
 

Available online at https://sej.journals.ekb.eg/ 

FACULTY OF ENGINEERING – SOHAG UNIVERSITY 

SOHAG ENGINEERING JOURNAL (SEJ), VOL. 1, NO. 1, MARCH 2021 

 

 

110 

 

BEHAVIOR OF HYBRID STEEL/GFRP REINFORCED 

COLUMNS UNDER LATERAL CYCLIC LOADING:             

A NUMERICAL STUDY 

Ahmed Arafaa*, Ata Elkareim Shoeibb, Sara Youssef Dandrawyb 

aCivil Engineering Department, Faculty of Engineering, Sohag University, 82524, Sohag, Egypt 
bCivil Engineering Department, Faculty of Engineering, Helwan University, 11795, Cairo, Egypt 

  

Abstract 

This paper proposed hybrid (steel/glass fiber-reinforced polymer (GFRP) composites) bars as primary reinforcement for 

modern reinforced concrete (RC) columns. A detailed two-dimensional finite element model (2D FEM), that considers 

material and geometric nonlinearity and the bond behavior of steel and glass FRP (GFRP) reinforcement, was created, and 

validated against the available experimental results. The built model predicted the experimentally obtained results 

representing in failure mode and deformation response with good accuracy. Hybrid system that consists of steel/GFRP 

combination was then studied. The results patently showed that hybrid reinforced columns can undergo large displacement 

with minimal damage. This; however, can be guaranteed through carefully selection of reinforcement arrangement. 
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1. INTRODUCTION 

FRP reinforcement is currently being used as a viable alternative to steel in new concrete structures, especially 

those in harsh environments [1]. Their noncorrodible nature, high strength, and light weight make them a 

promising alternative to conventional steel reinforcement. Given their lower cost compared with other types of 

FRP bars, glass-FRP (GFRP) bars have made their way into numerous cast-in-place bridge decks [3-7]. Recently, 

concern has been triggered on the feasibility of using FRP-reinforced elements in seismic regions. This was due 

to the limited ultimate strain and the elastic nature of FRP bars. To fill the gap of knowledge and give an answer 

to these concerns, a pioneer experimental study conducted on the lateral response of a half-scale three-story 

moment-resisting frame (MRF) reinforced completely with aramid FRP rebars and stirrups [8]. This was 

followed with several studies [9 - 11] that included testing of different structural elements under reversed cyclic 

loading. The results showed that FRP-reinforced elements exhibited stable linear behavior up to failure with a 

low energy dissipation capacity and minimal damage. Recent application extended to the behavior of hybrid 

steel/GFRP-reinforced concrete elements [12,13]. However, most of them are mainly focused either on columns 

with steel bars as the main longitudinal and transverse reinforcement with adding GFRP bars to enhance the self-

centering ability, or frame elements that are governed by shear (for example, beam-columns connection). The 

present study is a part of ongoing project that address the mentioned points through developing a hybrid system 
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in which the FRP represent the main reinforcement with added some steel bars to enhance the ductility and the 

dissipation energy.  This study will use nonlinear finite element analysis (FEA) as a powerful tool to verify this 

expectation. A series of analyses will be first implemented on concrete columns reinforced with either steel or 

GFRP bars to demonstrate that the finite element (FE) procedure can provide quick and reliable simulation. The 

study is then extended to investigate the effect of using hybrid reinforcement through a comprehensive parametric 

study. The discussion has been implemented in term of cracks pattern, failure mode, and energy dissipation.  

2. SUMMARY OF EXPERIMENTAL WORK 

The FEM was developed and validated against well detailed columns slowly reinforced with steel; or GFRP 

bars, which were experimentally studied by Elshamandy et al.  [11]. The columns measured 400 × 400 × 1850 

mm (15.7 × 15.7 × 72.8 in.) connected to a massive stub (1200 × 1200 × 600 mm [47.2 × 47.2 × 23.6 in.]) 

and cast vertically. The transverse load was applied at top of the specimen 1.65 m (65 in.) from the base of the 

column with a displacement-controlled hydraulic actuator. The specimens represent a column 3.7 m (145.6 in.) 

in height in a typical building with the assumed point of contraflexure located at column mid-height. Fig.1 shows 

the concrete dimensions and reinforcement details. Fig.1 shows the GFRP cage reinforcement of the test 

specimens. The axial load ratio (ALR) is defined as the index 𝑃/𝑓𝑐
′𝐴𝑔, where 𝑃 is the constant axially applied 

compression load, 𝑓𝑐
′ is the concrete compressive strength, and 𝐴𝑔 is the gross cross- sectional area of the column.  

ALR of 20% was chosen. For ease reference, the GFRP and steel-reinforced specimens were specified as 

ST12N10-C4-100, and G12N13-C4-100, respectively.  

All specimens were constructed with normal weight, ready mixed concrete having a target nominal 

compressive strength 𝑓𝑐
′ = 40 MPa (5.8 ksi). Table 1 lists the specimens’ details and gives the actual concrete 

compressive strength based on the average values from tests performed on at least three 100 × 200  mm 

(3.94 × 7.87 in.) cylinders for each concrete batch on the column’s day of testing. N10 and N8 grade 60 steel 

bars were used in the steel-reinforced columns as longitudinal and transverse reinforcement, respectively. The 

GFRP reinforcing bars in the GFRP-reinforced columns was Grade III sand-coated bars [32], N13 as longitudinal 

bars and N10 as transverse reinforcement (rectilinear spirals and crossties). Table 2 shows the material properties 

of the reinforcing bars. 

 

TABLE 1. TEST SPECIMEN DETAILS 

Specimen ID 𝑓𝑐
′ 𝜌𝑙 (%) 

Transverse reinforcement 

𝑠 𝑃/𝑓𝑐
′𝐴𝑔 𝐸𝐴 

𝜌𝑣 (%) Ash act 
Ash req for drift 

> 2.5% > 4% 

ST12N10-C4-100 34 0.53 0.5 — — — 100 0.2 170 

G12N13-C4-100 39 0.95 0.71 285.2 145.4 232.6 100 0.2 170 

Notes: 𝑓𝑐
′  is concrete compressive strength (MPa); 𝜌𝑙  is longitudinal reinforcement ratio; 𝜌𝑣  is 

transverse reinforcement ratio; Ash act is actual provided transverse reinforcement (mm2); Ash req is 

required transverse reinforcement according to Eq. (6) to achieve either 2.5% or 4% drift (mm2); 𝑠 is 

spacing of transverse reinforcement (mm); 𝑃/𝑓𝑐
′𝐴𝑔  is axial load level; 𝐸𝐴  is axial stiffness; E is 

longitudinal bar modulus of elasticity; A is longitudinal bar area; 1 mm2 = 0.00155 in.2; 1 MPa = 

145 psi; 1 kN = 0.225 kip. 

 

Electrical strain gauges and linear variable differential transducers (LVDTs) were used to measure strain and 

displacement, respectively, as shown in Fig. 1. Thirty electrical strain gauges were mounted on the longitudinal 

and transverse reinforcement at three different levels above the stub. Concrete strain and curvature were 

calculated using three sets of LVDTs that were placed in the column faces perpendicular to the loading direction 

within the plastic hinge region. Four LVDTs were mounted to capture the lateral deformation at different column 

heights. Two additional LVDTs were used to monitor the sliding at the column-stub connection and between the 

stub and rigid floor. The axial load was applied at the top of the column, where the axial stress was maintained 

constant throughout the test Fig. 1. Cyclic lateral displacements at a rate of 1.3 mm/min (0.05 in./min) were 
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applied to the columns with a 500 kN (112.4 kip) MTS actuator mounted horizontally to a steel reaction frame. 

A typical procedure of applying quasi-static reversed cyclic loading until failure was used. Two excursions at 

each displacement cycle were applied with the displacement increment related to drift ratio, as shown in Fig. 1. 

More details can be found elsewhere [10]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Concrete dimensions, reinforcement details, Instrumentation of test specimens and test setup for the test specimens (ST12N10-C4-

100, and G12N13-C4-100) 
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TABLE 2. TENSILE PROPERTIES OF THE REINFORCEMENT.  

Bar* 𝑑𝑏, mm 𝐴𝑓, mm2 𝐸𝑓, GPa 
f †, MPa 

fu 
𝜀𝑓𝑢, % 

Straight bars 

9.5 71.3 200 𝑓𝑦 = 420 𝜀𝑦  =  0.2 9.5 

12.7 126.7 69.6 1392 2.00 12.7 

Bent GFRP N10 (No. 3) rectilinear spiral and crossties 

Straight 9.5 71.3 52 962 1.85 

*Numbers in parentheses are manufacturer’s bar designation. 

 

3. FINITE ELEMENT ANALYSIS AND VALIDATION 

Numerical analyses were implemented in this study with VecTor2 specialized finite element (FE) software 

[14]. The program is a two-dimensional FE simulation tool based on a secant– stiffness formulation using a total 

load, iterative procedure, which employs constitutive relations for concrete and reinforcement based on the 

modified compression field theory (MCFT) [15]. The MCFT is a powerful analytical model that predicts the 

load–deformation response of RC elements that are subjected to in-plane shear and normal stresses. The theory 

is based on a smeared crack approach in which the cracked concrete is treated as a new material with unique 

stress–strain characteristics. Equilibrium, compatibility, and material stress–strain relationships are considered 

to represent average stresses and average strains, in addition to local stresses at crack positions. More details 

about the program can be found in the user manual [14].  

3.1. Model geometry and meshing  

Four-node quadrilateral elements were used to model the concrete and the longitudinal and horizontal bars 

were simulated with truss elements. A representative FE mesh and set of truss elements was used in the analysis 

Fig. 2. To eliminate the localization effect, the elements’ aspect ratios were <1.5, as recommended by Palermo 

and Vecchio [16]. The convergence criteria were examined based on iterative simulations of different meshes 

with different numbers of column elements. The hysteretic response, failure mode, and strain readings were 

examined for the simulated columns with different mesh sizes and compared with the experimental results of the 

tested columns. The mesh size was then chosen that had no additional effect of refined mesh on the numerical 

results, which considered no localization effect.  

3.2. Material modeling 

VecTor2 provides useful features when modeling RC elements: (1) a comprehensive nonlinear constitutive 

model of concrete, (2) implementation of the effect of cracks on the behavior of RC, (3) inclusion of the effect 

of tension stiffening and compressive strength reduction due to cracks, and (4) implementation of a user defined 

bond–stress relationship between reinforcement and concrete. The following section discusses the constitutive 

models for the concrete and the steel and GFRP bars.  

3.2.1. Concrete 

Fig. 3 illustrates the constitutive models used in modeling concrete. The Hognestad parabola [17] and a 

modified Kent-Park formulation [18], which were intended primarily for the analysis of RC structures subjected 

to cyclic and dynamic loads, were used to model the pre and post-peak response of the concrete. These models 

were broadly used in several investigations to model structural columns and showed an accurate simulation of 

the behavior [16], [19-22]. The hysteric response of concrete was modeled based on Palermo and Vecchio [23]. 

This model was adopted in this study, since it explicitly considers concrete damage caused by shear deformations. 

In addition, the model was formulated to provide substantial compatibility with nonlinear FEA in the context of  
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Fig. 2. Typical FE meshing. 

smeared rotating cracks in both the compression and tension stress regimes. The concrete confinement provided 

by the closed stirrups was considered using Kupfer model [24]. The model was established for steel-reinforced 

elements. To make this model suitable for elements reinforced with GFRP bars and stirrups, which have lower 

moduli of elasticity than steel reinforcement, an equivalent area of GFRP stirrups was used as recommended in 

[25].  

The equivalent area was defined as the area of a steel bar that produced the same stiffness as the actual GFRP 

bars. Compression softening was simulated using the Vecchio model [15], which considers the reduction in 

compressive strength and stiffness caused by coexisting transverse cracking and tensile straining. This model 

was adopted because it considers the softening of both strength and strain. The modified Bentz model [34] was 

used to model the tension stiffening effects. This model accounts for the tensile stresses in concrete between 

cracks induced by the bond action between the reinforcement and concrete. The model was formulated to account 

for the bond characteristics of the reinforcement, and therefore, the influence extends into surrounding elements 

that do not contain any reinforcement. Tension softening was modeled with a linear descending branch after 

cracking. The dilation of concrete, which represents the lateral expansion of concrete due to internal micro-

cracking and increases as the compressive stresses increase, was modeled with the variable Poisson’s ratio that 

was proposed by Kupfer and Gerstle [26]. The constitutive models used to simulate the tension stiffening effects, 

the tension softening, and the dilation of concrete were adopted based on the previous numerical simulations for 

GFRP-reinforced walls [27].  

3.2.2. Reinforcement material 

Fig. 3 illustrates the constitutive models used to model the steel and GFRP bars. The hysteretic behavior of 

the steel bars was modeled according to Seckin [28]. This model was selected because it considers the 

Bauschinger effect beyond the yielding of steel and the associated softening of both strength and strain. However, 

the stress–strain curve was set to linear for the GFRP bars with a modulus of elasticity equal to the elastic modulus 
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of the GFRP reinforcement. The dowel action of the steel bars was represented with the Tassios model [29] and 

the dowel action was neglected for the GFRP bars, according to ACI 440.1R [1]. VecTor2 provides the option to 

define the bond–slip relationship between reinforcing bars and the surrounding concrete. Based on the findings 

of an experimental investigation by Vint [30] on the bond–slip behavior between sand-coated GFRP bars and 

concrete, the modified Bertero-Eligehausen model [31] was adopted to simulate the bond between GFRP bars 

and concrete. A complete bond was used between steel bars and concrete, which has been reported as being 

reliable when modeling steel-reinforced columns.  

Nodes at the base of the simulated column were fixed against movement in both the horizontal and vertical 

directions. The lateral displacement was applied at a height of 1650 mm from the base. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The used constitutive models: (a) concrete hysteretic response (data from Palermo and Vecchio [16]); (b) concrete pre- and post-peak 

response (data from Hognestad [17] and Scott et al. [18]); (c) steel reinforcement hysteretic (data from Seckin [28]); and (d) FRP 

reinforcement hysteretic response. 

3.2.3.  Model validation 

Fig. 4 shows a comparison between the experimentally monitored and analytically predicted cracks pattern 

and failure modes of the column’s specimens, in addition to the principal stress contours of the simulated 

columns. Generally, the simulated columns exhibited similar crack patterns to those captured from the experiment 

in term of crack inclination, tendency, and propagation. Fig. 5 also compares the predicted load-displacement 

hysteretic response to the companion experimentally obtained. Clearly, the model could predict the specimen’s 
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first flexure crack, ultimate strength, and energy dissipation with good accuracy; the difference within 10%. 

Based on the validation results, it can be concluded that the developed FEM can be extended to assessment the 

effect of using hybrid reinforcement. 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. FEA versus experimental results.  
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Fig. 5. Load drift ratio (experimental versus numerical). 

4. PROPOSED HYBRID REINFORCEMENT CONFIGURATION  

 

 

 

  

 

Fig. 6. The examined GFRP and hybrid reinforced specimens (G1-20, GS1-20). 

In the present study one configuration is introduced. Fig. 6 shows details of reinforcement. The simulated 

specimen is identical to the tested GFRP-reinforced specimen (G4-20), but the reinforcement was replaced with 

different ratio of vertical steel/GFRP bars along the column’s height. The specimen designated as GS1-20. 
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5. ANALYSIS RESULTS AND DISCUSSION 

 

 

 

 

 

  

 

  

  

 

 

  

 

 

Fig. 7. Failure mode and lateral load-drift ratio hysteretic response (G1-20 and GS1-20). 

Fig. 7 shows the cracks pattern and failure modes of G1-20 and GS1-20. The specimens initially exhibited a 

stiff behavior. The specimens exhibited initial stiff behavior without cracking. With more loading, the flexural 

cracks initiated at the column bottom associated significant reduction in the lateral stiffness. With further loading, 

cover splitting gradually initiated at the most compressed fibers of the columns associated with gradual spalling 

of the concrete cover. This was recorded from the measured concrete compressive strain that attained 0.0035 at 

the lower part of the columns and began to spread higher and higher.  At this stage, the longitudinal steel bars in 

GS RC column yielded. Nevertheless, the specimen continued to carry loading without strength degradation. 

Ultimately, the specimens exhibited ruptures of bars at the most tensile fiber with abrupt strength degradation. It 

is clear from Fig. 7 that meshes at tension zone have noticeable vertical deformation that implies bars rupture. 

Bar rupture 

GS1-20 G1-20 

Bar rupture 
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Both specimen GS1-20 safely achieved an acceptable level of deformation according to NBCC and ASCE/SEI 

41 [32,33] (maximum drift ratio 4%), as well as a stable hysteretic response till the failure point.  

To facilitate comparison between the proposed GS reinforcement configurations in term of their efficiency in 

controlling damage, the residual displacement (displacement at zero loading) was determined at each drift level 

and normalized to that of the reference specimen (G4-20) at the same drift level. Fig. 8a shows the obtained 

normalized residual deformations (r) versus drift ratio. In parallel, the capability of the GS-RC columns to 

dissipate energy should be investigated. In this context, the cumulative energy dissipation of the simulated 

specimens, which is a common index to describe the ability of a structure to dissipate imposed seismic energy, 

was determined and plotted against drift ratio, as shown in Fig. 8b. Clearly, the GS column exhibited much higher 

ability is energy dissipation, with slightly higher residual damage. Nevertheless, the damage at 4% (the maximum 

allowable drift ratio) is minimal (4mm). This is vital in earthquake especially, those structures in higher 

earthquake region.    

 

 

 

 

  

 

  

 

 

 

 

 

 

Fig. 8. Normalized residual deformations and cumulative energy dissipation versus drift ratio. 
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6. CONCLUSION 

This paper presents a numerical investigation using program (Vector 2) a two-dimensional finite element 

which conducted to simulate the reversed cyclic behavior of hybrid (steel/GFRP) reinforced concrete columns. 

Based on the results and the presented discussion, the following conclusions can be drawn: 

1. The proposed model accurately predicted the behavior of both the steel and GFRP-reinforced concrete 

columns available in the literature. 

2. The lateral response of hybrid steel/GFRP-reinforced concrete columns supports the feasibility of using the 

hybrid reinforcement concept as a simple control-damage tool to achieve the required seismic performance.  

3. More studies are needed to provide design guidelines that can be incorporated into the next seismic design 

codes editions. 
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