variable omitted

which we call j,.. We then add Y(jour) to Y(out) and remove Y(jour) from
Y(clust).

A general backward elimination step will seek to decrease the BIC.
Starting from the BIC value for the remaining J,,, variables in Y(clust) -
BICk(Jcwst) - we search for the next variable Y(j,,) which gives the
largest decrease in BIC - call this value BICk(Jenus-1).  Fitting a latent

class model at this general step would involve constraining suitable sets of
parameters qj; as follows:

Uik = qj. ¥ k and for each j where Y(j) € Y(out) «(8)

This variable Y(jou) is then placed in the set Y(ouf) and is removed from
Y(clust).

The backward elimination steps continue either until Jost is too small to
allow the [atent class model to be estimated — i.e.

etust < (2 “Jetuse = Jetuse + 1) X K -+ (9)

or until BICk(Jase-1) > BICk(Juusd) - ive. there is no decrease in BIC in
eliminating a variable.

Stage 4.

Repeat stages 2 and 3 until BICk+1(j) >BICk(j) for all Js or, alternatively,
stop at a pre-determined value of K.

The BIC trajectories BICk(j) can then be plotted against j for each value of K,

and the global minimum value of BIC over both K and the variable selection
procedure can be found.

Note that an amended version of the above algorithm would replace the iterative
backward elimination at stage 3 by a backward stepwise algorithm, which would
also allow variables in the set Y(out) to be tested for inclusion in Y(clust), as well
as allowing variables in Y(clust) to be tested for exclusion. In this case, the BIC
trajectories would not be univalued functions of j but could b

functions (with potentially more than one value of BIC for
This could give a zigza
included.

5.The Example Dataset,

¢ multivalued

some values of j).
g appearance of the trajectory if inclusion steps are

We illustrate the ideas in this

paper by reanalysing a dataset on the
symptoms of 30 psychiatric patients

- These patients were examined by an
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experienced psychiatrist and the presence or absence of 23 psychiatric symptoms
was recorded. The data is presented in Table 1.

Table 1 — Symptom Data for 30 Psychiatric Patients

Disorientation | .......... e I
2 obsession/compulsion B e e
3 memory impairment ! ... ..., ... ... R S e
4 lack of emotion | ..... T S
5 antisocial impulses or acts N ST N & S
6 speech disorganization | ....... e e cene XL L XLX
7 overt anger S S N ST’ S
8 grandiosity | .......... SKL L Ke o KeoXuoua.
9 drugabuse | X...X....... U S
10 alcohol abuse | ..... G SXK.LL LU XWX, .
11 retardation e e e co X .XX..LLX.X
12 belligerence/negativism | .......... P UM S I T
13 somatic concerns i SUNINI & T ST . . X.XX
14 suspicion/ideas of persecution | ......... cee XXK..... .. XX, . XX
15 hallucinations/delusions | ............. KXK.weeunn. XK. ..XX
16 agitation/excitement | .. ... Xeeoot nX XKoo o0 L XXX, L X,
17 suicide | .X....XXX..XX...XX...XX.....XX
18 anxiety | .XXX..XXXXXX...X.X..XXX.XXX..X
19 social isolation | x......XX.XXXX..XX.XXXX.X.XXXX
20 inappropriate affect or behaviour | ...XX.X..X....XXXX.XXXKKXXKKXX
21 depression | XXX...XXXXXKXX..XX.XXXX..XX.XX
22 leisure time impairment « L XEXXXRXXXHXKKK  XKXXXKXKXXKKK . X
23 daily routine impairment

I $.9.6.9.:9.9.9.9.9.90.0.009.9.9:9.9.9.9.96:6.9.6:9.4
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The original data was first described by [22] and listed in {3]. Van Mechelen and
De Boeck [22] report that the purpose of the study was to determine the
taxonomic structure of an individual psychiatric diagnostician, They also report
that the patients were 16 men and 14 women, with ages ranging from 18 to 77
years, although individual age and gender information is not provided in the
dataset.

We can immediately notice that there are nearly the same number of patients
(V=30) to symptoms (J=23). This will present problems for standard latent class
analysis, with the potential for multiple maxima of the likelihood surface.

5.1 Previoﬁs Analyses of the Symptoms Data.

The original paper by van Mechelen and de Boeck [22] suggested that
latent class analysis can only handle a relatively small number of symptoms, and
they instead approached the classification problem through a HICLAS analysis
[4] — a form of hierarchical probabilistic clustering. Their paper found four
patient classes, essentially defined by a suicide group, a social isolation group (
both of which may be depressive or anxious), a delusional group and a substance

abuse group. 11 symptoms were placed in an undefined class of symptoms and
were not felt to contribute to the analysis,

A reanalysis of the data in 2003 was carried out by Berkof et al [3]. They
used the data to illustrate a Bayesian latent class approach. Using three distinct
forms of the Beta distribution as prior distributions for the class symptom
probabilities g, and a Dirichlet (1,1) distribution for the mixture probabilities,
their analysis came to the conclusion that there was no preference between the
three, four and five class solutions, being equally preferred. Additionally, for
some choices of the Beta distribution prior, a two or one group solution was
preferred. The Bayesian analysis is highly sensitive to the choice of prior, and
makes the analysis problematic. In examining the three group solution, the
authors found that Class 1 was associated with high probabilities on the
symptoms  agitation/excitement, suspicion/fideas of persecution, and
hallucinations/delusions, and identified this as being indicative of a psychosis
syndrome. Class 2 was associated with depression, anxiety, and suicide and was

interpreted as an affective syndrome, while Class 3 was associated primarily with
alcohol abuse.

Most recently, Aitkin et al [1] have also suggested that a three class
solution is optimal, but with a four class solution also strongly supported. They
again took a Bayesian latent class solution, using diffuse or reference priors for
both the class symptom probabilities qsx given class membership and mixture

probabilities, and using posterior deviance distribution plots for inference on the
number of classes.
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While the consensus is towards a three class solution, we note that a
frequentist latent class analysis has not been earried out, and also that, given that

the number of cases is nearly equal to the number of indicators, the issue of
variable selection has not been addressed.

6. Results,

We first fit a standard latent class analysis to all 23 symptom variables,
over a range of values of K from 1 to 5. A large number of different random
start values were chosen for each latent class analysis to ensure as far as possible
that a global maximisation of the likelihood was found; we required that the
smallest value of -2 log L needed to be repeated at least four times from
different start values. For two and three latent classes, 100 start values were

needed, for four latent classes, 1000 and for five latent classes, 10000 start values
were required.

Table 2 — BIC Values for a standard latent class solUtion with no variable
selection for one up fo five latent classes

Number of: classesK . I 2 34 5
"~ BICvalue | 684.77 | 694.16 | 714.52 | 762.15 | 816.10
Number of starting values 1 100- |- 100 1000 10000

Table 2 gives the resultant BIC values. A surprising result is immediately
seen — based on the BIC measure, there is no evidence of a latent class structure
in the data — the best model is a one- class model. Clearly, the large number of
variables combined with the relatively small number of cases makes such a
conclusion suspect. We therefore proceed with variable selection.

We first turn to the Dean and Raftery method. They suggest starting a
variable selection procedure by determining the number of classes from
examination of the BICs from a sequence of latent class analyses which use the
full number of variables However, we have just seen that this method suggests a

one-class solution and there is no clear recommendation on how to choose the
number of classes,

The new variable selection procedure suggested in this paper allows us to
proceed. For each selection step, we again adopted the same number of random
starting values listed in Table 1 -100 for two and three classes and 1000 for four

classes. We adopted a backward stépwise procedure allowing for both inclusion
and exclusion steps.
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Figure 1. BIC trajectories for variable selection: one to four latent classes

700 720 740 760
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20 : 15 10 5

number of included variables

Figure 1 shows the BIC trajectory plots for one to four latent classes. The
BIC values with 23 inciuded variables are identical to those appearing in Table
1; thereafter the variable selection procedure reduces the BIC. Thus, fitting a
two- class latent class model and carrying out a backward stepwise procedure
gradually reduces the BIC from 694.16 to a minimum BIC of 664.01 with ten
included variables; at that point, the BIC increases if further selection steps are
attempted. The three-class model gives us a minimum BIC of 664.06 with nine
included variables, and a four class model similarly gives a minimum BIC of
679.40 with five included variables. The global minimum of the BIC over X is

found at the two class solution, but the two and three class values of the BIC are
very similar.
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Table 3 VARIABLE EXCLUSIONS and INCLUSIONS at each step of the selection
procedure - two, three and four latent classes.

‘of latent | of the seléciti'o_nf p_rocédure

“classes

Number ‘| Variables inclinded or excluded at ¢ach step | Final selected variables |

15(E); 14(E); 4(E); 2(E); 1(E); 20(E)

2 | 8(E); 23(E); 11(E); 12(E); 22(E); 9(E); 6(E); | 3,5.7,10,13,16,17,18,1921

3 9(E); 23(E); 2(E); 11(E); 20(E); 19(E), 22(E); | 3,5,10,14,15,16,17,18,21
8(E); 1(E); 12(E); 13(E); 7(E); 6(E); 4(E)

4 I(E); L1(E); 23(E); 2(E); 1(E); 22(E); 12(E); | 4,7,14,15,16
20(E); 3(E); 6(K); 8(E); 7(E); 18(E); 13(E);
S(E); 19(E); 17(E); 7(1); 21(E); 10(E)

Note: (E) indicates an exclusion step and (I) represents an inclusion step. In this

example, all steps for two and three classes are exclusion steps; whereas there is
an inclusion step for four classes.

Table 3 gives more details about the individual selections at each step.
Thus, for the two class solution, the first step was an exclusion step with
indicator variable 8 omitted; the next step was also an exclusion with variable 22
omitted, and so on. It is notable that even though we followed a backward
stepwise selection, all steps for the two and three latent class analyses were
" exclusion steps. The four latent class analysis, however has an inclusion step,
with variable 7 being reincluded at step 18 after being excluded at step 12. This is
reflected in the zigzag nature of the four group trajectory in Figure 1.

Table 3 also gives the final variable selection for the two, three and four
latent class models. It should be noted that the choice of variables is somewhat
different for the various latent class models. With more classes, different
variables are needed, and it is not simply that on set of variables is a subset of the
other. Thus variables 14 and 15 are required in the three class model but not in
the two class mode and contribute to defining the extra class; conversely
variables 7 and 19 are needed in the two class model but do not contribute
sufficient extra information for the three class model.
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TaBLE 4. Class symptom probabilities of class membership for the BEST two

class model
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Varlable

| Class 1 (63 0%) Class 2 (37 0%) :
3 Memory 1mpaxrment 0 0 0. 1800 B
5. Antisocial impulses or acts 0.0 0.2700
7. Overt anger 0.0 0.2700
10. Alcohol abuse 0.0 0.4500
13. Somatic concerns 0.3706 0.0
16. Agitation/excitement 0.1059 0.5400
17. Suicide 0.6353 0.0
18. Anxiety 0.7406 0.3610
19 Social Isolation 0.7882 0.2799
21. Depression 1.0000 0.1899

TaBLE 5. class symptom probabilities of class membership for the BEST

tHREE class model
~Class3
T e 33%) | (168%)
3. Memory impairment 100 00 03972
5. Antisocial impulses or acts 0.0 0.0 0.5957
10. Alcohol abuse 0.0558 0.0 0.7937
14. Suspicion/ideas of persecution | 0.0 1.0000 0.0
15. Hallucinations/delusions 0.0 1.0000 0.0
16. Agitation/excitement 0.1115 0.7143 0.1980
17. Suicide 0.5567 0.2857 0.0
18. Anxiety 0.8350 0.4286 0.0
21. Depression 0.9442 0.4286 (.2063
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Tables 4 and 5 show the estimated class symptom probabilities of class
membership g; and class proportions z; ( converted to percentages) for the
selected variables contributing to the two and three class models. Table 4
identifies a large class (63%) with high probabilities q;,0n variables related to
anxiety. and depression, and a smaller class (37%) with mid-range probabilities
on anger, anti-social behaviour, and excitement; these latter variables have close
to zero probabilities for qj; on the first class. The three class model is similarly
described in Table 5. Class 1, representing patients with depressive and anxiety
states, essentially remains the same as Class 1 for the two-class model, whereas
classes 2 and 3 arise from splitting class 2 of the two-class model. The new class 2
now represents patients with paranoia and delusional symptoms, whereas the
new group 3 now represents patients with alcoholic and antisocial behaviour.

Finally, we comment on the assignment of patients to groups. Both the
two and three class models assign patients to their modal group ( with the highest

value of py) with assignment probabilities of 0.95 or over, with excellent
allocation of patients to classes in both models.

7. Discussion and Conclusions

after indicator variable selection, that there are either two or three classes of
patients, with very similar BIC values. The three class solution with nine
variables is preferred by us over the two group solution with ten variables as it
uses a different selection of variables to identify a psychotic group of patients,

and an aleohol abuse group, as well as the affective syndrome group identified in
both the two class solution.

The results of our analysis are similar in some respects to previous
analyses, and different in other respects. Other authors have suggested three or
four group solutions. The three group solution of Berkhof et al [3] is close to our
own three group solution in identifying groups of psychosis, affective syndrome
and alcohol abuse. The four group solution of Van Mechelen and de Boeck [22]
essentially splits the affective syndrome group into two, distinguishing between
those with and without suicidal tendencies. An important difference in our
work is that all patients are well allocated to classes with probability 0.95 or
above. Berkhof et al [3] allocate only 21 of their patients to a group with
probability 0.9 or above, whereas Van Mechelen and de Boeck [22] fail to
allocate one case entirely. Variable selection appears to have reduced

classification noise in the data by idenfifying the most important of the
indicators.

We next consider the issue of variable selection. Van Mechelen and De
Boeck [22] implicitly select 12 of the 23 variables as contributing to their
analysis; however they included variables such as leisure time impairment, daily
routine impairment and inappropriate affect which did not contribute to our
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analysis. Berkhof et al [3], in contrast, do not consider the issue of variable
selection, although in describing their three group solution in words, they use
just seven of the variables (agitation/excitement, suspicion/ideas of persecution,
hallucinations/delusions, depression, anxiety, suicide, and alcohol abuse.

Turning now to the methodology, we are proposing that a constrained
latent class analysis framework provides a relatively straightforward procedure
for guiding a latent class analysis both on the choice of variables and also the
number of classes. BIC trajectory plots will help in explaining such decisions to

clinicians. The procedure is particularly important where there is a large
number of indicator variables.

It might be argued that fitting constrained latent class models is not
strwaightforward but, in fact, the ability to constrain arbitrary subsets of the
4ji is available in a number of standard software packages for latent class

analysis. The latent variable package Mplus [16) fits latent class models and
allows subsets of parameters including the gy to be constrained through its
MODEL command [7]. The SAS add-on Procedure PROC LCA [12] similarly
allows the rho parameters ( the equivalent of the gk in this paper) to be
constrained in any desired way by specifying a matrix of constraint values
through its RESTRICT clause. Most useful, however, for this paper is the
facility for constraining estimates in Latent Gold [23]. This stand-alone package,
used by us in this paper, allows the 7= parameters to be constrained across
latent classes by excluding an indicator variable’s effect in the analysis. The

package has a windows interface that allow constraiats to be added or removed
with a single click.

The method can be extended in various ways. Although this paper focuses
on dichotomous indicator variables, the method can be easily extended to other
forms of data — polytomous data, count data or continuous data, or mixtures of
these different types. Latent class models involving other types of variable are
more often referred to as mixture models, and similar procedures based on the
BIC can be used. Another issue is the choice of BIC as the criterion to compare
and assess models. In general the consensus is that BIC is the preferred
measure to compare models in latent class analysis [17]. However, other authors
have suggested that other forms of information criteria may be preferred. Thus
Dias [6] suggests that AIC3 may be a better choice than BIC for latent class
models; whereas Lin and Dayton [15] have suggested the use of a corrected AIC

(CAIC) or Schwartz SIC statistic. It is straightforward to use these alternative.
criteria in our procedure.

Finally, other extensions need to be considered. One natural direction of
development is to extend this procedure to models with covariates, although this

would require optimization over the number of classes, choice of indicators and
choice of covariates.
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