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Abstract

»we conduct two types of sensitivity analyses of study conclusion, in the intermittent setting: the
first is fitting different distribution to the response vaﬁable. The marginal distribution of the
response is assumed to be skewed distribution, the lognormal distribution in particular. The
second is fitting several models for the missing data mechanism, for example, modeling the
missingness based on a generalized linear model, with logit and probit link function. The model
can be extended to permit possible relationships between the missing data process and
covariates, for example time. The selection model for incomplete longitudinal data is presented.
The stochastic EM algorithm is proposed and developed for skewed distribution model, the
lognormal distribution in particular. Models for the missing data mechanism are presented. The

proposed methods are applied to a data set from the International Breast Cancer Study Group.

1. Introduction

In longitudinal studies, each subject is measured répeatedly for the same response
(outcome) variable either under different conditions, or different times, or both. Missing
response data is a very common occurrence under such studies because of treatment drop-out,
study drop-out, mistimed measurements, subjects being too sick to come to the clinic to be
measured, and so forth. A subject’s response can be missing at one follow-up time and then
measured again at the next follow-up time, resulting in intermittent missing data patterns. Often,
missing response data in these studies is nonignorable in the sense that the reason for
missingness often depends on the missing values themselves. For example, the side effects of the

treatment may make the patients worse and thereby affect patient participation. Suh data present
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a considerable modeling challenge for the statistician. It might therefore be necessary to

accommodate missingness in the modeling process.

Numerous missing data methods are formulated as selection models (Little and Rubin,
1987). A selection model factors the joint distribution of the measurement and response
mechanism into the marginal measurement distribution and the response distribution, conditional
on the measurements. Diggle and Kenward (1994) proposed a selection model for continuous
longitudinal data with nonignorable dropout. They specified a normal linear model for the
response variable and a logistic model for the probability of dropout. It is clear that the key
assumptions underlying the selection model are: (i) the correct specification of the response
distribution, and (ii) the missing data mechanism model. As pointed out by Diggle and Kenward
themselves and many other discussants, the conclusion drawn from such a model relies on
assumption which cannot be verified from the observed data. So, it is helpful to assess the
impact of these assumptions on the underlying parameters through sensitivity analyses.

Several Types of sensitivity analyses have been proposed. Fitting different distributions
to the response enables us to investigate the properties of the proposed method when the
response distribution is misspecified. Kenward (1998) fits the normal model and the ¢ model, in
the drog;out setting. Other approaches of performing sensitivity analyses are fitting several
models for the missing data mechanism; see, for example, Ibrahim er al. (2001). Minini and
Chavance (2004) suggest using a range of different values of missingnes process, which allow us
to assess the sensitivity of study conclusions to dropout mechanism . Gad and Ahmed (2006)
extended the Minini and Chavance's approach to the intermittent setting. Fitting the pattern-
mixture model in addition to the selection model could be a sensitivity analyses tool; see, for
example, Kenward and Molenberghs (1999), Thijs et al. (2002), Molenberghs ef al. (2003). The
local influence approach, which investigates the effect of small perturbations of missingness
model on the study's conclusions is another tool; see, for example, Steen et al. (2001), Verbeke ef
al. (2001), Jansen et al. (2003), Moreno and Chavance (2016).

Most of these sensitivity analysis approaches have been applied in the dropout setting. Less
attention has been paid to sensitivity analysis in the intermittent setting.

In this paper, we conduct two types of sensitivity analyses of study conclusion, in the

intermittent setting: the first is fitting different distributions to the response variable. The
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marginal distribution of the response is assumed to be skewed distribution, the lognormal
distribution in particular. The second is fitting several models for the missing data mechanism,
for example, modeling the missingness based on a generalized linear model, with logit and probit
link function. Also, in many cancer clinical trials, the side effects of the treatment may affect
participation, and missingness can depend on the outcome and the time covariate. In Section 2,
the selection model for incomplete longitudinal data is presented. In Section 3, the stochastic EM
algorithm is proposed and developed for skewed distribution model, the lognormal distribution
in particular. Models for the missing data mechanism are presented in Section 4. The proposed
methods are applied to a data set from the International Breast Cancer Study Group in Section 5.

2 Selection model for incomplete longitudinal data

Let K:(X,, }’;2,...,}?,,,) be a vector containing the responses Y, for subject i=1,...m at

y

time j = /...n, X, = (X,jl,, Xis 1 Xij‘q) is a covariate vector recorded for each subject at each
occasion, and X, respect the 7, x g known covariance matrix for the i individual.

Let R = (Rfﬁ,er’“”Rm ) be a vector described the missing data process, where R, is an indicator
variable taking value | if ¥, is observed and 0 if Y, is missing. Response vector Y. can be

divided into two vectors, based on whether values are observed or missing: ¥, = (K.,,bs,lf.‘m,_‘).

In a selection model, the joint distribution functions of Y, and R, is factorized as product of the

marginal distribution of ¥, and the conditional distribution of R, givenY . Thus

7. R|0.p)= s (£ 0)P (R, =r| ¥.p),
where & is a vector containing the model parameters, P(R,, :f;‘ Y,,t//) is the distribution that
characterizes the mechanism, and W is a vector of parameters that govern the missing data
mechanism.
Rubin (1976) and subsequently little and Rubin (1987) introduced the following classification of
missing data mechanism. Missingness is defined to be Missing Completely At Random (MCAR)

if ¥, and R are independent, i.e.

P (RJ = .’",‘ Y:,nbx’ K,m.u" W): P(Rp = ?"r’l/d .
Missing At Random (MAR) if the conditional distribution of Ri given Yi depends only on the

observed data, Y.

i,0bs *
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P (Rr = r.'| Yi.nbs’ ‘Y.",nl.'!i"W)z P(RJ' = r}l‘}/}jobﬂ l/]) '
and nonrandom (nonignorable ) otherwise.
In dropout pattern, Diggle and Kenward (1994) propose a selection model for longitudinal data

with nonrandom dropout. They specified a normal linear model for the response variable, ¥, and

a logistic model for the probability of dropout. They suggest modelling the probability of
dropout at time d,as a function of the measurement at time d, and the observed measurements

(history); that is,
P(D, = d | history)=P, (H, .y, v).
Also they suggest using the logistic model for the dropout process as

logit {2, (Haf, 3 v lf= o + szl ViV, -
Troxel et al. (1998) adopt the Diggle and Kenward model to longitudinal data with nonrandom
intermittent missing values, this approach is computationally intractable. Gad and Ahmed (2006)
proposed and developed the SEM algorithm for parameter estimation in the presence of
intermittent nonrandom missing values, when the responses have normal and ¢ distribution.
3. The Stochastic EM algorithm for skewed distribution model, the lognormal in particular
3-1 The Stochastic EM algorithm
The SEM algorithm has been proposed by Celuex and Diebolt (1985), also in (Diebolt and Ip,
1996), as a stochastic version of the EM algorithm. The SEM algorithm overcomes the main
difficulty of the EM algorithm, in some situations, by avoiding explicit calculation of the E-step.
The E-step is replaced by the stochastic step (S-step) where the missing data are imputed with a
single draw from the conditional distribution of the missing data given the observed data. In the
M-step, the log-likelihood function of the pseudo-complete data can be maximized using
standard maximization procedures. So, the algorithm involves iterating two steps, the S-step and
the maximization step (M-step) for sufficient number of iterations.
The SEM algorithm can recover multimodality of the likelihood surface (Ip, 1994). The
estimated parameter values corresponding to each pseudo-complete data form a Markov chain.
This Markov chain converges reasonably quickly to its stationary distribution, which is unique

(Diebolt and Ip, 1996). The mean of the points, ignoring the early first points as a burn-in period,
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generated by the SEM algorithm can be considered as an estimate for the parameter & . This mean

is called the SEM estimate and denoted by & (Diebolt and Ip, 1996).
The SEM algorithm does not provide the standard errors of the parameter estimates. Several
methods have been proposed in literature to solve this problem, see, for example, Abdallah S.

A., etal, (2016). The bootstrap method is used to obtain the estimated standard errors for the

estimated parameters.

3-2 Inference for lognormal model

Skewed distributions are particularly common when mean values are low, variances large, and
values cannot be negative, as is the case for current clinical trial. Such skewed distributions often
closely fit the log-normal distribution (Aitchison and Brown 1957, Johnson et al. [994).

[n this section we apply the stochastic EM algorithm to lognormal longitudinal data. The
concentration is mainly on the missing values when the pattern is intermittent and the mechanism

is nonrandom. This enables us to assess the impact of the distributional assumptions on the

underlying parameters. The response vector of the ;" subject, ¥, is assumed to follow the lo
ymng p p ) g

'

normal distribution with correlated errors. The probability density functions of the log normal
distribution with parameters i and o is given by:

Jx)= J~—jﬁ_exp (—— Q@"#)] X E (0,00)

nag x

Assume that the missing components of ¥, are denoted as Y. .. and assume that this vector is of

i

dimension /xrvector, ie. ¥, = (Yf,.ml N - ) To implement the SEM algorithm, a sample

is drawn from the conditional distribution of the missing data¥, = = (Y i ), given the

observed data(Ylloh‘,,R,.). There are many ways to sample from this distribution, in this paper
Gibbs sampling technique, see for example Gelfand (2000), has been used, At the (t+1)”

iteration Kﬁ,;_f)=(Y{’”) Y(’”)) is simulated from the full conditional distributions this

imis,? P Timis,

iteration is executed in rsub-steps. First, YU is simulated from the conditional

i,mis,
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distribution f (Y

s,

.Y(’) oy iy R 0(’)). Then, in the second sub-step YD is

imis, imis, j,obs? i i1is

simulated from the conditional distribution f (Y:.mm) yid oy K..m,R,,Q(’)).

imis; ? 'S i mis, !

In the third sub-step Yy is  simulated from the conditional distribution

i,iss

f (Y[.m:s.] Yr(:n'ni)’ Yig’:;';f,) ’stln)i.x, ' Yr,nb.&"Rﬂg(l))
Now, the two steps of the SEM algorithm can be developed in the current setting as follows:
o S-Step: At the (t+1)th iteration, a sample is drawn from the conditional distribution of the

missing values Y :(Y P ) given the observed data (Y

ims 1,018, PEamis, iobs?

R,), and the current

parameter estimate, 9") The full conditional distributions does not have a standard form,
hence it is not possible to simulate directly from it. An accept-reject procedure is proposed

for generating the missing values. The whole procedure is as follows:

(1) Generate a  candidate  value, y' from  the  conditional  distributions

NG e [ 5o L B

fmis | dmisy shimis;y ttimes gyt Tiobs?

6’(']) for j=1,2,..., r.

(2) Calculate the probability of missingness for the candidate value, y" according to the
assumed dropout model, where the parameters  are fixed at the current value t,u('). Let
us denote the obtained value as P,. The probability of missingness will be assumed to

depend only on the current and the previous response values.
(3) Simulate a random variate U from the uniform distribution on the interval [0, 1] then

take Y

s =¥ IfU < P; otherwise go step 1.

e M-Step: The M-step consists of two sub-steps, the logistic step and the normal step. In the
first step, the maximum-likelihood estimates of the missing data mechanism parameters are
obtained. An iterative maximum-likelihood estimation approach of binary data models, see
for example Collet (1991), can be used. In the normal step, the maximum-likelihood
estimates of the model parametersd are obtained using an appropriate optimization
approach. The EM scoring algorithm (Jennrich and Schluchter, 1986) is used in this paper.

When implementing the SEM algorithm we need to check the convergence of the resulting

chain. Several convergence diagnostics have been proposed in literature. Out of these methods,

Gelman—Rubin method (Gelman and Rubin, 1992) will be used. This method is based on
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generating multiple, k > 2 chains in parallel for n=2p iterations. For each chain, this method

suggests starting from different points for which the starting distribution is over-dispersed

compared to the target distribution. This method separately monitors the convergence of each

scalar parameter of interest by evaluating the Potential Scale Reduction Factor, (PSRF), w/E as

\/E:\f’*uf_
n nhW

where B/n is the between sequence variance and W is the average of within sequence variances.

This calculation depends on the last p iterations of each sequence. The convergence is achieved
if the PSRF is close to one which means that the parallel Markov chains are essentially
overlapping. If the PSRF is large, then proceeding further simulation may be needed.

4. Models for the Missing Data Mechanism

Several sensitivity analyses also can conduct by changing the missing data mechanisms. One

possible model for the missing data mechanism is a binomial model of the form

PiY.w)= q H. by =) - ol =0 ), (1)

where p(f;.j = [‘z//) is modelled by a logistic regression . Another missing data model use probit

-link function:

P(D,=d|D,2d,Hy,y,)=0 (o + iy, +vor,). @)

Where @ denotes the standard normal cumulative distribution function. Both models included
current and the previous time point.
The model can be extended to permit possible relationships between the missing data process
and covariates, for example time.
5. Application: IBCSG data

This paper analyzes data set concerning the quality of life among breast cancer patients in
a clinical trial taken by the International Breast Cancer Study Group (IBCSG). In the IBCSG trial
VI, premenopausal women with breast cancer are followed for traditional outcomes such as
relapse, death and also focused on quality of life. Patients were randomized to four different
chemotherapy regimens. It is intended to compare the quality of life among the four different
treatments. One of the relevant determinants of quality of life was the Perceived Adjustment to

Chronic Illness Scale (PACIS). This is a one-item scale comprising a global patient rating of the
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amount of effort costs to cope with illness. The PACIS measured on a continuous scale from 0 to
100 where a larger score indicates that a greater amount of effort is required for the patient to
cope with her illness.

Compliance was not compulsory and patients did refuse, on occasion, to complete the
assessment. Even when they refused, the patients were asked to complete an assessment at their
next scheduled follow-up visit. Thus, the structure of this trial results in intermittent pattern of
missing data. A patient may not appear to fill the questionnaire, and it is reasonable to conjecture
that the PACIS score is missing because the patient had an excellent quality of life at the time, or
more likely, an extremely poor quality of life. In either case, the longitudinal outcome would be
considered nonignorable.

Once enrolled on trial VI, patients were asked to complete quality of life questionnaires
at baseline (pretreatment) and at three months intervals for 15 months. Hence, each questionnaire
should be filled out six times. Essentially, these six time points cover the time during the
administration of chemotherapy across all the four treatments. The total numbers of patients who
participated in the study period is 456 patients. Ten patients who died within the study period are
excluded from the analysis, so the missing responses are not due to death. The patients with
missing response at the first assessment (64 cases) are excluded from the analysis; leaving 382
patients who remained alive during the 15 months of the study. The PACIS values were missing
for 77/ of the patients for at least one occasion, so the study completers are 89 (237) patients.
The amount of missing data increases over time, with 297, 36%, 477, 54/ and 627/ for the
consecutive visits starting from the second time point. The percentages of patients with 0, 1, 2, 3,
4. and 5 missing responses were, respectively, 237, 187, 137, 13%, 147 and 197,

The analysis of this data set is challenging due to several difficulties, namely, intermittent
(nonmonotone) pattern of missing data, and nonignorable missing data mechanism. Dealing with
intermittent missing values is more difficult than dealing with dropouts because the missing data
missing data in the intermittent pattern are sporadic and over-dispersed with respect to the
response, such pattern of missing data need to be accommodated. If the data missing is
nonignorable, an appropriate statistical analysis needs to take into account not only the structure

of the data, but also the missing data mechanism. Methods that do not model the missing data
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mechanism would be biased. Commercially available software for fitting nonignorable is not yet
common.
Also, the interest in these data arises from that, several analyzes have been performed before.
Hirny et al., (1992), for example, analyzed the preliminary version of these data, the responses
for the first 9 months of the study, was analyzed. Only patients with complete responses are
included in the analysis (complete cases analysis). Another analysis of these data has been
conducted by Troxel et al. (1998), based on the responses for the first 6 months of the study.
They adopt the Diggle and Kenward (1994) model to longitudinal data with nonrandom
intermittent missing values. The final data, include patients who remained on the study long
enough to have all assessments, were analyzed by Gad and Ahmed (20006). They generalized the
Diggle-Kenward model to handle intermittent missing data pattern. Gad and Ahmed (2007)
extended the same model for non-normal models, the t distribution in particular. Also, Ahmed,
A.S., (2010) apply Diggle and Kenward model for estimating parameters in the normal random
effects model with nonignorable intermittent missing values.
We adopt a mean model that allows each treatment to have its own effect. That is,
Hy= Bt + Botry + Bitrs for j=1,..,6,

where

(1,0, 0) for treatment A
~|(0,1,0) for treatment B

B (0,0,1) for treatment C
(0,0,0) for treatment D.

tr,, tr

ar T Ue
The first-order auto-regressive AR (1) model is adopted for the covariance structure. In this
model, the (i,j)'h element of the covariance matrix, o, 1s equal to 0'2,0;"”" for j=1,..,6. An
advantage of the proposed approach is that different covariance structures can be used.
There are main types of sensitivity analysis, the approaches considered in this paper:

— Examining sensitivity to the assumptions about the response distribution.

— Examining sensitivity to the assumptions about the missing data mechanism.
5.1 Examining sensitivity to the assumptions about the response distribution
For the missing data mechanism, we use the logistic regression model, including only the

previous and the current responses to keep the model simple. That is,
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logit (rU = 1|w): YotV Y W, Y.
Table | shows The SEM estimates and standard errors for the PACIS response of the lognormal,

the normal, and the ¢ distribution models .

Table |
The SEM estimates and standard errors (SE) for the PACIS response

Normal model The ¢ distribution .Th.e lognormal

i . model distribution model
parameter Est. SE Est. 5k Est. BE
. -0.20 017 -0,12 0.13 -0.229 0.132
ity 0.04 0.17 0.04 0.28 0.200 0.131
tre -0.72 0.18 -0.61 0.43 -6.175 0.130
P 0.42 0.02 0.47 0,25 4532 0.03
o’ 4.49 0.12 3,75 0.29 5.259 0.19
W, 1.22 0.07 1.34 0.42 -3.598 0.104
v, 1.61 0.08) 1.21 0.08 235 0.032
W, 1.06 0.08 0.15 012 326 0.019
2logL 5894 5424 5071
AlIC 5894.386 5424.386 5071.386
BIC 5941.563 5471.563 5118.563

We used the likelihood ratio, the corrected Akaike's Information Criterion (AIC) and the
Bayesian Information Criterion (BIC) to determine the best-fitting model. The model with the
smaller likelihood ratio, AIC and BIC value is the lognormal model. So, in conclusion, assuming
that the missingness model is correct, the lognormal model can be used rather than the normal
model or the 7 model.
5.2 Examining sensitivity to the assumptions about the missing data mechanism.

Two alternative modeling strategies for the missing data mechanism are assumed data.
Model 1: we use the probit regression model, including only the previous and the current

responses. That is,
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P(D, =d|D, 2d,H,.y,)= 0y, +v,Y,, +v,Y,)
Model 2: we also construct a missing data model in which the time was included as a covariate in
the missing data mechanism along with the other covariate (time). That is,
P(D,=d|D,2d H,y,)=® (v, + Y, , +v,Y, +y,time, ).

Table 2 shows the SEM estimates for the PACIS response when using the lognormal model

assuming probit regression model under model 1 and model 2.

Table 2
The SEM estimates assuming probit regression model for the PACIS response

parameter Model | Model 2
tr, -0.377 -0.295
tr 0.119 0.157
tr. -0.672 -0.696
P 0.643 0.485
o’ 6.418 4.789
v, 0.044 0.0436
v, -0.021 -0.0213
v, 0127 0.126
time - 0.2675

The results changed little if we added time into the missing data mechanism. On changing the
distributional assumption from the normal to lognormal model and useing the probit regression

model, the missing data mechanism moves from MNAR to MAR.
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