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This article considers a two-echelon dual channel supply chain where customers 

can purchase either from the retailer or order online from e-tail channel. It is 

assumed that the demand is lost if the customer didn’t find the product in his 

preferable channel (i.e. customers have channel loyalty and not brand loyalty). 

The manufacturer is managing the inventory levels for retail and e-tail channels. 

Two different inventory strategies are discussed and for each strategy the optimal 

inventory levels in retail and e-tail stores and the respective expected profits are 

derived. Moreover, comparison between the performances of the two strategies is 

performed. 

List of Notations: 

ci unit cost for channel i, i = 1, 2. 

d total demand on both channels 

di demand for channel i, i = 1, 2. 

f(d) p.d.f. of the total demand d 

i i
f (d )

 
p.d.f. of channel i, i = 1, 2. 

gi unit shortage cost for channel i, i = 1, 2. 

pi unit price for channel i, i = 1, 2. 

Qi inventory quantity for channel i, i = 1, 2. 

si salvage value per unit of the product  

for channel i, i = 1, 2. 

π total profit. 

ω 

θ 

wholesale price offered. 

demand splitting factor , 0 < θ < 0.5 

 where, i=1 refers to e-tail channel and i=2 refers to retail channel 
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Introduction 

E-business has grown rapidly in the last decades 
[1]

. 

While the retail market share of internet sales is still 

small its quarterly growth rate of 8.6% in 2004 largely 

outweighs the corresponding 1.3% growth of total retail 

sales 
[2]

. After the initial over-enthusiasm, more 

sustainable models of e-commerce have started to 

emerge. One recurrent pattern is the combination of 

‘bricks and-clicks’, the integration of online sales into a 

portfolio of multiple alternative distribution channels. 

In the last decades people got interested in e-business 

where the volume of online business has been increased 

significantly. In addition to traditional retail stores, 

companies have increasingly adopted e-tail channels. 

 
Firms following this dual-channel strategy are referred 

to as click-and-mortar companies, which is distinct 

from their traditional brick-and-mortar counterparts. 

Most of e-business failures are operations related. For 

example: one of the major reasons of lack of success 

for early e-business attempted was the failure of order 

fulfillment due to late delivery or stock out, especially 

during peak seasons like Christmas, Eid period, New 

Year. 

Managing inventory effectively in both channels is a 

critical success factor for the survival of click-and-

mortar companies. Hill et al. 
[3]

 stated that, currently, 

click-and-mortar firms are applying different inventory 

strategies for retail and e-tail channels. For example, 

some firms use a strategy to segregate retail and e-tail 

channels, each channel having its own warehouse, and 

keep the e-tail in-house. The advantage of this strategy is 
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that inventory levels of both channels are not 

intermingled, and, therefore, fulfillment quantity in each 

channel is assured. The disadvantage is that some of the 

firms find that it’s hard to manage inventory for the 

same product in two different channels and, therefore, 

outsource thee-tail channel to third party firms having 

expertise in the order fulfillment process of this kind. 

Another strategy commonly used called professional 

shopper strategy, where customers first surf online for 

product information on an e-tail store, and then make the 

purchase in a retail store. Alternatively, they order 

online, and then pick up the product in a retail store, i.e., 

e-tailers partner with the retailer for the order fulfillment 

process. Lee and Whang 
[4]

 list this as one of the five 

strategies to win the last mile of e-commerce. 

The business practices detailed above raise the following 

interesting research question for supply chain 

management: what are the optimal inventory decisions 

for the retail and e-tail stores for different e-business 

strategies? An additional motivation is to determine not 

only the inventory level in retail channel but also in the 

e-tail channel. We consider the situation where demands 

in the two channels are related, and customers are split 

between the two channels. In this paper we are 

concerned about the optimal inventory levels in each 

channel where the two-stage supply chain is facing 

random demand. 

We consider two different channel strategies found in 

practice. All of them are for a two-stage supply chain 

with one manufacturer and a retailer. There is also a 

different channel from the manufacturer to customer – 

the e-tail channel. These strategies are: 

(1) Centralized Inventory Strategy. 

The manufacturer owns both retail and e-tail channels 

and has full control of the inventory decisions. 

Therefore, there is only one centralized decision maker.  

(2) Stackelberg (Leader-follower) inventory 

strategy. 

In this case, the manufacturer owns the e-tail store 

whereas the retailer controls the retail store. The 

manufacturer has full control of the inventory level in e-

tail store and the wholesale price to the retailer. In 

response to the wholesale price, the retailer, acting as the 

follower in the game, makes inventory decisions for the 

retailer channel. In order to integrate internet fulfillment 

operations into their distribution networks, a number of 

manufacturers use this option to add an e-tail channel 

and has full control of it. 

This article presents and compares the optimal inventory 

levels for retail and e-tail channels for both Centralized 

Inventory and Stackelberg inventory strategies. Section 

2 presents survey of recent literature. We present our 

model and analyze the centralized strategy in Section 3. 

Optimal inventory levels for retail and e-tail stores for 

the Stackelberg strategy are presented in Section 4.The 

closed form of the optimal manufacturer’s expected 

profits for the different strategies are derived in Section 

5.The performance  analysis of the two strategies is 

presented by numerical example in Section 6. 

 Literature Review 

The optimal inventory decisions in a multi-channel 

setting and its impact on a firm’s performance affects 

related fields like marketing, economics and 

management science. From the marketing point of view, 

a buyer’s evaluation of an e-tailer’s delivery 

performance can be positively impacted by the firm’s 

inventory policy. This has been empirically shown by 

Cao and Zhao 
[5]

. Hua and Li 
[6]

 studied the effect of 

retail market demand uncertainty on the retailer’s 

dominance over the manufacturer using a co-operative 

game scenario. An extensive study from operations point 

of view is reported by Khouja 
[7]

. He studied three 

different demand distributions, namely, exponential, 

normal, and uniform, and evaluated optimal ordering 

levels for both in-house and drop-shipping inventory. 

We can categorize the multi-channel inventory research 

into two streams: 

Stream (1): the demand in each channel is independent, 

random from a given distribution, or with correlation 

between individual demands. The total channel demand, 

characterizing the industry demand, is the aggregation of 

the individual channel demands. The effect of 

information sharing for resolving shipment quantity 

uncertainty was studied by Zhang et al. 
[8]

. They found 

that when advance shipping notice is used to share 

information, it would resolve the uncertainty well. 

Lee 
[9]

 considers a single manufacturer–single buyer 

supply chain where the manufacturer satisfies a constant 

demand rate by fixed lot size delivery. An integrated 

inventory control model to minimize mean total cost per 

unit is presented. 

Abdul-Jalbar et al. 
[10]

 studied a multi-echelon inventory 

supply chain with one warehouse and multiple retailers. 

The demand of each retailer is known and constant. 

Seifert et al. 
[11]

 analyzed how to integrate an online store 

into an established supply chain by allowing for 

transshipment from retail stores to online store. They 

assumed the demands of retail stores and online store are 

independent, which make their analysis somewhat 

tractable. They quantify the expected cost savings of an 

integrated supply chain over a dedicated one, which also 

results in a higher consumer service level. 

Stream (2): the total demand comes from a certain 

distribution. This total demand is split among the 

channels. This is in contrast to the first stream where the 

individual channel demands are aggregated into industry 

demand. To allocate the industry demand among the 

firms, they use one of four splitting rules, namely: 

deterministic splitting, simple random splitting, 

Incremental random splitting and independent random 

demand. Of these four rules, we feel that the 

deterministic demand splitting rule is appropriate for the 

scenario of e-tail and retail channels in our paper. Tsay 

and Agrawal 
[12]

 studied how a direct channel and a 

reseller channel are interested to know the allocation of 

demand between the two channels. The authors modeled 

the demand allocation with a fraction of the effort-driven  
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component of the total demand captured by direct 

channel. 

The Model 

A supply chain with retail and e-tail channel selling 

short life cycle goods (like: fashion wear, hi-tech 

products) is considered. Customers have the choice of 

purchasing either from normal retail store or order 

online directly from the manufacturer. We assume that 

the demand is random variable and that a certain fraction 

of customers prefer retail stores, whereas the remainder 

prefers making online purchases [         . The 

model decides about the inventory level that maximizes 

profit for single period under probabilistic demand. It is 

assumed that, if a customer’s demand couldn’t be met 

through his selected channel, the demand is lost, which 

is reasonable for customers with channel loyalty but no 

brand loyalty. In addition, if a product is out of stock in 

a channel, there is no transshipment from the other 

channel. This is most likely to happen in short selling 

seasons like holidays (Christmas, Easter, etc) so that 

there is no enough time for transshipment between 

different stores. Figure (1), illustrates the problem. This 

article is interesting in analyzing the optimal inventory 

levels of retail and e-tail stores, for different strategies, 

and their effects on the manufacturer’s profits.  

For simplicity we will not consider the holding cost, 

which could be adjusted by subtracting the holding cost 

from the salvage value as suggested by Parlar 
[13]

. 

 

 
 

Fig. (1): Retail and e-tail demand distribution 

 

Demand Split 
We assume that the total demand (d) via both channels 

is a random variable, and customers are split between 

the two channels (online and retail). Demand function 

for online channel is d1 = s(d) say, and the demand for 

retail channel is d2 = d- s(d). 

We assume that the e-tail customers have the following 

two properties: 

1- A new customer is more likely to use e-tail channel 

than retail channel. i.e. s (d) 0 and  s (d) 0  
 

[14]
. This 

assumption is due to the following facts: customers are 

more comfortable with the e-tail channel and increasing 

due to internet security and online shopping has become 

more convenient as a shopping option. In addition to, it 

can penetrate into potential markets that are generally  

 not accessible by retail stores.  Finally, customers are not 

stick to store opening hours and orders can be easily 

personalized by web technologies. 

2- The size of online customers is still relatively small 

compared with retail store customers. 

We assume that the total demand is uniformly distributed 

because uniform distribution is bounded and tractable, 

i.e.           .  The assumption of uniform distribution 

is general enough to capture the essential dynamics of 

demand split between e-tail and retail stores. For this 

reason, it’s commonly used in supply chain literature. 

Based on the above properties for e-tail customers, we 

assume the demand via e-tail channel 

d
s(d)

b a

 
  

 

2

according to property1 above where, 0 < θ < 0.5 

according to property 2. We have the following lemma 

regarding the probability density functions for customers 

in retail and e-tail stores. 

Lemma 1 

If 

1
f (d)

b a


  then 
1 1 1

1

1
f (d ) ,   0 d

2 d
   


 and 

2 2 22

2

1
f (d ) ,    0 d 1

(b a) 4 d
   

  
         (3.1)  

Proof: It is known that if Y = g(X) has a one – to – one 

mapping , then the p.d.f of Y can be obtained from the 

p.d.f of X using  
1

1

Y X

dg (y)
f (y) f g (y)

dy





. 

In our case, 

d
d

b a

 
  

 

2

1

, 

1
d

d (b a) 
 , then 

1 1

1

1
f (d )

2 d



 

Similarly, 

d
d d

b a

 
  

 

2

2

,  so 
2 4 2 2

2 2
(b a) (b a) 4 (b a) d (b a) (b a) 4 d

d (b a)
2 2

           
    

    ,  

Because θ < 0.5, 

2

2
(b a) (b a) 4 d

d (b a) (b a)
2

     
    

    which 

is infeasible and is therefore rejected. So, we have 
2

2
(b a) (b a) 4 d

d (b a)
2

     
   

    

Therefore, 
2 2 2

2

1
f (d )

(b a) 4 d


  
 

Based on Lemma 1, the demands on dual channels are 

decomposed into two separate variables with different 

probability distributions. In our analysis, we will use 

these demand distributions for the retail and e-tail 

channels to obtain each player’s expected profit. In the 

next section, we will study the first of our strategies, 

namely the centralized inventory strategy. 

Centralized inventory strategy 

This is a strategy where a centralized decision to handle 

shipments to retail stores as well as to online orders is 

made. The manufacturer has full control of both retail 

and e-tail channels. 

 

   
E-tail Channel 

 

   
Retail Channel 

 

         

Potential Customers 

Manufacturer 
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The decision variables here are Q1 and Q2. Eq. (3.2) is the total expected profit for two channels: 

   

   

1

1

2

2

Q

1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 Q

Q 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 Q

E[ ]=-c Q -c Q p d s (Q d )  f (d )d(d ) p Q g (d Q )  f (d )d(d )

                           p d s (Q d )  f (d )d(d ) p Q g (d Q )  f (d )d(d )





      

     

 

 
   (3.2)                 

 

Where,  

 c1 Q1 and c2 Q2 are the costs associated with inventories 

   and   .  

 
Q1

1 1 1 1 1 1 1

0

p d s (Q d )  f (d )d(d ) 
 is the expected profit 

when the demand   is less than or equal to the inventory 

level   (consisting of the revenue for    and the salvage 

value for the unsold items). 

 1 1 1 1 1 1 1

Q1

p Q g (d Q )  f (d )d(d )



 
is the expected profit 

when the demand is greater than the inventory level up 

to the maximum possible value of  . This is the revenue 

value generated by selling   units less than the shortage 

cost for the unsatisfied demand. 

 
Q2

2 2 2 2 2 2 2

0

p d s (Q d )  f (d )d(d ) 
and

 
1

2 2 2 2 2 2 2

Q2

p Q g (d Q )  f (d )d(d )



 
are similar terms for 

retail channel. 

In the following theorem we will get the optimal 

inventory decisions for both retail and e-tail stores. 

Theorem 1: The optimal stocking size for online and 

retail stores are as follows: 
2

* 1 1 1
1

1 1 1

2

* 2 22 2 2 2
2

2 2 2 2 2 2

p g c
Q

p g s

2 c (b a)s p g1
Q (b a) (b a) 4 (1 )

4 p g s p g s

  
  

  

     
         

         
(3.3) 

Proof:  

In model (3.2) the optimum values
* *

1 2(Q ,Q ) are found by 

setting the partial derivatives 1

E[ ]

Q

 

 and 2

E[ ]

Q

 

  equal to 

zero, and solving for Q1 and Q2 substituting for f1(d1) 

and f2(d2) from Lemma 1. 
1

1

Q

1 1 1 1 1 1 1 1

1 0 Q

E[ ]
=-c s f (d )d(d ) (p g ) f (d )d(d ) 0

Q


 

   
  

 
1

1

Q

1 1 1 1 1 1

0 Q1 1

1 1
-c s d(d ) (p g ) d(d ) 0

2 d 2 d



   
 

 
 

* *

1 1
1 1 1 1

Q Q
-c s (p g ) 1 0

 
     

  
   

*

1 1 1 1

1 1 1

p g c Q

p g s

 


  
 

2

* 1 1 1
1

1 1 1

p g c
Q

p g s

  
  

    

 And by the same way we get  
2

2

Q 1

2 2 2 2 2 2 2 2

2 0 Q

E[ ]
=-c s f (d )d(d ) (p g ) f (d )d(d ) 0

Q


 

   
  

 
2

2

Q 1

2 2 2 2 2 2
2 2

0 Q2 2

1 1
-c s d(d ) (p g ) d(d ) 0

(b a) 4 d (b a) 4 d



   
     

 
 

2 2 *2 2 2 2
2

2 2 2 2 2 2

2 c (b a)s p g
(b a) 4 (1 ) (b a) 4 Q

p g s p g s

   
        

     
Then  

2

* 2 22 2 2 2
2

2 2 2 2 2 2

2 c (b a)s p g1
Q (b a) (b a) 4 (1 )

4 p g s p g s

     
         

         
It is clear that 

   
2

1 1 1 1 1 1 1 1 1 1 1 1 12

1

E[ ]
=s f (Q ) (p g )f (Q ) s p g f (Q ) p g s f (Q ) 0

Q

 
         


 

 
2

2 2 2 2 2 2 2 2 22

2

E[ ]
=s f (Q ) (p g )f (Q ) p g s f (Q ) 0

Q

 
      


 

Then E[ ] has maximum value at * *

1 2(Q ,Q ) . 

We will use the centralized strategy as a benchmark for 

the next strategy studied in Section 4. We study a 

competitive game between the two channels where one 

firm, namely the manufacturer, acts as the leader. 

Stackelberg (Leader-follower) inventory strategy 

This strategy is more realistic because the two channels 

“e-tail and retail” are de facto competitors and 

accordingly would make decisions separately keeping 

their own interests in mind. The manufacturer will have 

full control of the online channel and is assumed to be 

the Stackelberg inventory leader while the retailer is the 

follower. Here how it goes: 

(i) The manufacture makes decisions for the e-tail 

inventory level Q1 and wholesale price ω offered to 

the retailer in order to maximize its expected profit, 

given the expected response function of the retailer. 

(ii) In response to the manufacturer’s wholesale price 

ω, the retailer places an order to the manufacturer 

to stock an inventory level Q2 in order to maximize 

retailer own expected profit. 

To solve a two-stage Stackelberg game like this we 

need to solve the retailer’s objective function first to 

obtain the follower’s response function as a function of 

the leader’s decision variables. 

1. The retailer’s problem 

The retailer’s expected profit given ω is 

   
Q 12

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 Q2

E[ ]= Q p d s (Q d )  f (d )d(d ) p Q g (d Q )  f (d )d(d )



         
    

(4.1) 

where     is the retailer’s maximum demand.  The 

next theorem gives the best response function of the 

follower given ω. 
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Theorem 2: The retailer’s best inventory response 

function is  
2

*s 2 22 2 2
2

2 2 2 2 2 2

2 (b a)s p g1
Q (b a) (b a) 4 (1 )

4 p g s p g s

    
         

                                           
(4.2)   

Proof: Similar to Theorem 1. 

A comparison with the benchmark case (Theorem1) 

shows that in case ω = c2 , the inventory level of the 

retailer would be the same as in Theorem 1. 

2. The manufacturer’s problem 

The next step in solving Stackelberg game is to find the 

manufacturer’s (the leader) optimum policy given the 

follower’s best response function. The manufacturer’s 

objective is as follows: 

   
Q1

1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Q , 0 Q1 1

 E[ ] = -c Q +( -c )Q p d s (Q d )  f (d )d(d ) p Q g (d Q )  f (d )d(d )Max




        

                                   

(4.3)   

Solve this problem to optimality and obtain the optimal 

policies for the manufacturer as given in the next 

theorem. 

Theorem 3: The manufacturer’s optimal decisions are: 
22 ** s 1 1 1

1
1 1 1

12 p g c
                    Q

6 p g s

       
    

         (4.4) 

where, 
2

2 2 2 2

22 2 2

2 2

2 2 2 2 2 2 2

2(p g ) (b a) 4 (1 ) 2(b a)s 2 c

(b a)(p g )s
(b a) (b a) 4 (1 )

2

      (b a)s c (1 )(p g ) c (p g ) (b a) 4 (1 )

   

          

           
 

          
 

 
Theorem 3 gives the closed-form solutions of the 

manufacturer’s optimal decisions for his e-tail stores. 

Proof:  

We have 
*s

22 2 2 2
2 2

2 2 2 2 2 2

Q (b a)s 2 p g
(b a) 4 (1 )

(p g s ) (p g s )

    
     

      
which implies 

*2 s
2
2 2

2 2 2

Q 2
0

(p g s )

  
 

    

 
*s*1 s 2

2 2
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It is easy to show that 
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 if ω ≥ c2, therefore, 
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E
0
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 and unique maximum of 
*

2c 
 can be 

found. 

Using (4.2) and (4.3) we get, 
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Making some simplifications we get 

 

 

2 2

2 2 2 2

2

2 2 2

2 2

2 2 2 2 2 2 2

3 2(p g ) (b a) 4 (1 ) 2(b a)s 2 c

1
(b a)(p g )s (b a) (b a) 4 (1 )

2 0

(b a)s c (1 )(p g ) c (p g ) (b a) 4 (1 )

            
 

  
             

          
    

Which can be written as:
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So the optimal wholesale price is 

2
* 12

6

   
 

  

The proof of 
*s

1Q  is similar to that for 
*

1Q  in Theorem1. 

The computational form for the optimal expected 

profit functions 

(i) The closed form of the manufacturer’s expected 

profit for centralized inventory strategy 

 
Q Q1 1

1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 1

Q Q1
[p d s (Q d )]f (d )d(d ) [p d s (Q d )] d(d ) p 2s

32 d
       



(5.1) 

 

1 1 1 1 1 1 1 1 1 1 1 1 1
Q Q 11 1

1 1 1 1 1
1 1 1 1 1

1
[p Q g (d Q )]f (d )d(d ) [p Q g (d Q )] d(d )

2 d

Q 2g Q Q g
                                                    p g Q p Q

3 3

 

     


     
 

 

(5.2) 
 
Q Q2 2

2 2 2 2 2 2 2 2 2 2 2 2 2
20 0 2

1
[p d s (Q d )]f (d )d(d ) [p d s (Q d )] d(d )

(b a) 4 d

     
  

 

        

   

3
2 2 2 22 2

2 22

22 2
2

(p s ) 4 2
b a 2 b a b a 4 Q b a 4 Q  

3 3(4 )

s Q
 b a b a 4 Q

2

 
            

   

 
       

 (5.3) 
 

   

1

2 2 2 2 2 2 2
Q2

1

2 2 2 2 2 2
2Q2 2

2 22 2 2
2

2 2 2 2
2

2
3 32 2 2

2

[p Q g (d Q )]f (d )d(d )

1
[p Q g (d Q )] d(d )

(b a) 4 d

(p g )Q
(b a) 4 Q (b a) 4 (1 )

2

2(b a) (b a) 4 (1 ) 2(b a) (b a) 4 Q
g

2 2(4 ) (b a) 4 (1 ) (b a) 4 Q
3 3





 

  
  

           
  

           


        





 
 



 (5.4) 

 

  



  E. J. Ibrahim and S. A. Magdy /Egy. J. Pure & Appl. Sci. 2016; 54(3):25-31  

30  

 

 

Now replacing (Q1, Q2) by their optimal values 
* *

1 2(Q ,Q )

and substituting by (5.1) to (5.4) in the main equation 

(3.2) we obtain the optimum value of the manufacturer’s  

expected profit for Centralized inventory strategy 
*
1E  

    

(ii) The closed form of the manufacturer’s expected 

profit for Stackelberg strategy 
By the same way as previous we get 

 
* * *s * s s

1 2 2 1 1 1 1
1 1

E ( c )Q p g1 c Q g
3 3

 
         
   

  

 
Numerical Example 

In order to examine the model behavior, we proceeded to 

optimize the system under 30 sets of parameter values. 

Table (1) contains the parameters of 30 examples. We 

compare the optimal profits for the Centralized strategy 

and Stackelberg strategy. For θ = 0.1, 0.2, 0.3, 0.4 and 

0.5 we see that, the profit increases with θ. 

In most cases the expected manufacture’s profit for the 

Stackelberge case is greater than the expected 

manufacturer’s profit for the Centralized case. 

 

 

 

Table 1: Comparison between total inventory levels and expected manufacturer’s profit for Centralized and 

Stackelberg strategies 
 

Example ** s

1 1
Q Q

 
Online 

channel 

*

2
Q

 
Retail 

channel 

Total 

inventory 

level 
* *

1 2
Q Q

 

*s

2
Q

 
Total 

inventory 

level 

1 2


* *s s
Q Q  

*
E  
   

*s
1E

 
 
   

Total demand function is uniform on [0, 1] and 

c1 = 0.8, c2 = 1 , s1 = 0.01, s2 = 0 , g1 = 0.5 , g2 = 0.3 , p1 = 5 , p2 = 5 

1 0.07329106 0.007454966 0.08074603 0.003813274 0.07710434 0.1658168 0.1065276 

2 0.1465821 0.0271869 0.173769 0.01431074 0.1608929 0.1250715 0.2284306 

3 0.2198732 0.05524635 0.2751195 0.03015862 0.2500318 0.04202877 0.3637384 

4 0.2931643 0.08768387 0.3808481 0.05014745 0.3433117 0.06968268 0.5106044 

5 0.3664553 0.12055 0.4870053 0.07321291 0.4396682 0.1983644 0.667325 

Total demand function is uniform on [0, 5] and 

c1 = 0.8, c2 = 1 , s1 = 0.01, s2 = 0 , g1 = 0.5 , g2 = 0.3 , p1 = 5 , p2 = 5 

6 0.07329106 0.0004013913 0.07588967 0.0002006876 0.07349175 0.0821264 0.09816027 

7 0.1465821 0.005534498 0.1521166 0.002766485 0.1467828 0.128581 0.1965146 

8 0.2198732 0.02142825 0.2413014 0.01070653 0.2200739 0.1611267 0.2958142 

9 0.2931643 0.0542953 0.3474596 0.0271113 0.2933649 0.1695575 0.3974673 

10 0.3664553 0.1105339 0.4769892 0.05514742 0.366656 0.1424981 0.5035626 

Total demand function is uniform on [5, 15] and 

c1 = 0.8, c2 = 1 , s1 = 0.01, s2 = 0 , g1 = 0.5 , g2 = 0.3 , p1 = 5 , p2 = 5 

11 0.07329106 0.009869532 0.0831606 0.004933551 0.07349175 0.0647587 0.09944475 

12 0.1465821 0.0435146 0.1900967 0.02174553 0.1467828 0.09509681 0.2025639 

13 0.2198732 0.1070578 0.326931 0.05348157 0.2200739 0.09455988 0.3112521 

14 0.2931643 0.2067126 0.4998769 0.1032245 0.2933649 0.0523953 0.4277389 

15 0.3664553 0.3487837 0.715239 0.1740929 0.366656 0.04037837 0.5545909 

Total demand function is uniform on [0, 1] and 

c1 = 0.8, c2 = 1 , s1 = 0.05, s2 = 0 , g1 = 0.5 , g2 = 0.3 , p1 = 3 , p2 = 5 

16 0.06124764 0.007454966 0.0687026 0.0002006876 0.06144832 0.1566096 0.03889679 

17 0.1224953 0.0271869 0.1496822 0.0002006876 0.122696 0.1092223 0.07736283 

18 0.1837429 0.05524635 0.2389893 0.0002006876 0.1839436 0.02466814 0.1158296 

19 0.2449905 0.08768387 0.3326744 0.0002006876 0.2451912 0.08085905 0.154297 

20 0.3062382 0.12055 0.4267882 0.0002006876 0.3064389 0.1930956 0.192765 

Total demand function is uniform on [0, 5] and 

c1 = 0.8, c2 = 1 , s1 = 0.05, s2 = 0 , g1 = 0.5 , g2 = 0.3 , p1 = 3 , p2 = 5 

21 0.06124764 0.0004013913 0.06164903 0.0002006876 0.06144832 0.07295335 0.03845194 

22 0.1224953 0.005534498 0.1280298 0.0002006876 0.122696 0.1143534 0.07689772 

23 0.1837429 0.02142825 0.2051712 0.0002006876 0.1839436 0.1545514 0.1153434 

24 0.2449905 0.0542953 0.2992859 0.0002006876 0.2451912 0.1972339 0.153789 

25 0.3062382 0.1105339 0.4167721 0.0002006876 0.3064389 0.2504922 0.1922345 

Total demand function is uniform on [5, 15] and 

c1 = 0.8, c2 = 1 , s1 = 0.05, s2 = 0 , g1 = 0.5 , g2 = 0.3 , p1 = 3 , p2 = 5 

26 0.06124764 0.009869532 0.07111717 0.0002006876 0.06144832 0.06586654 0.03840378 

27 0.1224953 0.0435146 0.1660099 0.0002006876 0.122696 0.1293173 0.07685471 

28 0.1837429 0.1070578 0.2908007 0.0002006876 0.1839436 0.2117118 0.1153056 

29 0.2449905 0.2067126 0.4517032 0.0002006876 0.2451912 0.3228704 0.1537566 

30 0.3062382 0.3487837 0.6550219 0.0002006876 0.3064389 0.477213 0.1922075 

 

 



  E. J. Ibrahim and S. A. Magdy /Egy. J. Pure & Appl. Sci. 2016; 54(3):25-31  

 31 

 

 

We present the total inventory level for the two 

strategies when the market share via e-tail store, i.e. θ 

increases. In most cases, we find that the centralized 

strategy keeps more inventory than the Stackelberg case, 

which means that the service level with the centralized 

strategy would be the highest among the two strategies. 

In addition, we notice that as the market share of e-tail 

channel θ goes up, the total inventory level for the 

centralized strategy remains almost unaffected, but the 

inventory levels for the Stackelberg strategy increase 

rapidly. Thus, the manufacturer’s production quantity 

with the centralized strategy is quite stable (significantly 

simplifying the capacity planning), whereas with the 

Stackelberg strategy, the manufacturer has to make 

significant changes to his production volume as the 

market share in the e-tail store increases. 

References 

1) Forrester Research, 2005. Topic Overview: US 

Online Retail. 

2) Dinlersoz, E. M. and Hernandez-Murillo, R. 

(2005). The diffusion of electronic business in the 

United States. Federal Reserve Bank of St Louis 

Review; 87(1):11–34. 

3) Hill, A., Collier, D., Froehle, C., Goodale, J., 
Metters, R. and Verma, R. (2002). Research 

opportunities in service process design. Journal of 

Operations Management; 20:189–202. 

4) Lee, H. and Whang, S. (2001). Winning the last 

mile of e-commerce. Sloan Management Review; 

42:54–62. 

5) Cao, Y. and Zhao, H. (2004). Evaluations of e-

tailers’  delivery  fulfillment:  implication  of  firm 

 characteristics and buyer heterogeneity. Journal of 

Service Research; 6:347–360. 

6) Hua, Z. and Li, S. (2008). Impacts of demand 

uncertainty on retailer’s dominance and 

manufacturer-retailer supply chain cooperations. 

OMEGA; 36:697–714. 

7) Khouja, M. (2001). The evaluation of drop shipping 

option for ecommerce retailers. Computers and 

Industrial Engineering; 41:109–126. 

8) Zhang, C., Tan G-W., Robb, D. J. and Zheng, X. 
(2006). Sharing shipment quantity information in the 

supply chain. OMEGA; 34:427–438. 

9) Lee, W. (2005). A joint economic lot size model for 

raw material ordering, manufacturing setup, and 

finished goods delivering. OMEGA; 33:163–174. 

10) Abdul-Jalbar, B., Gutierrez, J. and Sicilia, J. 

(2006). Single cycle policies for the one-warehouse 

N-retailer inventory/distribution system. OMEGA; 

34:196–208. 

11) Seifert, R. W., Thoneman, U. W. and Sieke, M. A. 
(2006). Relaxing channel separation—integrating a 

virtual store into the supply chain.IIE Transactions; 

38:917–931. 

12) Tsay, A. and Agrawal, N. (2004). Channel conflict 

and coordination in the e-commerce age. Production 

and Operations Management; 13:93–110. 

13) Parlar, M. (1998). Game theoretic analysis of the 

substitutable product inventory problem with random 

demands. Naval Research Logistics; 35:397–409. 

14) Lippman, S. and McCardle, K. (1997). The 

competitive newsboy. Operations Research; 45:54–

65. 

 

 

 
 


