Animal Reproduction Research Institute, Agricultural Research Center, El-Haram, Giza, Egypt.

# EFFECT OF NIGELLA SATIVA (AQUAS EXTRACT) ON THE VIABILITY OF RABBIT SPERMATOZOA, FERTILITY TRAITS AND BACTERIAL CONTAMINATION

(With 6 Tables)

# ROWIDA M. RIAD; AMAL A.M. GHONIEM and T.S.T. SELEEM\*

\*Animal Production Research Institute, Agricultural Research Center, Dokki, Giza, Egypt. (Received at 23/9/2004)

تأثير المستخلص المائي لحبة البركة على حيوية جيامن الأرانب والخصوبة وكذلك التلوث الميكروبي للقذفة المنوية

رويدا محمد رياض ، آمال عبد الفتاح غنيم ، طارق سليمان توفيق سليم

أستخدم في هذه الدراسة عدد (٣٦) ذكر أراتب كاليفورنيا ناضجا جنسيا، على عمر ١٢ شيرا اشتملت الدراسة على تجربتين أساسيتين: في التجربة الأولى تم جمع السائل المنوي الصطناعيا وتخفيفه بمخفف اللاكتوزسترات الصوديوم ثم أضيف اليه المستخلص المائي لحية البركة على مستويات (٥٠٠٠، ١٠٠، ١٠٠، ١٠ مرح الميكو من المائي لحية على درجتي حرارة الثلاجة (٤سـ٣ م) المدة ثلاثة أيام، أو التحضين على ٣٧ م امدة أربعة مساعات وكانت الخفط المختوب المستخلص المائي لحبة البركة على المحتوى مسمعت الستجربة الثانية لدراسة تأثير إضافة المستخلص المائي لحبة البركة على المحتوى الميكروبي الموجود في السائل المنوي المخفف وكذلك تم تقدير معدلات خصوية الإناث المائي الميكروبي الموجود في السائل المنوي المخفف وكذلك تم تقدير معدلات خصوية الإناث الميكرة ويمكن تلخوص النائج المنحصل عليها كما يلئ – إضافة المستخلص المائي لحبة البركة ويمكن تلخوص النائج المنحصل عليها كما يلئ – إضافة المستخلص المائي لحبة الطبيعية خيال غتر ان المخفق حسن معنويا (على مستوى ٥٠٥) في خصائصه الطبيعية خيال على على من المقدرة التخزيفية الطبيعية على ١٩٠٤ من المقدرة التخزيفية المستخلص المائي التحسين على ٣٧ م المدن المقدرة التخزيفية المستخلص المائي لحبة البركة على مستويات (٥٠٠ و ٢٠)، ١٥، ١٠، ١٠، ٥ ثم صغر ميكرو مار/ مل، المدنية البركة على مستويات (مدن المغوي ينقدم على المترتب الموفق على درجتي حرارة الثلاجة والتحضين، أدى استخلص المائي لحبة على الترتب الوخظ على درجتي حرارة الثلاجة والتحضين، أدى استخلص المائي لحبة على ملتوي (البنملين والإستريتوميسين) إلى تأثير مثبط (على مستوى ٥٠٪) السيركة مع المضاد الحيوي (البنملين والإستريتوميسين) إلى تأثير مثعط (على مستوى ٥٠٪) السيركة مع المضاد الحيوي (البنملين والإستريتوميسين) الى تأثير مثعط (على مستوى ٥٠٪) المدين المؤمود على مستوى ٥٠٪) المدينة المستخلص المائي لحبة السيركة مع المضاد الحيوي (البنملين والإستريتوميسين) إلى تأثير مثعط (على مستوى ٥٠٪)

على المحتوى الميكروبي في السائل المنوى المخفف. كانت قيم كل من معدل الولادات وعدد ووزن الخلفات الملقحة اصطناعيا باستخدام السائل المتوي المخفف والمضاف إليه ٢٠٠ مـ حكرومل مستخلص حدة البركة / مل معنوي (علي مستوى ٥%) أفضل من مجموعة المقارنة.

#### SUMMARY

Thirty-six sexually mature bucks of Californian rabbits (12 months age) were used in three experiments. In experiment 1, semen was collected artificially, pooled and extended with lactose-yolk citrate extender. Nigella sativa extract was added to the extended semen at levels 0, 50, 100, 150, 200 or 250  $\mu l$  / ml, then the extended semen was stored at refrigeration temperature (4-6 °C) for up to three days or incubated at 37 °C for up to four hours. Percentages of sperm motility, dead spermatozoa and acrosme damages were recorded at the different stages of the preservation. Experiment 2 was planned to evaluate the effect of Nigella sativa extract on some bacteria present in extended rabbit semen In experiment 3, the does were inseminated artificially by using either the extended semen free or supplemented with 200 µl Nigella sativa extract (the lowest dose which showed the best effects on semen quality) to estimate the fertility traits. The results obtained showed that, supplementing Nigella sativa extract to the extended rabbit semen improved significantly (P $\leq$  0.05) the sperm motility and viability while the percentages of dead spermatozoa and acrosome damages were decreased (P $\leq$  0.05) during chilled storage at (4-6  $^{\circ}$ C) for up to three days or incubation at 37  $^{\circ}$ C for up to four hours. Semen quality and storagability were arranged discendingly as obtained by supplemented extended somen with 250, 200, 150, 100, 50 µl Nigella sativa extract /ml than control. Semen quality decreased significantly (P≤0.05) with progression of time at different preservation temperatures. Nigella sativa extract at level 200 µl combined with antibiotics (500 IU sodium penicillin + 500 µg streptomycin sulphate/ 1 ml extended semen showed better inhibitor effect on the microbial count compared with Nigella sativa or antibiotics treatment alone. Kindling rate and litter size and weight at birth values were significantly (P≤ 0.05) better in rabbit does inseminated artificially by using extended semen and supplemented with 200 µl/ ml Nigella sativa extract than those inseminated by using extended semen free from Nigella sativa (control group).

Key words: rabbits, Nigella sativa, semen characteristics, preservation, microbial count

#### INTRODUCTION

Rabbits own a number of characteristics that make them suitable as meat-producing small live stock in developing countries including Egypt. Recently, artificial insemination (A.I) is favorable and most suitable for the large commercial Rabbitries (Rashwan and El-Gaafary, 1992; Daader and Seleem, 1999 and Lavara et al., 2000).

Many attempts have been applied to use some stimulators additives in the extenders in order to prolong survivability of spermatozoa and fertilizing ability during storage at different temperatures. The additives included hormones (Daader and El-Keraby, 1982), like hormones (Zeidan, 1994 and Abd-El-Kariem et al., 1998), stimulating hormones (Selcem, 1996 and Daader et al., 2002) and chemical substances (Marwa, 2002). The frequent use of antibiotics randomly in Rabbitries either to animals or to semen may cause antibiotics-resistance strains of bacteria (Rowida 2000). So great attention must be given to use some natural materials as semen additives. Nagwa, 2000 showed that Nigella sativa have promising effect upon isolates resistance to antibiotic. Also Zaki et al., 2000 and Daader et al., 2002 proved that Nigella sativa improved the reproductive performance of rabbit. The present work was carried out to investigate the effects of supplementation of the extended rabbit semen with different levels of Nigella sativa extract on semen quality during storage at different temperatures and to choose the best concentration that provided the lowest bacterial count in coordination with high semen quality and on fertility traits of does inseminated artificially.

### MATERIALS and METHODS

The present study was carried out in an Industrial Rabbitry, near El-Aiyat city, Giza Province, Egypt. A number of 36 sexually mature Californian rabbit bucks (12 months age) were used in two experiments. Experiment 1 was designed to study the effect of supplementation of Nigella sativa aquas extract to extended semen on its quality during preservation at different temperatures. Semen was collected artificially by using an artificial vagina. The ejaculates of each buck were evaluated microscopically and only ejaculates that showed advanced motility more than 70% were pooled and extended with lactose-yolk citrate extender (2.90 gm sodium citrate dehydrate + 1.25 gm lactose + 0.04 gm citric acid anhydrous + 10.00 ml egg yolk/100 ml extender) at 1: 4 extension rate. The extended semen was divided into two parts; the first part is

subdivided into several portions, supplemented with different concentrations of Nigella sativa extract (50, 100, 150, 200 or 250 µl/ml). Antibiotics 50000 IU sodium penicillin 50000 µg streptomycin sulphate/100 ml extender was added to control sample (o). Each sample of treated semen was divided into 2 portions, the first one was kept at refrigeration condition (4-6 °C) for up to 3 days and the second was incubated at 37 °C for up to 4 hours. Percentages of advanced sperm motility, abnormal and dead spermatozoa and acrosomal damages were recorded at different stages of preservation according to Watson (1975) and Salisbury et al. (1978). In experiment two, the second part of extended semen was subdivided into 4 portions for bacteriological examination. Antibiotics, 200 µl/ ml Nigella sativa extract and antibiotics with Nigella sativa (200 µl/ml) were added to the 1st, 2nd and 3rd fractions respectively. The fourth was left without any additives as a control. The total bacterial count, Enterobacteriaceae count and, Staph, aureus count was carried out according to Cruickshank et al. (1975). These bacteriological examinations were carried out in the bacteriology lab of ARRI for presence of bacteria. Nigella sativa extract was prepared as described by Hanafy (1991).

In fertility traits, Californian rabbit does (174) were divided into two comparable experimental groups. The 1<sup>st</sup> & 2<sup>nd</sup> groups were artificially inseminated by extended pooled semen supplemented with, 200 µl Nigella sativa extract/ 1 ml extended semen with antibiotic (the dose showed the best quality) and antibiotic (control) respectively. The artificial insemination was carried out as described by Adams (1981). Kindling rate and litter size and weight at birth were recorded.

Animals were fed ad libitum a commercial diet according to NRC (1977) recommendations. All animals were kept under the same managerial and hygienic conditions.

Data were subjected to analysis of variance according to Snedecor and Cochran (1982) using the General Linear Model Program of SAS (1990).

#### RESULTS and DISCUSSION

Data presented in Tables 1&2 showed that, supplementation of extended Californian rabbit semen with 50, 100, 150, 200, or 250  $\mu l$  Nigella sativa extract/ ml improved significantly (P≤0.05) semen quality (represented by increase in advanced sperm motility percentage and decrease in percentages of each of abnormal, dead spermatozoa and acrosomal damages), during chilled storage at (4 - 6 °C) for 3 days or

incubation at 37 °C for 4 hours. These results emphasize that, Nigella sativa in the reactivated media seemed to have beneficial effect on increasing percentage of motile spermatozoa and consequently increasing semen storagability and decreasing percentages of dead and abnormal spermatozoa and acrosomal damages.

Advancement of conservation time of extended semen at refrigeration temperature at (4 - 6 °C) for 3 days or at incubation condition for 4 hours decreased (P≤0.05) percentage of sperm motility and increased (P≤0.05) the percentages of dead and abnormal spermatozoa and acrosomal damages. These findings are in agreement with the results of Seleem (1996); Daader et al. (1999 & 2000) and Rowida (2003). The observed reduction in semen quality with progression of conservation period may contribute to the increase in lactic acid accumulation as a result of sperm anaerobic metabolism leading to changes in both the osmotic pressure and PH of the media, which might exert a toxic effect on the sperm cell (Zeidan, 1994; Seleem, 1996 and Rowida, 2003).

It seemed that the beneficial effects of Nigella sativa extract on semen quality, during preservation at refrigeration or incubation conditions were most noticeable in semen samples supplemented with 200 or 250  $\mu$ l Nigella sativa/ ml extended semen. No significant effects was recorded between supplementing 200 and 250  $\mu$ l Nigella sativa/ ml extended semen on percentage of perm motility and dead spermatozoa while it increased significantly (P≤ 0.05) in acrosme damages in 250 than 200  $\mu$ l Nigella sativa and on storagability. These results showed that the improvement of semen quality supplemented with Nigella sativa which may act as anti – oxidant (Meral et al., 2001) where it is a source of calcium, iron, sodium and potassium that main function is to act as essential cofactors in various enzyme functions or act as antibacterial agent Nagwa (2000). Daader et al. (2002) revealed that, feeding pellets contained 5% Nigella sativa seeds improved (P≤ 0.05) semen quality of rabbit bucks.

As shown in Tables 3, 4 and 5, the bacteriological examination of the prepared semen samples included determination of the effect of Nigella sativa extract on total bacterial count, total entrobateriaceae count and Staph aureus count. The obtained results showed that the best concentration of Nigella sativa extract (200 µl) causes considerable decrease of total bacterial count, this could be attributed to the antibacterial properties of Nigella sativa which was used for clinical application (Toppozada et al., 1965 and Ali and Bblunden, 2003). On

other hand the use of combination of Nigella sativa extract and antibiotics yielded the lowest bacterial count, this could be explained by synergistic action between Nigella sativa and antibiotics as described by Hanafy (1991). The bacterial contamination causing reproductive problems in inseminated females which complicated if these bacteria acquired antibiotic purposes. For more follow up the effect of Nigella sativa on bacterial content of the treated semen resistance to the antibiotic used in semen diluent or from uncontrolled use of antibiotic for treatment and prophylactic. The prepared semen was examined for total Enterobacteriaceae and Staph aureus (table 4 and 5). The tables revealed that the incidence of Enterobacteriaceae in semen was lower than Staph aureus, although the extract of Nigella sativa was found to be more effective on Staph aureus than Enterobacteriaceae, these result could be explained by the anti-microbial activities of Nigella sativa extract (Agarwal et al. 1979 and Nagwa 2000) and due to the presence of many compounds of which thynohydroquinone was to have high antimicrobial effect against gram-positive microorganism (El-Fatatry, 1975). These results indicated that, Nigella sativa extract was successful in preventing the growing and increasing the microbial content in the extended rabbit semen.

Concerning reproductive performance of rabbit does, data presented in Table 6 indicated that, fertility traits (represented by kindling rate and litter size and weight at birth) of Californian rabbit does inseminated artificially using extended semen and supplemented with 200  $\mu$ l Nigella sativa extract / ml was significantly (P $\leq$  0.05) higher than control. Daader *et al.*, (2002) found that Nigella sativa supplemented to diet of rabbit bucks increased the kindling rate and litter size at birth.

In conclusion, supplementation of 200  $\mu$ l Nigella sativa aques extract/ml combined with antibiotics improved semen quality and viability during conservation at refrigeration and incubation temperatures, as well as decreased the microbial count presented in the extended rabbit semen.

Table 1: Effects of Nigella sativa extraction supplementation on Californian rabbit semen quality, during chilled storage at  $(4-6^{\circ} \text{C})$  for up to three days (Means  $\pm$  SE.).

| 11            | Chilled              |                         |                     | Nigella sativa l        | Nigella sativa levels (um / md.) |                |              |               |
|---------------|----------------------|-------------------------|---------------------|-------------------------|----------------------------------|----------------|--------------|---------------|
| Items         | periods<br>(Days)    | 0                       | 50                  | 100                     | 150                              | 200            | 250          | Means ± SE,   |
| Advanced-     | 0.0                  | 70.7 ± 2.7              | 71.0±1.8            | 72.4±1.7                | 76.9 ± 3.1                       | 77.5±2.9       | 77.6±3,1     | 74.4 ± 2.2 4  |
| sperm         | 1.0                  | 52.3 ± 3.1              | 64.3 ± 2.1          | 67.1 ± 2.3              | 714±3.2                          | 73.9 ± 3.1     | 74.1±2.1     | 67.2 ± 2.0 B  |
| motility (%). | 3.0                  | 41.1 ± 2.8              | 25.1 ± 3.0          | 61.8 ± 2.7              | 66.3 ± 2.9                       | 69.5 ± 3.2     | 69.6 ± 3.1   | 60.1 ± 2.4 °C |
| Means         | Means ≠ SE.          | 54.7 ± 2.2 °            | 62.5 ± 1.6 d        | 67.1 ± 1.8°             | 71.5 ± 2.0 °                     | 73.6 ± 2.1 4   | 73.8 ± 1.9 ° | 67.2 ± 1.7    |
| Storagabil    | Storagability (%), * | 58.3 ± 3.1 <sup>d</sup> | 73.4 ± 2.9 °        | 85,4 ± 3,0 b            | 86.2 ±2.2 6                      | 89.7 ± 3.3 a   | 89.7 ± 3.5 4 | 80.4 ± 1.9    |
| Sperm -       | 0.0                  | 16.7 ± 1.6              | . 17.0 ± 1.3        | 16.8 ± 1.6              | 16.2 ± 1.4                       | 16.9 ± 1.6     | 16.5 ± 1.3   | 16.7 ± 1.1    |
| abnormalities | 1.0                  | 21.7 = 1.7              | 21.0 ± 2.0          | 16.9 ± 1.9              | 17.9±1.6                         | 17.3 ± 1.5     | 17,4±1.7     | 18.7 ± 1.4 B  |
| (%)           | 3.0                  | 24.3 ± 1.7              | 23,2 ± 1,7          | 21.9±1.7                | 20.9 ± 1.4                       | $20.1 \pm 1.2$ | 20.1 ± 1.3   | 21.8 ± 0.9 4  |
| Means         | Means ± SE.          | 20,9 ± 1.2 °            | 20.4 ± 1.2 "        | 18.5 ± 1.4 <sup>5</sup> | 18.3 ± 1.2 b                     | 18.1 ± 1.7 b   | 18.0 ± 1.8 b | 19.0 ± 1.1    |
| Dead          | 0.0                  | 21.5 ± 2.1              | 21.6 ± 1,9          | 21.4±2.7                | 21.4±3.1                         | 20,9 ± 208     | 21.3 ± 2.7   | 21.4 ± 1.6    |
| spermatozoa   | 1.0                  | 30,4±3.1                | 28.9 ± 2.2          | 27.2 ± 2.9              | 24,5 ± 3,0                       | 22.7 ± 3.1     | 22.3 ± 2.7   | 26.0 ± 1.6 B  |
| (%)           | 3.0                  | 46.7±2.9                | 409±2,4             | 35.3 ± 2.6              | 30.6±2.5                         | 25.6 ± 2.7     | 25.5 ± 2.4   | 34.1 ± 1.7    |
| Means ± SE.   | s ± SE.              | 32.9 ± 2.1 "            | 30.5 ± 1.8 b        | 28,0 ± 1.9°             | 25.5 ± 1.6 d                     | 23.1 ± 1.3 *   | 23.0 ± 1.5 ° | 27.2 ± 1.4    |
| Acrosomal     | 0.0                  | 14.3 ± 2.1              | 14.5 ± 2.3          | 14.3 ± 1.9              | 144±1.7                          | 14.2 ± 1.8     | 14.6±19      | 14.4 ± 1.0    |
| damages (%).  | 1.0                  | 19.7±1.9                | 18.6 ± 1.7          | 17.8 ± 2.2              | 15.7±1.9                         | 15.5 ± 1.5     | 15.6±1.7     | 17.2 ± 1.3 "  |
|               | 3.0                  | 23.7±1.9                | 21.9 ± 2.1          | 20.9 ± 1.8              | 17.9 ± 1.6                       | 16.7±1.3       | 17.4±1.8     | 20.6 ± 1.3 4  |
| Means         | Means # SE.          | 19.2 ± 1.4 "            | $18.3 \pm 1.8^{ab}$ | 17.7 ± 1.5 b            | 16.0 ± 1.3°                      | 15.5 ± 0.9 °   | 16.5 ± 1.0 b | 18.0 ± 0.7    |

Means within the same row (a,b,c,d,e) or the same column (A,B,C) bearing different letter superscripts are significantly different  $(P \le 0.05)$ Final advanced sperm molility (after 3 days)

\* Storagability = Initial advanced sperm molility (at 0 time)

--- X 100 (Seleem, 1996)

Table 2: Effects of Nigella sativa extraction supplementation on Californian rabbit semen quality, during incubation at 37 °C for up to four hours (Means ± SE.).

| 15                   | Incubation         |              |               | Nigella sativa l        | Nigella sativa levels (µm / ml.) |              |              |              |
|----------------------|--------------------|--------------|---------------|-------------------------|----------------------------------|--------------|--------------|--------------|
| Items                | periods<br>(Hours) | 0            | 20            | 100                     | 150                              | 200          | 250          | Means ± SE.  |
| Advanced -           | 0.0                | 74.5±3.1     | 75.1±3.0      | 76.2±2.9                | 78.5±2.8                         | 79.2 ± 2.9   | 79.7 ± 2.7   | 77.2 ± 1.8 A |
| sperm                | 2.0                | 63.6 ± 3.3   | 66.9 ± 2.8    | 69.3 ± 3.0              | 74.3 ± 2.6                       | 77.5±3.1     | 77.1±30      | 71.5 ± 2.3 # |
| motility (%).        | 4.0                | \$2.2 ± 2.8  | 57.9 ± 3.3    | 60.2±3.8                | 68.6 ± 3.1                       | 73.5 ± 3.0   | 740±27       | 64.4 ± 2.1   |
| Means                | Means ± SE.        | 63.4 ± 2.5   | 66.6 ± 2.6°   | 68.6 ± 1.8°             | 73.8 ± 1.6 b                     | 76.7 ± 1.1 " | 76.9 ± 1.1 " | 71.0±07      |
| Storagability (%). * | lity (%). *        | 70.1 ± 2.0 d | 77.1 ± 2.3 °  | 79.0 ± 1.9°             | 87.4 ± 1.6 5                     | 92.8 ± 2.1 " | 92.8 ± 1.9°  | 83.2 ± 1.3   |
| Sperm -              | 0.0                | 14.9±1.3     | 14,6±2,1      | 14.8 ± 1.9              | 14.7±0.9                         | 142±09       | 143±13       | 14.6 ± 0.8   |
| abnormalities        | 2.0                | 18.8 ± 1.5   | 17.7 ± 2.1    | 17.4±1.9                | 16.4 ± 1.1                       | 151±12       | 15.1±1.7     | 16.8 ± 1 0 B |
| (%).                 | 4.0                | 22,1 ± 1,9   | 20.8 ± 1.9    | 20.2 ± 2.1              | 193±13                           | 17.3 = 1.6   | 17.1±1.6     | 19.5 ± 1.1   |
| Means ± SE.          | : ± SE.            | 18.6 ± 1.7"  | 17.7 ± 1.3 ab | 17.5 ± 1.7 ab           | 16.8 ± 1.2 b                     | 15.5 ± 1.2 ° | (5.5±1.0°    | 170+06       |
| Dead                 | 0.0                | 19,6±1.9     | 19,6 ± 2.1    | 19.3 ± 1.7              | 192±17                           | 18.4±2.1     | 181±2-       | 190+13       |
| spermatozoa          | 2.0                | 28.4±1.9     | 26.4 ± 2.3    | 25.5 ± 2.2              | 22.3 ± 1.9                       | 20.5 ± 2.1   | 20.2 ± 1.7   | 23.9 ± 1.1 " |
| .(%)                 | 4.0                | 35,2 ± 2.1   | 31.6±18       | 29.3 ± 2.1              | 27.2 ± 1.9                       | 23.8 ± 2.4   | 240±19       | 285+13       |
| Means ± SE           | ± SE.              | 27.7 ± 1.5 " | 25.9 ± 1.8 °  | 24.7 ± 1.6 <sup>6</sup> | 22.9 ± 1.5°                      | 20.9 ± 2.1 d | 20.8 + 1.3 4 | 238+09       |
| Acrosomal            | 0.0                | 12.9 ± 1.3   | 12.7 ± 2.0    | 12.7 ± 1.9              | 12.6 ± 1.1                       | (2.1±0.9     | 123±12       | 126+11       |
| damages (%).         | 2.0                | 8.1 ± 6.91   | 16.0 ± 1.6    | 15.6±2.0                | 145±13                           | 13.4±0.9     | 14.6 ± 1.1   | 16.0 ± 0.8 B |
|                      | 4.0                | 21.5 ± 1.6   | 19.5 ± 1.8    | 18.7 ± 1.9              | 17.4±0.9                         | 16.0 ± 1.0   | 15.7±1.3     | 18.1 ± 0.9 4 |
| Means ± SE.          | ±SE.               | 17.1 ± 1.0 ° | 16.1 ± 0.9 "  | 15.7 ± 1.2 %            | 14.8+07                          | 138+10"      | 149+090      | CV+C71       |

Initial advanced sperm motility (at 0 time)

Table 3: The effect of antibiotic and Nigella sativa extract on total bacterial count of pooled buck semen

| semen  | Semen +             | Semen + N. S.         | Semen + antibiotic and | Control **            |
|--------|---------------------|-----------------------|------------------------|-----------------------|
| sample | antibiofic*         | extract (200 µl)      | N. S. extract (200 µl) |                       |
|        | 24×10 <sup>2</sup>  | 5.3 x 10 <sup>2</sup> | 3.5 x 10 <sup>2</sup>  | 9.8 x 10 <sup>4</sup> |
|        | 4×10 <sup>3</sup>   | 5.9 x 10 <sup>2</sup> | 3.7 x 10 <sup>2</sup>  | 11 x 10 <sup>4</sup>  |
|        | 2.3×10 <sup>3</sup> | 2.9 x 10 <sup>2</sup> | 3 x 10 <sup>2</sup>    | 9.2 x 10 <sup>4</sup> |
|        | 2.4×10 <sup>2</sup> | 5 x 10 <sup>2</sup>   | 2.5 x 10 <sup>2</sup>  | 9.5 x 10 <sup>4</sup> |
|        | 2.5×10 <sup>2</sup> | 4.8 x 10 <sup>2</sup> | 2 x 10 <sup>2</sup>    | 9 x 10 <sup>4</sup>   |
|        | 2.7×10 <sup>2</sup> | 4.5 x 10 <sup>2</sup> | 2 x 10 <sup>2</sup>    | 9.7 x 10 <sup>4</sup> |

\* The used antithetic was Sedium Penicilin and Steptomycin Sulphan

\*\* Control = diluted semen without antibiotic and without Nigelia sativa extract

Table 4: The effect of antibiotic and Nigella sativa extract on Stophylococcus aureus count of pooled buck semen/ml

| No. of<br>pooled<br>semen<br>sample | Semen +<br>antibiotic*        | Semen + N. S.<br>extract (200 µl) | Semen + antibiotic and<br>N. S. extract (200 µl) | Control **                                                                                                                                         |
|-------------------------------------|-------------------------------|-----------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     | 34<br>-ve<br>-ve<br>-ve<br>30 | 20<br>-ve<br>-ve<br>11<br>35      | 3A                                               | 2.1 x 10 <sup>2</sup><br>2.0 x 10 <sup>2</sup><br>1.8 x 10 <sup>2</sup><br>1.9 x 10 <sup>2</sup><br>1.2 x 10 <sup>2</sup><br>1.7 x 10 <sup>2</sup> |
| mean                                | in 1.32 x 10 1.27 x 10 -v     | 1.27 x 10                         | 30-                                              | 179 . 102                                                                                                                                          |

Table 5; The effect of antibiotic and Nigella sativa extract on Enterobacteriacea count of pooled buck semen/ml

| pooled semen sample | Semen +<br>antibiotic* | Semen + N. S.<br>extract (200 µl) | Semen + antibiotic and N. S. extract (200 µl) | Control ** |
|---------------------|------------------------|-----------------------------------|-----------------------------------------------|------------|
| 1                   | 40                     | 118                               | 9/-                                           | 138        |
| 2                   | -ve                    | -ve                               | -ve                                           | an-        |
| 3                   | -ve                    | av.                               | -ve                                           | av-        |
| ¥                   | -ve                    | -ve                               | -ve                                           | av-        |
| vi                  | -ve                    | 3/-                               | -ve                                           | -ve        |
| 9                   | 0                      | S                                 | -ve                                           | 7.2        |
| mean                | 0.82 x 10              | 2.05 x 10                         | -ve                                           | 3.5 x 10   |

Control = (filtred semen without antibiotic and without Nigella sativa extract

Table 6: Fertility traits of Californian rabbit does inseminated artificially by using extended semen supplemented with Nigella sativa extraction (Means ± SE.).

| Items                        | Antibiotic "              | Nigella sativa levels (µl / ml.) + antibiotic |
|------------------------------|---------------------------|-----------------------------------------------|
|                              | (control) 0               | 200                                           |
| Mated does (No.).            | 84                        | 06                                            |
| Conceived rate (%).          | 67.86                     | 74.44                                         |
| Kindling rate (%).           | 67.86 b                   | 74.40"                                        |
| Litter size at birth         | 6.1±1.2 <sup>b</sup>      | 7.9 ± 1.8 °                                   |
| Litter weight at birth (gm). | 262.9 ± 21.5 <sup>b</sup> | 302.0±16.9°                                   |

Means within the same row (a,b) bearing different letter superscripts are significantly different (P  $\leq$  0.05). \* 50000 IU sodium penicillin + 50000 µg streptomycin sulphate/100 ml extender.

#### REFERENCES

- Abd-El-Kariem, M.A.; Gabr, H.A. and Seleem, T.S.T. (1998): Effects of oxytocin or adrenaline on reproductive performance of New-Zealand White male rabbits. 1<sup>st</sup> Inter. Conf. on Anim. Prod. and Health in Semi-Arid Arease, El-Arish, NorthSinai, 1-3 Sept., 417-422.
- Adams, C.E. (1981): Artificial insemination in the rabbit. The technique and application to practice. J. Appl. Rabb. Res., 4: 10-13.
- Agarwal, R.; Kharya, M.D. and Shrivastava, R. (1979): Anti-microbial and anti helmentic activities of the essential oil of Nigella sativa Linn. Indian J.Exp. Biol. Nov, 17 (11): 1264-1265.
- Ali, B.H. and Blunden, G. (2003): Pharmacological and toxicological properties of Nigella sativa. Phytother Res. Apr, 17 (4): 299-305.
- Cruickshank, R.; Duguld, J.T.; Marmion, B.P. and Swain, R.H.A. (1975): Medical Microbiology Churchill Livingston Edinburg and New York, 12<sup>th</sup> Ed. Vol II.
- Dauder, A.H. and El-Keraby, F. (1982): Survival rate of bull spermatozoa supplemented with estrogen, progesterone and prostaglandin F<sub>2</sub> \( \approx \). 6<sup>th</sup> International Conference on Animal and Poultry Production, Zagazig, A.R.E., 1: 192-197.
- Daader, A.H. and Seleem, T.ST. (1999): Recent trends in rabbit production. 1st Inter. Conf. on Indigenous Versus Acclimatized Rabbits. 7-9 Sept., El-Arish, North-Sinai, Egypt, 23-50.
- Daader, A.H.; Gabr, H.A. and Seleem, T.S.T. (1999b): Productive and reproductive performance of New-Zealand White and californian rabbit bucks as affected by supplementing natural clay to the diet, during summer and winter seasons. 7<sup>th</sup> Sci., Conf on Anim. Nutr., 19-21 Octob., El-Arish, North Sinai, Egypt, 565-579
- Daader, A.H.; Gabr, H.A.; Leila B.Bahgat and Seleem, T.S.T. (2002): Reproductive capabilities of Californian rabbits as affected by Gn-RH injection or supplementation to semen. 3<sup>rd</sup> Sci. Conf on Rabb. Prod. in Hot Climates, 8 – 11 Octob; Hurghada, Egypt; 275–285.
- El-Fatatry, H.M. (1975): Isolation and structure assignment of an antimicrobial principle from the volatile oil of Nigella sativa L. seeds. Pharmazie, Feb. 30 (2): 109-111.

- Hanafy. M.S.M. (1991): Studies on the sensitivity of certain bacterial pathogens to some plant extracts. Ph.D. Thesis, Faculty of Med. Vet., Cairo University, Giza, Egypt.
- Mcd. Vet., Cairo University, Giza, Egypt.

  Khan, K.I.; Khan, F.Z. and Nazar, S. (1985): The antimicrobial activity of Allium sativum garlic, Allium cepa onion and Raphanus sativus raddish. J. Farm. (Lahore)., 8, 59–72.
- Lavara, R.; Moce, E.; Andreu, E.; Pascual, J.J.; Cervera, C.; Viudes-De-Castro, M.P. and Vieente, J.S. (2000): Effects of environmental temperature and vitamin supplements on seminal parameters from a rabbit line selected by high growth rate. 7th World Rabb. Cong., Valencia, Spain, 4-7 July, 167-171.
- Marwa, E.H. (2002): Physiological studies on storage of rabbit semen.
  M. Sci. Thesis, Fac. Agric., Zagazig Univ., Zagazig, Egypt.
- Meral, I.; Yener, Z.; Kahraman, T. and Mert, N. (2001): Effect of Nigella sativa on glucose concentration, lipid peroxidation, antioxidant defence system and liver damagein experimental-induce diabetic rabbit. J. Vet. Med. A Physiol Pathol Clin Med. Des. 48 (10): 593-9.
- Nagwa, M.M. (2000): Anti-microbial effect of crude extracts of Nigella sativa on multiple antibiotics-resistant bacteria. Acta Microbiological Polonica, 49 (1): 63-74.
- NRC (1977): Nutrient Requirements of Rabbits. National Academy of Science, Washington, DC. USA.
- Rashwan, A.A. and El-Gaafary, M.N. (1992): Investigations on some factors affecting reproductive traits of New-Zealand White rabbits. Egyp. J. Rabb. Sci., 2 (2): 161-170.
- Rowida, M.R. (2000): Effect of seminal bacterial pathogens on rabbit bucks performance Ph. D. Thesis Fac. of Vet. Med. Sci. Cairo Univ. Egypt.
- Rowida, M.R. (2003): A comparative study of different additives of extended rabbit semen. J. Egypt. Vet. Med. Assoc., 63 (4),: 351–361.
- SAS (1990): SAS/ STAT User's Guide (Version 6, 4<sup>th</sup> ed.). SAS Inst. Inc., Cary, NC.
- Salisbury, G.W.; Van Demark, N.L. and Lodge, J.R. (1978): Physiology of Reproduction and Artificial Insemination of Cattle. W.H. Freeman and Company, San Francisco, USA.

Seleem, T.S.T. (1996): Studies on some reproductive characteristics in rabbits. M. Sci., Thesis, Fac. of Agric., Zagazig Univ., Zagazig, Egypt.

Snedecor, G.W. and Cochran, W.G. (1967): Statistical Methods. 2nd Ed.

Iowa Univ. Press. Ames, Iowa.

Toppozadz, H.H.; Mazhoum, H.A. and El-Dakhakhory, M. (1965): The antibacterial properties of the Nigella sativa I. Seeds. Active principle with some clinical applications. J. Egypt Med. Assoc., 48: Suppl: 187-202.

Watson, P.F. (1975): Use of Giemsa stain to detect changes in acrosomes

of frozen ram spermatozoa. Vet. Res. 97: 12-15.

Zaki, T.G.; Zeidan, A.E.B. and Seleem, T.S.T. physiological and reproductive aspects of Baladi Red buck rabbits fed Fenugreek or Nigella sativa, under hot climates. Conf. of Social and Agric. Develop. of Sinai, 16-19 May, El-

Arish, North. Sinai, 89-99.

Zeidan, A.E.B. (1994): New aspects in freezing cattle semen. Ph.D. Thesis, Faculty of Agric., Zagazig University, Zagazig, Egypt.