MAGNETIC STRUCTURE OF FeNi_{1.5} Ti_{0.5} O₄ - A NEUTRON DIFFRACTION STUDY Y. Abbas (1,2), E.A. Farag (3) and M. Kayser (2) Physics Dept., Faculty of Scienc, Suez Canal University Ismailia, Egypt. Neutron Physics Dept.; Atomic Energy Est., Cairo, Egypt ³Faculty Women, Ain-Shams University, Cairo, Egypt ## Abstract A polycrystalline sample of the compound Fe Ni_{1.5} Ti_{0.5} O₄ was investistigated by means of neutron diffraction in the temperature range 20-500 C. Neutron diffraction patterns have revealed that the ${\rm Ti}^{4+}$ ions occupy the B-sites in the spinel structure. The magnetic moment per molecule at room temperature shows that the studied compound is a Néel ferrimagent with m(A) = 3.140 + 0.2 u_B and m(B) = 4.69 + 0.2 u_B. The curie temperature was found to be $T_C = 340 + \overline{5}$ C. ## Introduction This work is part of some systematic neutron diffraction studies on polycrystal-line samples of the solid-solution $\text{Fe}_{2(1-y)}$ Ni_{1+y} Ti_y O_4 $(0 \leqslant y \leqslant 0.5)$, which were obtained by replacing the Fe^{3+} ions in NI Fe_2 O_4 by equal amounts of Ni^{2+} and Ti^{4+} . The principal aim the magnetic measurements carried out on this system was to determine the cation distribution and the Curie temperature and to investigate the influence of the heat treatment on these properties[1]. Further, as far as we know, the mentioned system has never been subjected to an extensive neutron diffraction study. In fact neutron diffraction has a great advantage for studying such system and provide direct information on its structural and magnetic properties. Such advantage arises from the large differences between the scattering lengths of the involved ions. In this paper we report and explain the results of a neutron diffraction studyt on a powder sample of Fe Ni_{1.5}Ti_{0.5}O₄ (y=0.5). ## Experimental The polycrystalline sample of Fe Ni_{1.5}Ti_{0.5}O₄ was prepared by the usual sintering method. Well-ground powders of NiO. TiO₂ and C-Fe₂O₃ were mixed under acctone and then fired at 1000°C for 24 hours. The resultant powder was pressed into pellets, fired again at 1200°C for several hours and left to cool slowly.