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ABSTRACT

' “ This artlcle develops an approxrmate Bayesian procedure to 1dent1fy the orders of B

vector movmg average processes wrth seasonahty The proposed procedure is based on-

| approx1mat1ng the likelihood function by a matrix normal—Wlshart on the parameter space '
- Combmmg the approx1rnate likelihood function with a matrix norrnal—Wlshart orl effreys
"vague pI‘lOI’ and using an 1nd1rect Baye51an technique to- estimate’ 1n1t1a1 values for the-

: orders the Jomt posterlor mass function of the orders is developed in a convement forrn '

Then one may examine the poster1or probab111t1es over the grid of the orders and select the S

orders at which the poster101 joint mass function attains its max1mum fo be the 1dent1ﬁed )

e :orders Five srmulatron stud1es, with th_ree different prior distributions for the orders are_' o

| "-conducted to demonstrate the performance of the proposed procedure and check its

"_.-'adequacy and applicability in solving the identification problem. The nurner1ca1 results‘ o "

,support using the proposed procedure to identify the orders of vector moving average_ o

' _processes w1th seasonality.

Keywords:..ldentrﬁcatlon; Seasonal vector moving average processes; Matrix normal-- e

" Wishart distribution; Matrix t distribution.
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1. INTRODUCTION

~ Time series analysrs of vector moving average processes with seasonahty has been
shown effective in modeling time series data arise in many fields of apphcatron spec1ally' :
in economics and busmess In economics, as an exarnple one may record quarterly money.
supply y(t,1), real 1nterest rate y(t,2) and gross national products y(t,3). In business, as
another example one may observe monthly single fam1ly—hous1ng starts y(t,1) and houses
sold y(t,2) in U. S.A. These variables arc modeled and forecasted jointly usmg a vector :
model in order to have an 1nsrght into the dynamic 1nterrelat1onsh1p among the var1ables- |

and increase the precision ¢ of the estimates of the parameters and forecasts.

- One of the most important phases of vector time series analysis is determining the
* system mechanism which relates the 1nputs of the time series with their 'outputs”. In many
-applications, the system mechanism- can be presented by two drfferent matrix polynornrals

wrth orders q and Q. The first order g is called the non- seasonal (regular) movrng average' :
order, while the second order Q is called the seasonal moving average order. Tiao et al.

| (1979) Tiao and Box (1981) and Liu (2006) have shown that the seasonal vector rnovmg -
average processes, denoted by SVMAk(q, Q) for short ‘are quite useful in rnodehng tnne_' ,

_series data. In practlce the orders q and QO are usually unknown and should be 1dent1ﬁed or o

_-estlrnated

With regard to the seasonal univariate moving average processes Box and Jenkms
.:(1970) have presented a non- Bayesran methodology to estimate the orders q- and (e, by- |
_'matchmg the sample autocorrelatlon function with its theoretrcal counterpart The1r.

_methodology has grown in popularity and is today the prevailing procedure of time ser1es.‘

- analysis. For more details about the Box and J enlqns methodology, the reader i is referred to - o

Harvey (1981 1993), Priestley (1981) Tsay (1984) Wei. (2005) Box et al. (2016) and

Brockwell and Davis (2016). The second ron- Bayesran procedure to estimate the movrng

_ average orders is known as the automatic or exploratory approach Assurnmg the |

‘maximum- orders are known the foundation of this approach is to fit all poss1ble moving
average models and compute a specific criterion for each model; then one may choose the' '
model for which the proposed ctiferion attains its optimal value. However, there 1s no
complete agreement on the form of the criterion to be optimized. The most favorable |
automatic cr1terton AIC or Akaike’s Informatlon criterion’ was 1ntroduced by Aka1ke .

11974), For more details about the automatic approach, the reader is referred to Rrssanen .
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197 8) Hannan and Quinn (1979), Mills and Prasad (1992) and Beveridge and Olckle
(1994). However, one may notice that using any automatic procedure with seasonal models

is time consuming and costly. .

Regarding the Bayesian approach to estimate the orders of univariate time series,
Monahan (1983) has given a numerical procedure to the estimation problem of non-
seasonal processes with low orders. Broemeling and Shaarawy (1988) have developed an
approximate procedure to. 1dent1fy the orders of non-seasonal processes Shaarawy and Ali
. (2003) have . initiated a BayeSIan solution to estlmate the orders of the seasonal '
| autoregresswe processes Recently, Shaarawy et al. (2007) have developed an approxrmate

- procedure to estimate the orders of non—seasonal movmg average processes.

With regard to vector version, Tiao and Box (1981), Tiao and Tsay (1983) and others .
have studied the problem of estimating the orders of the process, from non-Bayesian
v1ewp01nt by rnatchmg the cross correlation functions computed from the data with their
.theoretrcal counterparts. On the other hand, the Bayesian methods of estrmatmg the orders
'.of vector: processes have recently been studied. Shaarawy and Ali (2008) have 1n1t1ated the ‘ |
 Bayesian solution of estlmatlng the orders of vector autoregresswe processes In 2012 they
| developed an approximate procedure to estimate the orders of vector movmg average
processes Most recently, Shaarawy and Ali (2015) have 1n1tlated an approxrmate
procedure to estimate the orders of seasonal vector autoregressive processes. For well-
_ understood reasons, one may say that a purely Bayesra_n procedure to identify the o_rders of

vector moving average processes with seasonality has not been explored yet. -

Using a matrix normal—Wishart or 'Jeffreys' vague prior, the main objective of this
article is to develop an approximate Jomt postenor probablhty mass function for the orders
of seasonal vector movmg average processes in a convement form. Then one may examme -
the behavior of the joint poster1or probability mass funct10n over the grld of the orders and

._choose the orders at Wthh the mass functlon attains its maximum to be the 1dent1ﬁed
orders. In order o determine the effectiveness of the proposed Bayesian procedure, five
simulation studies with three different' prior distributions for the orders are conducted to

identify the orders of bivariate moving average processes with seasonality. |

The rest of the paper is organized as follows: Section 2 introduces the definition of |
the vector moving average processes with seasonality. Section 3 introduces an indirect

Bavesian nrocedure to identify the orders of the seasonal vector moving average processes..

The Egyptian Statistical Journal- Cairo University Vol. 64, No.l,'-iOZO
' {3)



A Bayesian Procedure to Identlfy the Orders of Vector Movmg
© Average Processes with Seasonality :
(Sam1r M.Shaarawy — Sherif S.Ali — Emad E. Sohrnan)

. This procedure will be used later to approxrmate the likelihood. functlon Section 4 is
devoted to develop an approximate joint posterior probablhty mass funct1on of the model |

' orders and explain the proposed Bayesian identification procedure. Sectlon 51is devoted to -
examine and assess the numerical effectiveness of the proposed Bayesian procedure in ‘

solving the identification problem of seasonal vector moving average processes.

2. MOVING AVERAGE PROCESSES WITH SEASONALITY

© Let {f} bea seqdene’e of integers, ge{1,2, ...}, Qe{l,2, ...}, ke{i,?,' o Oy is
_ a'sequence of k><1 real observable random vectors, & (i= 1, 2, ..., g), @,- (=1,2,....0 are
kxk unk:nown matrlces of real constants, 5 is the number of seasons per time unit, and {e _:

(0} is a sequence of independent and normally dlstrlbuted kx1 unobservable random
vectors with zero mean and a kxk unknown precision matrix 7. Then the k—variate seasonal :
vector moving average process of orders g and @ is defined for » vectors of observations =
as | |

H(1)=0 (B8 (B’ Je(t),  t=L2m @D

Where . , . . | l
. : !
WO=It) ¥(t2) - wtk)]

0,(B)=1, - 6B -6,B> -~ 6,B,

@y(B) =1, - OB -9,B" _.“'—@QBQ_S;.-. )

. ' '
g(t)=|g(tl) e(t2) - Lk )]
jIk is.the 1dent1ty matrix of order k, B is the backward shift operator defined by B y(r)

Wt — 1) and s is the periodicity of the time series. The <k miatrix polynomlal gq(B) of
degree g in the backshift operator B, is known as the regular (non-seasonal) movmg

average operator of order g, while the kxk matrix polynomial @o(BY), of degree Qs in B, is

known as the seasonal moving average operator of order Q. The process y(f) i always

stationary and is invertible if all the roots of the two determinantal equations 19{{( B )l =0

© and \@Q( B )} =0 lie outside the unit circle.
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Y=X(q,Q)l(q.0)+U ey
Where Y is a matrix of order nxk with i7" element equal to y(i,j) and X(g,Q) is a matrix of
order nxkh, h=q + Q+qQ , defined by ‘

x=\x, X, 2,7 7, -+ Z,|, wher
';g(()) ' ._g(_l) _g(l_q) —g(l=s) —(1-2s) _—&’(lst)
| E) s e —d2-g)| €0 —€(2725) - _g(2-0s) |
) —d(n=2) e —d(n-q))  |~€(n=s) —d(n=25) - ~&(n-05)]
| And |
| 5’(;rs)_ ' 8'(—?'.5‘—1) 5’(;rs—q+1) | )
zZ- 5’(—1‘-;§+1) s’(—r.s) SR 6'(‘—rs:—q+2)“’_r: 1.2,..0

g(n rs— 1) E(n rs=2) - é’(n*rs—@’)

This means that the columns of the matrix X(q, Q) consist of the elements of the regressors | :
& (--1), _8 (t-2), ..., € (t-0Os—q), respec‘uvely Furthermore T'(g, Q) is the khxk matrix of
coefficients defined by

[ kgxk T
8(q)

T(g.0)=]68(Q)

‘Where
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o order nxk with i 1]

M & xk—‘
g/
E x k
5’7“ RT 8, 1, Ry
2 . . .
. 9‘1’.21 9;‘.22 T Qj_zk i=12”-
Q(Q): ------ :9;= . . . : 2y 4
9;&1 @Lkz Qa.kk
k x k
——
0,
& x &k ]
0,
k®xfk @ i1l .®i12 ' @ i1k
2 _ o
. ' e, ® . ,,.. O, _ :
®Q )= . , @, =1 Pt ) 22 :'<2" , i=1,2 ...,Q
®i.fci ®:k2 '®i_kk
ko k
® ;

and g, O) = y(é),, &, =1 2, .9, j=1,2, ...,0. Finally, U is the white noise matrix 'o_f_ o |

i element equal to 8(i ..

It should be born in mind. that the dlmenswn of the regressor matrix X(g, Q) depends'
on the orders g and Q. This means that for each spec1ﬁc order, say (go, Qo) there is"a .
specific rnatrix X(qo;Qo). One may also notice that the parameters j}'(q, Q)'will be treated as -
free parameters in our 'proposed Bajesian identification procedure irl order fo'have .an' |

intractable likelihood function. If » is sufficiently large, the approx1mate hkehhood N

o funetlon is expected to- serve asa good approxrmatlon to the exact one.

‘3. AN INDIRECT BAYESIAN TECHNIQUE
‘The vector moving average model with seasonality, denoted by SVMAk(q, O)s fer
short; is quite useful in modeling and forecasting time seties data and frequently ¢ and Q0
are not in excess of three. In practice, the values of the orders ¢ and () are unknown and
one has to identify them using the obse_rVed n vectors of Qbservat.ionS.S,,-. ‘The c}ireet

" Bayesian approach to identify these two values is to find the bivariate p’oste‘rior probability :

_The Egyptian' Statistical Journal- Cairo University Vol. 64, No.1, 2026
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mass function of the orders g and Q. Then one may inspect the posterior probablhtles over

the grid of ¢ and Q and choose the values at which the bivariate posterlor mass function

attains its max1mum to be the identified values. The approach here is somewhat different
from the dlrect Bayesv;m approach. Instead of working directly with the posterior mass -
function of ¢ and ©, it is proposed to focus on the joint posterior distribution of the

coefficients I’y where

' ' ' ' ' ' ' .  r . o . ) L
I, :[9, t 6 b1 6, © 8 101y } (3.
“Where 6; (i%' ,2,...m),0,=1,2, .., r)'are as defined in the previous section, and
_«/o(m,;é) = 70(6,-, ®),i=1,2,...,mj=1,2,...,r The rnaximum orders m and r are assumed 3
to be known. |
Assuming that & O=¢(¢l)=..=¢ (1-m-rs) = 0, the likelihood fu_netion of tﬁe |

parameters 1'g and T'is
La@rw$>muwiwpe W{Zkﬂw(UT}) Y ) O
Where 1—\0 c Rk(r+m+nr1 )xk , T> 0 aIld

FO=yO-¥¢-DT, ey
B 2) & —m) &' (E—5) —g'(r'=2s)---;é'(zmrs) |
B gt-s-1) &t-2s=1)--&{t-rs=1) et~s-2) s(t —25—2)-
'(t—rs—2) gt—s—m) &'t-2s—m)--&t-rs—m]
T he expressmn 3. 3) is a recurrence relation for the residuals. This recurrence causes the
main problem m developmg an exact analysis of seasonal vector moving: average.

 processes. However, this recurrence may be used to- evaluate the residuals recurswely if

one knows I'o and the initial values of the residuals. The proposed approxnnatlon 1s based
on replacmg the exact res1duals £(t-) by their least squares estimates and assuming the

initial. values of the residuals equal to their unconditional means, namely zero. Thus, we

estimate the residuals recursively by

g0y =y (- #@-)T,

The Egyptian Statistical Journal- Cairo University Vol. 64, No.1, 2020
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Where, the matrix FO is the non-linear least squares estimate of the coefficient matrix Io

and (¢ —1) is the same as x(t—1) but using the estimated residuals instead of the exact

“ones. Using the estimates of the remduals one may write the likelihood function (3 2) |

approximately as

L'(T,,TIS,) T17 expc S Ty ~ T = DT /O - = DIT) (3.4)

An adequate choice of prior distribution of the parameters [’y and T is a matrix normal—

Wishart distribution, i.e.

T, D)= & IDED) e R
_Where | | B
& @« 7)o |T1k(m+r+m) exp(——tr(F -D) VT, ~D)T)
and
a—_(r"{+1).

5T =|T| * ep(-toryT)

" Whete the hyper-parameters DD € R¥(mremryxk , Vis a k(mtr+mp)<k(m+r+mr) positi\}e .

E deﬁnit‘_e matrix, and _(// is a &kxk 'stitive definite matrix. If one has 'ittle' information |
about the parameters, a priori, one may use Jeffrey’s vague prior

L (kD)

E(T,, T)ec|T| 2, TyeRH™ ™% T 50 36

Theorem 3.1
Combining the approxlmate lzkelzhood funcnon (3. 4) wzth the prior density (3. 5) the

posterior  distribution of Iy is a matrix  distribution wzrh parameters

(A7'B, A™,C — B'A™'B,0) where

¥

A=V + Y i(t-1DF-1)
= -

ll

CB=VD + Y E(-1)y(0)

t=1

C = D VD +1//+Zy(t)y (t)
. t=1
and

e Egyptlan Statistical Journai Cairo Unwersny Vol 64 No.l, 2020
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v = n- k+a+l
Corollary 3.1 | _ _
- Cornbrnrng the approx1mate hkehhood funet1on (3 4) w1th J effrey s vague pr1or (3 6), the

postenor distribution of Ty is a matrix t with parameters (47'B, 47 ,C~ B'A” B U) -
However, | A, B, C and will be  modified by lettmg :

. V _-> Ok(m-l-r-t-nrr)x k(m+r+rm‘) d _> - k(m +r + mr) and’ '// —> Okkk .

S1nce I'p has.a matr1x ¢ d1str1but1on any subset of k rows has a matr1x t d1str1but10n N

Also, the cond1t10na1 dlstr1but10n of a subset of rows given any other subset of rows isa

matrix 1. Furthermore one can test any subset of rows to be ZEro (margmally or |

condrtronally) us1ng an exact F statistic for k=1 ,2. For k >3, one can use an approx1mate .

o )( statistic. For more detarls abou the form and propertles of the matrtx t densrty functron o

.the reader is referred to Box and Tiao (1973).

' Instead of workmg drrectly w1th the dlstrlbuuon of the orders ¢ and Q, it is proposed' -

to focus on the posterlor drstr1butlon of | g1ven by the prev1ous theorems and do a'

backward ehmmatlon procedure to identify initial values for the orders q and Q as follows

1 Test Ho @) = 0 versus O, # 0 using the margmal posterior dlstrlbut1on of @ Wthh 1s_,:' '.

. amatrlx tdrstr1but1on _ | e | B

. 27 If the above Ho is not rejected test Hy! ®,.1 = 0 versus @, # 0 using the cor_-rditi'onal_il" -
: d1str1but10n of ®r—1 grven O=0 whichis also a matrix ¢ dlstr1butron : |

3. _' In the above -Ho is not rejeeted test Ho: B.=0 versus Oz # 0 usmg the cond1t1ona1

dlstrrbutron of @1 o given ®, = @r 1= 0 whlch is also a matrix tdrstrlbutmn

4. _The proeedure is contmued in this fashion until the hypothes1s @rg is rejected for some'-}:"_ - |

ro where 0 <rg < < 7. The value ry is thie initial indirect Bayesian solution of the seasonal
order Q. - | o - ' ' SR

T The four previous steps are repeated for the non-seasonal order q until the hypothes1s' _ _' ;

E)mg 18 reJected for: some g where 0 <.mp < m. The value mg is the 1n1t1al 1nd1rect-

"Bayes1an solution of the regular order g. Then the values my and ry are the proposed :
 indirect Bayes1an solution of our identification problem and the proposed 1n1tral values: !

of our proposed dlrect Baye51an approach

The Egyptian Statlstlcaljournai Cairo UnlverSIty VoI 64 No.1, 2020 .
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" Frequently ¢ and Q do not exceed three Here we focus on how to, perform the .
. indirect Bayesian procedure outlined above, in 1dent1fy1ng an initial value for the seasonal
order Q ass_ummg m =r =3 using Jeffreys’ vague prior. In order to do. that, define: the .

following quantities:

g e, (@, ]

1l
@,
=
]

g =0, 0

Qe | Les

._%}
@

w
-
X
oS
@

et
[}
Il
>
®,
P,
@
It
@
»
iy
Il

]
=
x
LT
D,

__and'_

L . .

Tow~ tygen (A'B,AT,C = B'AT'Bv)
_"_-Fl isas'ulﬁset-'of-ékro‘\rs 0f FO, thus
: F1~t6m (rl,AH,c ~-B'A7'B, u) seeBoxandT1ao(1973 PP 445)

_ Smnlarly, O~ tmk ®, AZQ,C BA ‘B v) where

* The Egyptian Statistical Journal- Cairo University Vol. 64, No 1,2020
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3k x3k 3k x3k ]
* 4 *
A11 A12
Ay = [t e
3k x3k 3k x3k
R Wy ——
* *
L A21 A22 N
Let
. _ . .
M ixk ] kxk - _ _
i 6h| kxk kx2k
L 0, , -2 _Eu _El?.
' ® O, =i | ; R PEUE SO ST
: @“ 5 2 _and Azz =1 :
2kxk’ kxk ' Y o
x* 6H . . ) 2kxk - _2(cx2k
L@Z— . L 3_ LEZI L E22-

s .®; : ié_a subset of 2k rows of @, then
®;~ Loy (@)Z,E 2C = B'A™'B,v)

" Thus ©; ~ b (@)3.',_E;2,‘C—B'A_IB, v) where

o kxk kxk
* #*
A 1511 - 'l312
E22 ;: _-.--‘.-_- iy . .
I kxk Exk
=t e
: *._: * c.
E _E21 : £y ]

: Using the result (8 4.32) gn}en by Box anci Tiao (1973), we have |
®* |®,-~tk k(®2,E223,G u+k) where
8, '='@>2 +E;E;;1(®3 —@,3),
Ezé3 "‘En Elezgl 21 And
G C BA fB+(® o) )’E22"1(® e«)

est]l! Hy: @3—0versusH1 @3;&0

. Fork=2,one may use the test statistic

o F _2“1 +(C~ B'A‘IB)IG)E @[ ]

calc.
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We reject Ho ifF,,. > F(@4, 20 @), where F(4, 20, @) is the upper 100(a%). pomt of the F

distribution with 4 and 20 degrees of freedom.
~ Fork> 3, one may use the approximate test statistic

(2%

e :_~u[1+ )]zogu H(C-BA B) 04,0, [

We reJect Hy 1f ank > ¥ (k2 ) where X (k2 ) is the upper 100(a%) point of the )Z
: d1str1but1on w1th i degrees of freedom. For more detaﬂs about this test and the commg

down one, the reader is referred to Box and Tiao (1973). If we reject Hy we must stop the_

testmg process and conclude that the initial 1nd1rect Bayesmn solution of the seasonal order

Qisr, =3.If we do not reject Ho, we should go to test (2)
-Test_121:' Hp: ®5=0 given_that ;=0
- Fork=2, Qne may use the test statistic' :

= (&t |I+G1®E;K5P—U

F 2

cale.

We reject. Ho if F,

cale:

> F(4, 2(u +2), o:)

For k> 3, one may use the approximate test statistic

P =0+ RIL+ (( ))]108|fk+G_}@'E;z§® s

We reject Ho if ¥l o >x (kz,cx)

o If we reject Ho, we conclude that the initial idéntified value of the seasonal order Qis2. If

_ do not rej ject Ho, we conclude that the initial identified value of the seasonal order Q is 1.

In similar fashion, one can identify an initial value of the _regular order (non—
seasonal) g. The rWO initial identified values of the regular and seasonal order; sayq, and
Oy, will be used later by our proposed direct Bayesian algorithm to deVelep an

approximate posterior probability mass function for the model orders g and Q in an easy

and convenient form.

4. ABAYESIAN IDENTI FICATION PROCEDURE
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Given the initial values go and @, estimated above by the 1nd1reot procedure, the |
main goal of this section is to develop an approx1mate direct approach to identify the
orders g and Q of the vector moving average processes with seasonahty Unlike the'
indirect technique, the orders g and Q are assumed to be random varlables and the problem |

is how to find their joint posterior probability mass functron in an easy and convenient -

form. In order to do that, let Sy be the vectors of observations generated form a seasonal - |

vector moving average process of orders q and Q) havmg the form (2.1) where the orders q .

and Q) are non—negatlve unknown integers, The hkehhood funetron can be written as

L(F(q,Q) 7.0.T1S, )OCITI2 exrv(— IVZ[J/(I) T(q,Q)qu(t Dy
[y(t)—.l"(q,Q)xq,Q(t—l)]T) ’

" Where- T(q Q)€ R“’"" T>0,g=1,2,...mQ@=12,..n Moreover, m and r are the

@D

| largest possible orders of the process and X, -1 is the " row of the regressor metrhr_ |
' X(q, Q) defined as |
Q(t 1)= [—g(t ) -&'(t— 2) —8(1‘ q) S(I s) —a(t 2s) —-8(t Qs)

(t—s=1) £¢=25-1) - £'(t- Qs——l)s(t 5=2) £'(t-25-2) - gt~ Qs 2)
gt—s—q) g'(t-25-q) :+ £'(t—Ps—q)]

The likelihood function (4.1) is analytically 1ntractable since the errors s(t _])'S are '

nonlinear funetlons in the model coefficients ; and ©,. In order to srmplrfy._the hk_ehhood e

funotion, we propose to use the initial values goand Qg to estimate the residuals &(f-/)'s by
-the recurrence formula | | | |
E(h= y(t) FXqQ(t 1) |
o Where F is the nonlinear least square estlmate of the coefﬁelents matrix [ and xq ot = 1) -
- isthe same as x_ , (¢ - 1) but using estrmated resrduals 1nstead of the exact ones Ornice the

'estimates gt~ jy s are obtained ‘they are subs’trtu‘ted in the hke_hhood function (4.1) to

get an approxrmate likelihood function in the form

r (r(q 0),4,0.T 15, )oclTIZ exp(— ‘rrZ[y(r) 1'(g, Q)qu(t—l)]

(4.2)
[J’(t) I (q Q)xqg(f 8] T)
.‘\fv"ucl w( n-\LF nkk(q())xk T 0 ._1 ") "1 ()*"1 ’7 E

The tgyptlan Statlstlcal Journai Calro UnlverStty VoI 64, No. 1 2020
(13)



A Bayesmn Procedure to Identlfy the Orders of Vector Moving
, Average Processes with Seasonality
(Sam1r M.Shaarawy — Sherif S.Ali — Emad E.Soliman)

_An adequate chmce of the conditional prior dens1ty of I'(g, O) given q, Q and Tis

k kh(q 2]

alig Q)lq,Q T)= (2ﬂ)'h(" Q)"\R( 9, Q)1 IT| * expl—3tr

ey
[T(g. Q) - D(q, Q) R(g. DT(g. Q) = Dlg. DT)

Where the hyper-parameters D(q; Q)éR“’("’Q)Xk and R(g, Q) is a kh(g, Q)X kh(q, [9)
.' positive deﬁn_ité matrix. The 'precisior.l ;natrix T is assigned, a p_r_ioi‘i,_ the Wishart
distribution '. B '
a—(k+l) o : R o
5M <] |2 exp(—31r ¥T) - (4.4)

Where, P is a kxk positivé definite matrix. -

- Let B be the pribr probability that the time series realization S, is generated from a
~ seasonal vector moving average process of orders i andj ; i.e. o

B, =Plqg=i,0=j], o i=1 2 ., m;j=1 2, ,r o
“5) | L | f '
The two maximum orders of the process nt and r are assumed to be known. .

From (4. 3), (4 4) and 4. 5) the joint dlstrlbutlon of the parameters F(q, 0). 4, Q and T'is

h(cr,Q)k2 k [kl1(q,Q)+a—(k+§)]

wgwgg%gnwm@w CRGOUITT 7 emedr e
{[T(¢.0) - Xa. DR, ONl(g. 9~ Dg. D1+ ¥T). |
If one is not qu1te confident about the hyperparameters D(q, Q) R(q, @), a and ¥, |

one miight use J effrey’s Vague prior

o —(k+1) | o S
ff(T(q,Q) 4.0, T)OCITI D . B X)X

: Combmmg the approx1mate likelihood function (4.2), via Bayes theorem, wlth the

prior d1str1but10n (4 6), the Jomt posterior dlstnbutlon of the parameters F(q, Q) g, Q and T

is ' |

—h(g. O’ k a(g.0)

16040715, %) > RO ITI * ep(-ier
- {Ir@.0)- Da.O) Rig. OT@.0)-Dg OB T)

Whefe g, Q)=n+h(q Q+a—k-1

@8

The Egyptrdn Statistical Journal Cairo Unwersuty Vol o4, No.1, 2020
- (14)




A Bayesian Procedure to Identi'fy the Orders of Vector Moving
"7 Average Processes with Seasonality
(Samir M.Shaarawy — Sherif S.Ali — Emad E.Soliman)

Theorem 4.1: | B _
'_Using the apptoximate likelihood. function (4.2) and the prior density (4.5), the j_oint _
posterior probability mass function of the orders g and Q is

—[n+4] _ : '
h(q,QlS )Ocﬂle(q;Q)| |A(Q:Q)| |C(q oS k {%) n> k-a-1

___W-here : - _ 3
A(q.Q) = R(q,Q) + 2 fc-q,g (t- 1):%;,Q -1,

B(p, q)=R(g, Q) D(g.0) +qug(t 1)y' (t)

=1
and

C(q,Q) D'{q, Q)R(p ) D(q Q) + ¥+ Zy(f)y 0-5 (q,Q) A‘l (4, Q)B(q Q)
Theorem (4 1) can be proved by integrating (4 8) with respect to the parameters r

and T respectlvely The 1ntegral with respect {0 I is done by completmg the squares of the =

_ exponent in (4 8) and then applying the matrix normal integral- The mtegral with respect to |

-the parameter T'is done using Wishart den51ty, see Box and Tiao (1973)

Corollary 4. 1

Using the approx1mate hkehhood (4 2) and Jeffrey S vague prior (4. 7) the Jomt posterior L

probabﬂlty mass functlon of the orders q and Qis

Hi? 2k - [n-k]

W(q.Q18,) (n) 2 14°(4.0)121C (2.0)1 E]r[”;””"v—zﬂ}wkfhk-f

'Where _ _ _
4"(q.0) = z”:lfcq,g'(t 1R (1= 1)
B(p.a)= L p(t-1y(t)

~and

C*(q,Q)=iy(r)y'(r)— B' (q,Q)(A*)'l(q,Q)B*(q,Q')

The form of the joint posterlor probability mass function of the model orders is

._commen;mdjamhmclk:a—m_Ltlmmtlter Then one mav calculate and inspect all o
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- posterior probabthtles over the grid of the orders and choose the values ¢ and O at which
the posterior probability mass function attains its maximum to be the most sultable orders

of the vector time series data being analyzed.

5. AN EFECTIVENESS STUDY

The maln objectlve of this section is to assess the performance of the proposed
Bayesran procedures in identifying the orders of vector moving average processes w1th
'seasonahty In order to achieve this goal five simulation studies have been conducted The ._
proposed Bayesran procedure is employed, w1th three different priors, to 1dent1fy the orders )

_of SVMA(1,1)4 models wrth various parameter values. The paramgters in some cases are -

" chosen to be well inside the 1nvert1b111ty domain while in some other cases they are chosen -

'_to be near the boundaries. All computatrons are performed on Pc usmg SCA package

Our main ¢oncern is to 1nvest1gate the effectweness of the proposed procedures by o

calculatmg the percentage of correct 1dent1ﬁcat10n Such effectiveness will be examrned '_

with respect to time series length as well as the parameters of the selected models For all'

sample’ sizes and pararneter sets the- covariance matrix of the noise term is fixed at .

(2‘. | ] Slmulatlon 1, for 111ustrat10n begms with generating pairs of 500 data sets of
1 .

blvanate normal variates, each of size 2500, to represent the noise &(f), These data sets are B

| then used to generate a pair of 500 realizations, each of size 2000, from SVMA(1,1) -

. process with the coefficients matrices g = 05 -04 and @ = 0 Note that the
_ o -03 02 =203 02

_ﬁrst 500 observations are ignored to remove the initialization effect. For a'speciﬁc 'priOr
the second step of srmulatlon 1 is to carry out all computations, assummg a specrﬁc .
maximum ‘order (m, r), required to 1dent1fy each of the 500 realizations and to find the
' percentage of correct identification. Such computatlons are done for a specnﬁc tnne series
length n using the first n observatlons of each generated realization. The second step is -
repeated for each chosen time serres and prior comblnatlons. The sample size n is taken to
be 200, 400, 600, 800, 1500 and 2000, while the maximum order (m, 7) is-taken to be 3,
3). With respect to the prior probability mass function of the orders g and O, which is
comblned ‘with Jeffreys vague prror of (g, Q) and T, the followmg three prror |

dlstrrbutrons are used

The Egyptian Statistical Journal- Cairo University Vol. 64, No.1, 2020
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Prior 1:

B,=Plg=i,0=j1=19 i=1,2,3;/=1,2,3
Prior 2: .. | |

| /3” o (0 5)'” i=1,2,3 ;j=1,2,3

PI‘IOI‘ 3:

B, =0211, f, = B, =016, fB; =B, = B, =0.111,

By = By, =0.061 and B, =0.011

The first prior assigns equal probabilities to each combination of orders. The__second
prior assigns probabilities that decline exponentialiy with the orders, while the third prior is
chesen in such a way to give probabilities that decrease with constant va_lne 0.05 as 'the

order increases.

Simulation. 2 1s done in a smnlar way but using 6= ( 23 —Oozzj and

= [0'33 _(())jj . The other simulations are done in a similar way but using 'different Val_ues.

" of & and ®, and their result are presented in table.1. The parameters i the snnulatlons |

have been ehosen in such a way to satisfy the 1nvert1b111ty condltlons see Harvey (1981)

- In some simulations, the parameters are chosen to be nearby the non-invertibility region,

' See case 5.

Table (1) Percentages of Correct 1dentification for SVMAz(l 1) Processes w1th ..
maximum order (3,3)

90.6 1000 | 988,

- I I N o ST B/ 96.8 1000 | 1000

o 202 =02 0500204 gpg 98.8 100.0 100.0

S B S R [ T Dl e Y 99.8 100.0 1000
R O I P I Sl T 99.8 100.0 100.0

i ' o 99.6 1000 | 1000

The Egyptian Statistical Journal- Cairo University'Vdl. 64, No 1, 2020
' (17)



~ A Bayesian Procedure to Identrfy the Orders of Vector Movrng
Average Processes with Seasonality '

(Samrr M Shaarawy Sherlf S. Ah - Emad E. Sollman)

504 1000 984

97.0 © 1000 | 1000
986 . | - 100.0 1000
99.2 100.0 . 100.0
99.6 . | 100.0 100.0
100.0 100.0- | 1000

94 .4 1000 - 99.8
98.8 100.0. | 100.0.
99.6 © 1000 | 1000
99.8 1000 [ 10000 °
+100.0 1000 [ 1000 -
100.0 1600 | . 1000
492 908 | 766
582 | 962 | 882

66.0 980 918 -
708 | 988 930

74.4 C992 . | 952
788 ] 992 | 958 |

Source Srmulated Data

Inspectlon of the numerrcal results shows that the percentages of correct ‘:.

: 1dentrﬁcatron increase as the time series length n increases for all models and prrors The_
percentages of correct 1dent1ﬁcatron are reasonably high, bemg greater than 70 % for all- :
- models and prrors for time series length 800 or more no matter what the coefﬁcrents are.
In addrtron the percentages of correct identification achreved by prlor 3 are hrgher than the _
= correspondmg percentages achieved by prior 1, while the correspondlng percentages _3
' achreved by pI‘lOI‘ 2 are the hrghest However for sufﬁcrently large n, one may notrce that-- |

- the differences. among the percentages of correct 1dent1ﬁcat1on achreved by the three prrors
._ tend. to die down Th1s means that the proposed Baye51an 1dent1ﬁcat10n procedure is not

B very sensrtrve to the minor changes between the three prror distributions;

. Consrderlng the above comments one may conclude that the nurnerrcal results
‘support the adequacy of - usrng the proposed Bayes1an procedure in solvmg theE

S 1dent1ﬁcatlon problems of vector movmg average processes with seasonahty

6 CONCLUSION

The artrcle has proposed an- approxunate Bayes1an procedure to 1dent1fy the orders_ |
of vector movrng average processes with seasonahty The joint posterror probabrllty mass-
functron of the model orders has been developed in a convenient from using an

approximate likelihoo.d function and a matrix normalm\l\lishart (or] effrey_'s.’ _'vague) prior_. ..

Then one miay easily calculate and investigate the posterior probabilities of all values of the ~ 3

. .The.Egyptian Statistical Journal- Cairo University Vol. 64, No.1, 2020
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_:problem" In order to c'heck' the perfor’rhéi’h'ce and quality of the proposed procedure' a
simulation study w1th three dlfferent prior dlstrlbutlons has been conducted. The numerical -

results show that the proposed Bayesian procedure can efﬁcrently 1dent1fy the orders of

bivariate seasonal moving average processes with hlgh precision for moderate and large o

tlme series lengths
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