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A simple interferometric technique was used for measuring the absolute 

birefringence of an anisotropic material. The sample has constant thickness. It 
was placed between crossed polarizers and illuminated with a parallel beam of 
monochromatic light. The resulting interferograms were analyzed to deduce the 
birefringence and its dispersion across the visible spectrum. A Cauchy formula 
was applied to fit the experimental data. The same technique was used for a 
variable thickness with constant rate (a wedge form) of the same sample. 
Interference fringes was formed in the photographic plate. The value of the 
birefrengence was also measured. 

 

1. Introduction: 

            An isotropic optical material has only one refractive index but an 
anisotropic material may have two or three refractive indices. In case of two 
refractive indices the material behaves optically as a uniaxial crystal, but for 
three refractive indices the material behaves optically as a biaxial crystal. The 
difference between the higher and lower refractive indices is taken as the 
birefringence "∆n" of the material. Different methods were used for measuring 
the birefringence. These methods such as interference colors and a Berek 
compensator [1], Moiré deflection technique [2], double speckle photography 
[3] and standard compensating method [4] were used for measuring the 
birefringence. However most of these techniques require expensive and highly 
sophisticated optical apparatus as well as a large volume sample [5]. Channeled 
spectra [6] resulting from two-beam interference were used for measuring the 
anomalous dispersion of various optical materials such as quartz, sapphire and 
magnesium fluoride [7]. They form the basis of the Roschdestvenski hook 
method of measuring the oscillator strengths of resonance absorption lines [8]. 
They were also used to measure the absolute phase shift and dispersion [9]. The 
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birefringence of an anisotropic material such as a transparency sheet film either 
written type or copier type was deduced. The resulting interferogram was 
analyzed by a simple approach. The dispersion across the visible spectrum was 
also discussed [10]. A new kind of interference fringe that equal tangential 
inclination by curvature-induced birefringence was presented [11]. The change 
of birefringence induced by applying different redii of curvatures to a Fortepan 
sheet was measured. The stored birefringence was also deduced. An 
interferometric method was used to investigate the effect of controlled stress on 
the optical behavior of a transparent isotropic acrylic and glass samples. The 
stresses optical coefficient and Young’s modulus of elasticity was evaluated. 
The induced birefringence as well as its dispersion was measured [12]. 
Measurements of the ordinary and extraordinary refractive indexes of synthetic 
sapphire were reported [13]. Direct independent measurements of the 
birefringence were presented. Temperature and piezo-optical coefficients of 
birefringence were measured in addition to Young’s modulus. The ordinary and 
extraordinary refractive index of two samples of sapphire, that differed in the 
way each was grown, were measured [14]. The measurements were made over a 
wavelength range of 477-701 nm and a temperature range of 20-295 K.  

 
In our work, a simple and low cost interferometric technique for 

measuring the absolute birefringence and its dispersion for constant an 
anisotropic material is presented. The birefringence of the variable thickness (a 
wedge form) for the same material was also deduced. 
 
2. Theory: 

A plane polarized beam incident in the direction of the normal to the 
anisotropic material is divided into two beams propagating with different 
velocities. One with vibration parallel to the surface of the optical axis and the 
other with vibration perpendicular to it. After emergence from the sample, the 
two beams are recombined again and obtain by the analyzer. Interference 
fringes are observed on the photographic plate. Suppose that the refractive 
indices of the sample for the two beams are ordinary "no" and extraordinary 
"ne", and its thickness is "t", then the phase difference between the two beams is 
given by[15]: 

ϕ = (2π/λ) t (no – ne)              (1) 
 
and the condition for a dark fringe is [10]: 

 
t (no - ne) = m λ         (2) 

where "m" is the order of the interference fringes and "λ" is the wavelength of 
the light used. It is necessary that the sample has uniform thickness "t" and  
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(no - ne) over the whole spectrograph slit. After "P" fringes in the direction of 
shorter wavelengths eq.(2) can be written as: 
    

∆n t κ  = m + P                                 (3) 
 
where ∆n = |no - ne| is the birefringence and κ =1/ λ is the wave number. The 
Cauchy dispersion formula for an anisotropic optical material can be written as: 

 
no = Ao + Bo κ2                                           (4) 

 
and:           

 ne = Ae + Be κ2                                                    (5) 
 
where A and B are constants characterizing the optical material. Then the 
birefringence is: 
    

∆n = (A o – A e) + (Bo – Be) κ2                             (6) 
  
Substituting by eq.3 we get: 

  
a κ + b κ3 = P + m                                               (7) 

 
where: 

a = t (Ao – Ae),         b = t (Bo – Be)                         (8) 
By a least-squares fitting of eq.(7), the constants a, b and m are 

determined. By knowing the thickness of the material "t", birefringence "∆n" 
can be obtained from eq. (6) for different wavelengths.  
 

3. Birefringence for an anisotropic plate of changing thickness 

Suppose that a birefringent plate of uniform thickness is placed between 
two  crossed  polarizers  and  illuminated  by  a  parallel  beam  of 
monochromatic light normal to it. The plate is uniformly illuminated and the 
luminous intensity distribution for crossed polarizers is given by[16] : 
    

I⊥ max = E2 sin2 ϕ/2                                        (9) 
 
where E is the amplidude of the light incident on the plate. 

 
Now, if the plate has a variable thickness, the plate will no longer show 

uniform illumination and variations of intensity will follow the variations in 
thickness according to eq. (2). In a region where one has (n o – n e) t = mλ, the 
intensity after crossed polarizers will be zero, where "m" is an integral number. 
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One will observe a dark fringe. Now move to a neighboring region where one 
has (n o – n e) t/ = (m+1) λ; then one is in at the next dark fringe. In passing from 
one dark or bright fringe to the next dark or bright fringe, the thickness varies 
by an amount equals to  
λ/(n o – n e) [17]. 
 

4. Experimental work and discussion 

The optical set-up to produce two-beam white light interference fringes 
in transmission is shown in Fig.1. So is a source of white light (Tungsten 
filament), L1 is a condensing lens with a short focal lens 3cm to form a 
minimized image of the source on the pinhole C, the pinhole increases the 
spatial coherence of the light source. L2 is an achromatic collimating lens of 
focal length 5cm to produce a parallel beam of light. N1 is a linear polarizer to 
give a linearly polarized beam of light. S is an anisotropic (uniaxial) sample to 
be investigated. A developed Fortepan photographic plate with thickness 
0.18mm as an example of stored birefringence is used in our experiment. N2 is a 
linear analyzer which is crossed with N1. L3 is an achromatic imaging lens of 
focal length 15cm, where its focal plane coincides with the slit of a grating 
spectrograph H, which has nearly a linear dispersion of 1nm / mm. The fringes 
are seen on the spectral plane of the spectrograph as colored two-beam fringes. 

 
 
 

 
 
 
 
 
 
 
 
 

Fig.(1): Optical set-up for measuring the birefringence dispersion of 
an anisotropic optical material. 

 
 
At the beginning of the experiment, the grating spectrograph is 

calibrated using four wavelengths, cadmium lines (643.847, 508.582, 479.992, 
467.816 nm). The position of each spectral line on the photographic film is 
measured with an image processing system. Then the relation between the 
wavelengths and their positions on the spectral plane is found by means of a 
least squares fitting by the following equation: 

So         L1       C       L2    N1      S     N2        L3      H 
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λ = 6438.47 – 367.572 X + 34.52 X2 – 1.772 X3   (10) 

 
where X is the distance between 
the orders of fringes m, m+1, 
m+2...etc and the calibration red 
line (λ = 643.847 nm) of 
cadmium lamp. Fig. (2) is 
a reproductive example of the 
resulting white light interference 
fringes formed with a Fortepan 
photographic plate. The standard 
lines of a cadmium spectral lamp 
are superimposed as a 
wavelength marker. Since the 
fringes are due to two-beam 
interference, the widths of the 
bright and dark fringes are equal. 
The resulting two-beam 
interference fringes are serially 
numbered from zero to m and 
their positions on the 
photographic film are measured. Then the corresponding wavelength for each 
fringe is deduced from the calibration curve of the grating spectrograph. Thus 
we have "m" and "κ" for each interference fringe. A least squares fitting of these 
data  for eq.(7), gives the values of "a", "b" and "m". By knowing the thickness 
"t" of the sample sheet under test hence, "∆n" is obtained. The order of 
interference of this red line is deduced from knowing the order "m". The sample 
thickness can be directly measured by an interferometric method. In our 
experiment, we measured the thickness "t" by means of a micrometer screw. 
Then by substituting the value of thickness t in eq.(8) to deduce (Ao – Ae) and 
(Bo – Be). Finally, substituting these values in eq.(6), "∆n" is found for different 
wavelengths across the visible spectrum. Table.1 shows the fitting parameters of 
a Cauchy dispersion function for the investigated sample. Fig.(3) represent the 
variation of  "∆n" for the transparent Fortepan photographic film with the 
wavelength in the range from 500 to 600 nm across the visible spectrum 
applying Cauchy function. This figure shows that the birefringence "∆n" is 
inversely proportional to the wavelength "λ", the rate of increase of it is greater 
at shorter wavelengths. 
 
 
 

 

 

Fig. (2): Reproduction of the interferogram of 
white light interference fringes formed 
by a Fortepan photographic plate. The 
standard lines of a cadmium spectral 
lamp are superimposed as wavelength 
marker.
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Fig. (3): The relation between birefringence ∆n and wavelength for Fortepan 
transparent photographic film of thickness 0.22 mm. The continuous 
line is the Cauchy function where the dots are the experimental values. 
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Table (1): Fitting parameters of a Cauchy dispersion function. 

Parameter Fortepan Photographic Plate 
(A o – Ae) 0.024853 
(B o – Be ) nm2 50.88716 

 
To estimate the discrepancy between the experimental and expected 

fitting dispersion relations a chi-square test is used. We adopted the formula: 
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where ∆nex and ∆nth. are the experimental birefringence and expected fitting 
one, respectively. The test for a transparent photographic plate is  
(χ2 = 1.2 × 10-8). This means that there is a good agreement between the 
experimental and expected fitting birefringence. The relative error in measuring 
the birefringence is found by differentiating eq.(2) such that: 
 

δ (∆n) / (∆n) = δ P/ P + δ λ / λ + δ t / t               (12)  
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The error in measuring the wavelength δλ depends on the errors in 
locating the interference fringe. This error depends on the resolution limit of the 
reading instrument and the accuracy of locating the peak of the fringe. The 
resolution of the reading instrument used was (1µm). The accuracy of locating 
the peak depends on its sharpness. The errors in measuring the wavelength is 
(δλ = 0.01nm) and that in the order is (δp= 0). Hence, with (δt=10 nm),  
(t = 2mm) and for (λ =546.1 nm), the relative error in finding the birefringence 
is δ(∆n) / (∆n) = 3x10-5. 
 

Another method to 
determine the natural 
birefringence or stored ∆n for the 
same an anisotropic material can 
be used. It depends on the 
change of the material thickness 
gradually with constant rate. The 
same optical set-up as in Fig.(1) 
is used with replacing the sample 
S by a sample of variable 
thickness t as in Fig.(4), the 
source So by He-Ne laser source 
with wavelength (632.8nm) and 
the grating spectrograph H by a 
photographic film. The fringes 
are seen on the photographic 
film as shown in Fig.(5). In the field of view, the resulting two-beam 
interference fringes are serially numbered from zero to "m" corresponding to the 
variations of the increased thickness. The relation between the thickness t of the 
sample and the fringe order "m" is illustrated in Fig.(6). By knowing the 
wavelength of the light used, birefringence "∆n" is obtained from eq.(2) as 
follows: 

∆n = ( ∆m / ∆t) λ = (slope) λ                               (13) 
 
 
 
 
 

Fig. (5): The fringes seen on the 
photographic film due to 
a sample of different   
thickness 

 
 

 

(a) (b) 
 

 

Fig. (4): A sample of an anisotropic 
material of changing thickness. 

                   (a) Aimed and (b) Actual.  
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 It should be noted that since "∆t" varies in discrete manner, rather than 

continuous, then "∆m" is also a discrete quantity which may or may not be 
unity. In either case "∆m" changes gradually and uniformly in fixed steps as 
long as "∆t" changes in the same manner. This adds a constant step "p" of 
orders regularly to "m" such that the actual step is: 

 
 (∆m p / ∆t ) = p ( ∆m / ∆t)                                  (14)    

 
In other words, the real slope is multiplied by a fixed quantity "p", which is to 
be found. Fortunately "p" is an integral number of the order of 1, 2, 3…etc. The 
calculated value of "∆n" is reduced to the real value by dividing the value 
obtained from eq.(14) by any of the given integers, trying to get the near most 
value of the published data. Here, we have found that "p =1". The resulted value 
is "∆n = 0.035" for the given wavelength of used source. 
 
5. Conclusion: 

In this work, we describe a simple and accurate interferometric method 
for measuring the natural birefringence and its dispersion across the visible 
region of spectrum. Although the theoretical and experimental background of 
the method is nearly known, the fields of application and data processing 
approach are firstly presented. The method is applicable for liquid and solid 
samples of fixed thickness all of over the slit of the spectrograph. A two– term 
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Fig. (6): The relation between the order of fringe m and the variable 
thickness t of the sample used. 
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of Cauchy dispersion function is most suitable to give accurate values of the 
birefringence dispersion because it is simple and time saving. The natural 
birefringence ∆n for an anisotropic material also evaluated for the sample used 
by changing thickness gradually by the same method. 
 

References: 

1. F.B.Bloss, "An Introduction to the Methods of Optical Crystallography", 
Holt Rinehart and Winston, New York, p.142, (1961). 

2. D. F. Heller, O. Kafri, J. Krasinski, Appl. Optics, 24, 3037, (1985). 
3. L. M. Bernardo, O. D. D. Soares, Appl. Optics, 26, 769, (1987). 
4. P. L.Y. Chuanzeng, L. Guohua, Appl. Optics, 29, 4546,( 1990). 
5. L.Y. Zheng, S. Xiyu, S. Lianke, Appl. Optics, 31, 2968, (1992). 
6. M. Born, E. W. Wolf, Principles of Optics, Pergamon, Oxford, p.265, 

(1983). 
7. V. Chandrsekharam, H. Damage, Appl. Optics, 8, 671, (1969). 
8. R,W.D.ditchburn, “Light”, Acadamic Press, London, p. 553, (1976). 
9. R.J. Sandeman, Appl. Optics, 10, 1087, (1971). 
10. M. Medhat, S. Y. El-Zaiat, Optics Communications, 141, 145 (1997). 
11. M. Medhat, N.I. Hendawy and A.A. Zaki, Opt. and Laser Tech., 35, 31 

(2003).  
12. M. Medhat, N.I. Hendawy and A.A. Zaki, accepted for publication in 

Egypt J. Phys. (2003). 
13. A. Myron Jeppesen, Journal of the Optical Society of America, 48, (9), 

629, (1958). 
14. A. C. DeFranzo and B. G. Pazol, Applied Optics, 32, (13), 1 (1993).  
15. A. Francis Jenkins and E. Harvey White, “Fundamentals of Optics”, 

McGraw-Hill, Inc. 474 (1976).  
16. Max Born and Emil Wolf “Principles of Optics” Pergamon Press, p. 694 

(1980). 
17. M. Francon. “Optical Image Formation and Processing”. Academic Press, 

Inc. p. 10   (1979)  
 
 


