ACTIVATION ENERGY FOR HgI2 CRYSTAL

Riyad N. Ahmad-Bitar, Yousuf Mahmud, Khalil A. Wishah Mousa Abdul-Gader, and Marouf Al-Haj Abdallah

Department of Physics, University of Jordan, Amman-Jordan

Abstract

The application of AC impedance method to Hglz crystal at temperatures between 350 K to 220 K is applied. The equivalent network representing the cell crystal and contacts in dark was deduced. This network represents the response between 1 Hz to 10 KHz. The results also confirmed an activation energy of 0.26 eV found recently by others.

Introduction

Photoelectric properties of Hgl_2 crystals were extensively studied by $\operatorname{Bube}(1)$ both in the red phase, β - Hgl_2 , and the yellow phase β - Hgl_2 . More recently $\operatorname{Hyder}(2)$, De Blasi et al.(3), and Manfredotti et al.(4,5) applied different photoelectric techniques (temperature stimulated current (TSC), photovoltaic effect, photoconductivity etc.) not only to characterize trapping levels, hole lifetimes and mobilities but also to investigate possible techniques for evaluating Hgl_2 as possible X-ray and X-ray room temperature detector(6). Deterioration of efficiency with time of these Hgl_2 detectors was observed and is referred to as "polarization effects". It is mainly interpreted as being due to trapping mechanisms.

Red Hgl₂ is an insulator with a band gap of 2.13 eV at room temperature and a dark resistivity of about 10¹¹ \(\Omega_{\temp}\) m. The electron mobility is around 100 cm²/Vs and the hole mobility is 3-5 cm²/Vs for a high purity crystal at room temperature.

Regolini and Saura(7) recently found complex impedance plane plots for a red Hgl₂ crystal as a function of temperature between -3°C and 70°C. The frequency of the AC signal was between 10° and 2x10°Hz. They deduced an activation energy of 0.27 eV.

In spite of the large number of publications from various laboratories to characterize Hgl₂ crystal, there seems to be very rare agreement between any two of them. The aim of the present work is to apply the AC impedance methods to Hgl₂ crystal(8)

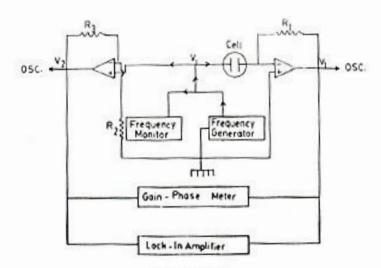
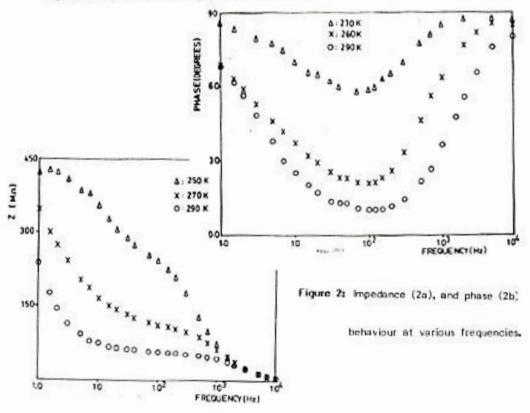
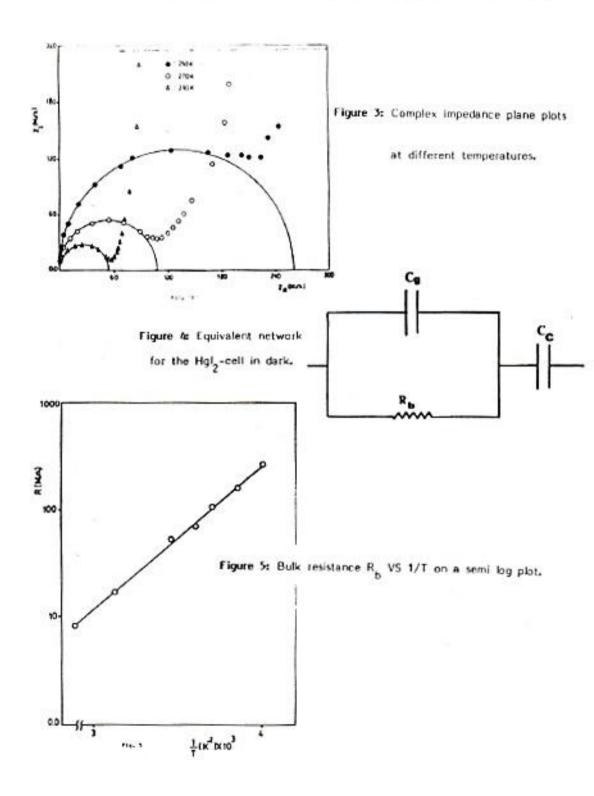




Figure 1: Circuit used for impedance measurements.

References

- 1. R.H. Bube, Phys. Rev. 106, 703 (1957).
- S.B. Hyder J. Appl. Phys. 48, 313 (1977).
- C. De Blasi, S. Culassini, C. Manfredotti, G. Micocci, L. Ruggiero, and A. Tepore, Nucl. Inst. Meth. 150, 103 (1978).
- 4. C. Manfredotti, R. Murri, and L. Vasanelli, Sol. Stat. Comm. 21, 53 (1977).
- 5. C. Manfredotti, R. Murri, and L. Vasanelli, ELE, Tran. Nucl. Sci. N5-24, 158 (1977).
- A. Friant, J. Mellet, C. Salion, and T. Mohammed Brahim, EEE, Tran. Nucl. Sci., NS-27, 281, 1980, J.S. Iwanczyk, A.J. Dabrowski, G.C. Huth, J.G. Bradley, J.M. Conley, and A.J. Albee, SEM, (Chicago IL) page 9, 1984.
- 7. Jorge L. Regolini and Jose Saura, J. Appl. Phys. 54, 1528 (1983).
- Riyad N. Ahmad-Bitar, Mousa M. Abdul-Gader, Khalil A. Wishah, Yusuf Mahmud and M.A. Hassan, Nucl. Inst. and Methods, in press.
- 9. M.A. Hassan, J. Crust, Growth, 44, 473 (1978).
- 10. R.C. Whited and M.M. Schieber, Nucl. Inst. Meth. 162, 113 (1979).
- A.J. Dabrowski, G.C. Huth, M. Singh, T.E. Economon, and A.L. Turkevich. Appl. Phys. Lett. 33, 211 (1978).
- 12. A.L. Dibrowski, G.C. Huth, EEE. Trans. Nucl. Sci. NS-25, 205 (1978).
- Riyad N. Ahmad-Bitar, M.M. Abdul-Gader, A.M. Zihlif, and A.M.Y. Gaber, J. Electro. Chem. 143, 121 (1983).
- 14. M. Rama Rao, Debasti Roy, and JK.D. Verma, J. Phys. D. 18, 517 (1985).
- 15. J.G. Simmons, G.S. Nadkarni, and M.C. Lancaster, J. Appl. Phys. 41, 538 (1970).