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Abstract

A difficult and challenging problem, not only to Bayesian but also to those interested in
maximum likelihood estimation, is to express the precision matrix of the second order moving
average processes in closed analytic from in terms of the parameters directly. The main
objective of this article is to develop a convenient technique to obtain such closed analytic

form. The proposed technique is based on approximating the covariance structure of the first two
observations only. Then, a homogeneous difference equation of the second order is developed for the
elements of the inverse of the transformation matrix and an exact solution for the difference equation is

given in a closed and easily computed form.
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1. Introduction

For well — understood reasons, most of publications to analyze autoregressive moving average,
denoted by ARMA(p, g), processes using the Bayesian approach focus on the analysis of pure
autoregressive, denoted by AR(p), processes and pay little attention to pure moving average, denoted
by MA{q), processes. This void in the Bayesian literature due to the complexity of the likelihood function

of MA (q) processes because there is not a closed mathematical form for the precision matrixin terms of
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the parameters directly. The main difficulty of MA (q) processes is that the previous errors E?Fjare

nonlinear functions in the model’s coefficients. Therefore, the joint and marginal posterior distributions
of the parameters are not standard; thus, the statistical inferences about the parameters should be
done numerically. A simple mathematical form for the likelihood function is needed and this has not be

done, so far, for MA (g), withg > 2, processes. Too many calculations are required in order to compute

the joint and marginal distributions for any point in the parameter space. As the sample size increases,
computation of the posterior distributions becomes increasingly laborious even for high- speed

computers.

An efficient Bayesian analysis is not possible without finding a way to represent the likelihood
function in such a way to produce analyticly tractable posterior distributions. Whittle {1951, chapter 4)
presented an approximation to the likelihood function of ARMA (p, q) processes. Although Whittle's
approximation reduces the number of calculations needed to characterize the posterior distributions, it
requires the validity of the invertibility assumptions. Furthermore, the theoretical and numerical
properties of the approximation have not been thoroughly studied. Wise and Siddique {1958) obtained
the precision matrix of stationary AR (p) processes in a closed form. Box and Jenkins (1970) and Wilson
(1973) used the idea of setting the initial values of the errors to zero in order to approximate the
likelihood function. However, they did not provide a closed analytic form for the precision matrix.
Newbold (1973) was concerned with the Bayesian estimation of the coefficients of the transfer —noise
models. He used a nonlinear least squares approximation to show that the Bayesian inferences about
the parameters can be done using Student’s t distribution if Jeffreys’ prior is used. Newbold (1974)
derived an exact form for the likelihood function. However, he did not give a closed analytic form for the
precision matrix. Mcleod (1977) proposed replacing the determinant of the covariance matrix of ARMA
processes by its asymptotic limit in order to approximate the likelihood function. However, his approach
does not avoid the problem of computing the inverse of the covariance matrix. Phadke and
Kedem(1978) presented three different techniques to obtain the exact likelihood function of MA(q)
processes. However, none of these techniques can lead to a closed analytic form for the likelihood
function in terms of the parameters directly. Their work has been extended to ARMA processes by

Ansely (1979).
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Another approach to approximate the likelihood function of MA (q) processes is used by Zellner
and Reynolds (1978) and Hilmer and Tiao (1979). The idea of setting the initial values of the residuals to
zero has been used in their work. Zellner and Reynolds (1978) have shown that the inferences about the
coefficients of ARMA processes can approximately done using t distribution by replacing the exact
coefficients values in the covariance matrix by initial consistent estimates. Their technique is equivalent
to expand the errors sum of sguares as a quadratic function in the coefficients around their nonlinear

least squares estimates using Taylor's expansion.

By introducing a new spectral parameterization of time series data Shore {1980) has shown that
Whittle's approximation of the likelihood function can be used in Bayesian analysis of ARMA processes.
He derived a conjugate prior distribution for his approximation. He has shown also that the approximate
precision matrix of MA(g) process is the covariance matrix of pure autoregressive process. Of special
interest are the first and second moving average processes. With respect to the exact analysis of the
first order moving average process, Shaarawy and Broemeling(1984) were able to derive the exact
posterior distributions in closed analytic forms. Regarding the second and higher order of moving
average processes, Broemeling and Shaarawy (1988) developed an approximate methodology to
estimate the parameters using t distribution. Unlike the technigues of Newbold(1973) and Zellner and
Reynolds (1978), Broemeling and Shaarawy (1988) proposed replacing the previous errors by their
nonlinear least squares estimates. Their approach Has been exte-nded to bilinear models by Chen(1992).
Some other investigations which attempt to approximate the likelihood function and posterior
distributions may be found in Shaman (1975), Ljung and Box (1976) and Nicholls and Hall (1979).
Shaarawy (1992) proved that it is possible to express the determinant of the covariance matrix of MA(2)
process in a closed and analytic form. However, his approach does not avoid the problem of computing
the precision matrix. For such process, it has not been found, so far, how to express the precision matrix
in a closed analytic form in terms of the parameters directly. This causes a difficult and challenging

problem, not only to Bayesian analysts but also to those interested in the maximum likelihood

estimation.

In this article, a closed and analytic form for the precision matrix of MA(2) processes will be
developed by setting the initial values of the errors to zero. This gives an approximate covariance

structure for the first two observations(y,, y,), while most of the other approximations, outlined

above, give an approximate covariance structure for all observations (v, ¥y+0mn »,)- The proposed
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approach is based on developing a homogeneous difference equation of the second order for the

clements of the inverse of the transformation matrix and giving an exact solution for the difference

equation in a closed and easily computed form.

2. The Second Order Moving Average Processes

let {t} be a sequence of integers, @ andg,be real constants, {£(/)} is a sequence of

independent and normally distributed unobservable random vectors with zero mean and a kxk

unknown precision matrix, and ¥, be a realization of the process {y(t)} at time t. Thus, the moving

average model of the second order is defined for n successive time points by

v, =€ -06¢,-06,, 1=12..n
In matrix notation
v=dA(0)=416.6)¢
Where '
Y:(yl?yzﬂ-“7xvn)l'8&:(871’80’ ’gr!)l'
and
-9, -6, 1 0 0 0 ... 0
0 -8, -6, 1 0 0 0 0
0 0 -0, =0, 1 0 0 0
Anxrﬁ-’i(@l > 92) -
R R - -9, -9
Assume that
(e {—;0)' = E (&, go)' (0 0)'
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Thus, the model (2.1) can be written as

v = A(6,.6,)¢ (2.2)
Where

5:(511521""‘%)‘:

And
1 0 0 0 0 oo 0 0 0
-0, 1 0 0 coveveeee . 0 0 0
0, -0, 1 0 | 0 0 0
; Lo -0, -0 1 0 oo 0 0 0
Anxn (Ql > 82) o ’ l
L0 0 0 ' -0, -0, 1]

£ is assumed to be normally distributed with zero mean vector and covariance matrix

[ | . _ 5 . .
ol =—1I, ,t=— Thus Y is normally distributed with zero mean vector and covariance matrix

T g

i

1(718,6,,7)= (Y Helatoha ()

Cleariy,k/l(B)A‘(G)( =1.

Thus, the likelihood function of the parameters ¢, ¢, . and 7 can be written as

H

Lo, Tl)’)w(r)zexl{;(y/l"(Q)A_I(Q)Y)}}’ cR", GeR’, 7>0 (2:3)

=
The form of the likelihood function (2.3) is useless without finding a way to express the matrix A (9)

in terms of the parameters ¢ and ¢, directly.

e
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Let DE be a 11X 7 matrix defined by

ffl ] i, j=112 ny k=12 i
LO i—j *k
When k =1,
L ,i-j =l
Dln :(d;.): Lo 2 o B
0 ,i-j=l
0 0 0
1 0 O 0
0o 1 0 0
0o 0 0 0 OJ
o 0 O 0o 1 0O
Whenk =2,
| ,i—j=2
Dy =(d})= i J =12
0 ,i-j=2
0o 0 0 0
0o 0 0 0
1 0 0 0
o 1 O 0

]
(!
(o]
<o
o
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{ ,i-j=n-1
Whenk=n-1, D,_, = (d,';"): f, 5 1l ey

0 ,i-j#n-1
0o 0 O 0-
o 0 0 0
o 0 0O 0
0o 0 O 0

=
]
jaw]
(]
]

Then, we canwrite A(8,,0,)as

Al6,6,)=1,-6,D; ~0,D7 =1, - S 0,0 =1, LL= 50,0,
k=l

k=|

Theorem 1:

=
Let 4(p,,6,) and D/ be defined as above, then A (9‘,(’)2) can be written as

n-1

A—ll(gi’g’_): [n +ZCCED;! '
i=l

Where (¢4 0 .- a”fl):aeR”"‘

Proof:

It is easy to see that

(py, i+jsn-l

0 , otherwise
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L =(0,0; +6,0) =62D; +20,6,D; +0.D;
£ =007 +0,D1) =07 Dy +36}0,D; +30,0; D} +6;D;

[ =(o,Dr +6,01) =61 D; +40)0,D] + 6070, D +46,0,D; +6, D5

Similarly,

B =b D 2b DAl D et Bl s<n-1 (3.2)

Where b ::(bo bl i O ) is a vector of constants

511 |
'

L =(00; +6,0y) =Cyor (D) +Cro (D] )" D10, 4k CrOy (DY) =0 from (3.1)

"' =Ll =0
Thus,

Fefdy Sen

(L), v v vt L= L+ Lt Dot LY = LD =D = m [ =1, =L =,
Thus

ANG) =1 +L+ L ..+ L
rma s wisiy B & R ol e R " e R™, such that

= M, e ), B 1

Where
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n=l n-l

A7N(8)=1+ Z}:a“’u” =1 +ZD“{Z@“’J

=| =l

=/ + ”Z_:(z, D', a-= Zaf(”

This completes the proof.

|
We can write ((9) in the following form

1 0 0 0 0
&, 1 0 0 0
1 a, 0 0
ff‘(@)_ « a, a, 1 0

-l
Let ¢ =1, A, = O, 0y =0, i, =, then we can rewrite A (@) as

Afl(g) _la, a @ q
an an—l a.i a? CI!
Theorem 2

MA[! ix ()t Ihe %Lwn(l

-1
Let 4(g,,0,) be defined as above, then the elements of A (9) can be written as
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k-l
ZCﬁ’"‘ 0y 05, k is odd
1=0
a, =
Tk
ER
CI“'"" 0, 65, k is even
i=0
Proof

£
Multiplying the first row of the matrix A (9) by the first column of 4 (9 ), wegeta, =1.

-
Multiplying the second row of the matrix A (9) by the first column of 4 (9 . WE gBla, = 8, .

-1
A necessary condition for 4 (49) is

By =) K=k =T

' | *
Where d,,, isthe (k+2)th row of the inverse A (Q) and , is the first column of 4(0).

From (3.3), we get

ak+2 _gla,(,l 4“6)261;\ :O.‘

oy -

o2 (3.4)

The equation (3.4) is a homogeneous difference equation of the second order. In order to sclve this

3
equation, we multiply both sides by §ﬁ and sum over all values of k. If we do that, we get the following

Z‘?’jkanz = ‘9|Z¢kak+1 +sz¢kak
k=1 k-l k=1

That is,

i 5 k+ 0 z k+ i &
2 Z(b ‘a, = ‘—'Z¢ Wi +QEZ¢ a,
= e P

Define p(¢) = Z(ﬁktlk . From (3.5), we get

k=l

1
#

—Jp(eb)—a,(ﬁ-—aﬁ%%[pw)a,aﬁ]wmw)
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APl-1pG + 86, = + #'ar~#0a, " 06)

Where g, =landg, = 8,.

Thus, we can write (3.6) as

AdlL-lpq +¢0.) =0
pp)=oll-[p0, + 020 )| |00, + 870, <1

That is,
p(p)= q)[k +(90, +0'0,)+ (00, +00,) o }
k
The coefficient of @ is (,in the expansion of p(g). Itis clear that the coefficient of gis a, = | and the

- 2 e
coefficient of fﬁ isa, = @, . Similarly,
@y =0, 67
a, =260, +0
a2 2 <
a; =366, +0;, +0,
a, =460, +30,0; +0;

a, =50°6, +60.60; +6, + 6

in general, we have

e

-
2

Crgsor™,  kis odd

o &

(3.7}

= =

5

CH g, 0%, kiseven
i=0

To prove (3.7), we use the mathematical induction as follows:
i Let k be an odd number

At k=1, we find thata, =1.
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2
At k=3, we find that ¢y — 92 + 9,'
Thus (3.7)is correct if k=1 or k=3

Assume that the retationship (3.7) is correct for k odd. Then

oy = giakH +6a,

(k +1)=2 £ -l
1 E
_ Tk i K-21+] k- -1 el Ak-2ied
a, ., = Z Cr a, 6, —&—ZC! 0," 0,
=0 1 =0

= |CF g+ CH g, 8+ +CH 0 95+ L+C

(i . .
X I 1’ 5 2 g i k- = -1 o ) -
i CO& 106" +C1‘ 0, 0 + ...+C:7i' oy 0 + +Co N g I 0

Thatis,

Il

fel
e — Z(C.”H e anil’)oé Qlkizm *Cok glkH + C;} 922 012

K+l

- ZC{.&—;H 6); ka—li‘l - 61“—1 +922 (912

2.
- k-l 1 K-2i+1
=y GF™glg

i=0

Thus, the formula (3.7) is correct for all odd values of k.

ii. When k is even, the same approach can be used to get the formula in (3.7).

This completes the proof.
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