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Finite-Differences Time-Domain (FDTD) algorithms are well 
established tools of computational electromagnetism. Because of their practical 
implementation as computer codes, they are affected by many numerical 
artefact and noise. In order to obtain better results we propose using Principal 
Component Analysis (PCA) based on multivariate statistical techniques. The 
PCA has been successfully used for the analysis of noise and spatial temporal 
structure in a sequence of images. It allows a straightforward discrimination 
between the numerical noise and the actual electromagnetic variables, and the 
quantitative estimation of their respective contributions. Besides, The GDTD 
results can be filtered to clean the effect of the noise. In this contribution we 
will show how the method can be applied to several FDTD simulations: the 
propagation of a pulse in vacuum, the analysis of two-dimensional photonic 
crystals. In this last case, PCA has revealed hidden electromagnetic structures 
related to actual modes of the photonic crystal. 
 

Introduction: 

One of the most widespread method used to analyze the interaction 
between the electromagnetic field and the material structures is the so-called 
Finite-Differences Time Domain (FDTD) method [1].  Its implementation as a 
numeric algorithm that discretizes space and time into elemental cells for the 
calculation introduces numerical errors into the solutions: the fields computed 
step-by-step are affected by numeric artifacts, spurious high-frequency 
oscillations, and transients induced by the modelization of field sources, 
interpolation errors, etc [2,3]. When the propagating wavelengths remain 
unresolved in the grid, the problems are linked to the spatial resolution of the 
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computational grid and can be overcome by using a finer computational grid, 
both temporally and spatially.  Another problem has its origin in the finite 
duration of emitting sources. Here, the Fourier transform of the excitation 
source adds undesirable frequency components to the original one. Dealing with 
these artifacts and noise sources is a true challenge in the analysis of the results 
provided by FDTD. The classification of the artifacts introduced by the 
numerical noise is an endless task. Their relevance depends on the point of view 
of the analysis and the purpose of the application. Typically, the methods to 
filter the effect of the noise are adapted to the given situation, both from the 
geometrical point of view and from the material properties. Therefore, a careful 
choice of the excitation source and a proper postprocessing of the information 
extracted from the FDTD method become a real necessity for some special 
circumstances. These methods can also be used to improve the quality of the 
results.  
 

The excitation sources included in FDTD simulations are necessary 
finite and ought to be discretized in the temporal domain. The finite duration of 
the temporal window broadens the spectrum of the source, even when it 
corresponds to a monochromatic stimulus. Then, it could be possible that high-
frequency components appear and propagate along the computational grid, 
adding undesirable contribution to the analysis of the system to a 
monochromatic excitation. In linear media, these contributions are independent 
and are superimposed to the expected electromagnetic fields. The result is then 
contaminated by the high-frequency components. On the other hand the 
necessary discretization of the temporal and spatial computational grid may 
introduce sampling artifacts. The effect is an aliased and distorted spectrum. 
Therefore, the electric and magnetic fields contain unrealistic components 
generated by the method itself. Several tools have been proposed and used in 
order to “clean” this noise: smoothing windows [2,4] for the source and 
application of digital filters to the fields resulting from the computation [5]. 
These methods reduce considerably the amount of the noise in the final results. 

 
This contribution describes a powerful method to deal with numerical 

artifacts and noise in FDTD calculations. It is based on a multivariate statistical 
technique called Principal Component Analysis (PCA) [6]. The method has 
demonstrated to be very useful when characterizing noise in optical imaging 
systems [7]. It provides results that can be easily interpreted in terms of images, 
temporal evolutions, and quantitative contributions to the total variance of the 
field. One of the advantages of the PCA method is that it can be blindly applied 
to the output of the FDTD algorithms, without any “a priori” assumption. This 
avoids any previous adaptation to the practical situation under study. It 
identifies and classifies spatial-temporal structures that are present in any 
temporal sequence of spatial distributions of electromagnetic fields. PCA also 
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quantifies the contribution of each spatial-temporal structure to the total 
variance of the original data set. An appropriate grouping of the results of the 
PCA method makes possible to distinguish those relevant contributions from the 
noise. Then, PCA becomes a tool to quantify the goodness of the FDTD 
simulation. 
 

2. The Finite-Differences Time-Domain Method 

Computational electromagnetism is populated by a great variety of 
methods and algorithms that try to describe the fundamental interaction between 
electromagnetic radiation and matter. Among them, one of the most extended 
and used is the FDTD method. It discretizes the Maxwell equations along time 
and space and solves in a very clever manner the propagation of the 
electromagnetic field along the computational grid. The matter is described by 
the physical constants related with the electric and magnetic field propagation 
and interaction. Some of the advantages of the method are the easy numeric 
implementation of the algorithm, the capability to obtain the response of the 
material and geometric structure along the whole spectrum, it does include any 
expectation about the form or type of the solution and it does not need any 
boundary condition when including different kind of materials. Actually, FDTD 
allows the modelization of homogeneous, inhomogeneous, dispersive, linear, 
non-linear, isotropic and anisotropic material without changing the inner 
structure of the algorithm. On the other hand, FDTD is an explicit method, i.e., 
the fields at a given temporal step are obtained from the fields at the previous 
temporal step, without any matrix inversion operation. Finally, we may say that 
FDTD is the preferred in the microwave and millimetre electromagnetic 
spectrum. Its application to the resolution of structures at optical frequencies is 
producing a lot of interesting results.  However, FDTD also shows some 
disadvantages that need to be considered: some geometries are hard to fit within 
a rectangular computational grid. It produces a “staircasing” discretization that 
may compromise the minimum size of a given spatial feature. On the other 
hand, FDTD is very demanding with respect to its computer memory needs. 
However, this fact is being surpassed by the use of more and more powerful 
computers.  

 
The fundamentals of every computational electromagnetism code are 

the Maxwell equations. For a homogeneous dielectric, non dispersive and 
isotropic media without sources, they can be written as follows, 
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FDTD focuses its attention to the rotational equations: the Faraday law, and the 
Ampere-Maxwell law. This is possible because of the special arrangement of 
the computational grid that automatically fulfils the divergence equations [1]. 
This computational grid divides the nodes in the grid depending on the type of 
field calculated (electric or magnetic) and allows the existence of half-integer 
index (see figure 1). The algorithm formulated by Yee is based on a “frog-leap 
scheme” where the values of the electric (magnetic) fields are computed from 
the values obtained in the previous step and the values obtained for the 
magnetic (electric) field at the previous step. In the following equation we 
present the calculation of the Ez component from the values of the previous 
electric field at the same location and the values of the magnetic field, Hx, Hy, at 
the surrounding locations and in a previous temporal step (just one half of the 
temporal step), 
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Fig. (1): Structure of the nodes of a unit cell for the implementation of the Yee 

algorithm. The electric and magnetic fields can be located at integer and half-
integer index values. 

 
The Yee’s algorithm keeps the energy constant because the fields do not 

decay spuriously because of the numeric errors that can be produced along the 
calculation. However, the stability of the method needs to be assured. This is 
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done by adjusting the relation between the values of the spatial and temporal 
steps [1]. The Courant factor is defined for this purpose in a two dimensional 
grid as  

22 yx
tcS
∆+∆

∆
=  ,          (3) 

 

where the limiting value of this factor is 0.707. The physical meaning 
underlying this condition is related with the necessity to have two points in the 
grid connected by a causality relation. Another source of error in the FDTD 
method is the numeric dispersion suffered by the field when they travel along 
the grid. This is caused by the different speed of a monochromatic wave when it 
travel towards different locations in the grid. This is the so-called numeric 
anisotropy. This effect can be reduced when the spatial step is diminished [1,8]. 
 

FDTD computations use the total field - scattered field zoning of the 
computational domain [1]. It provides memory savings in simulations and also 
allows a transparent source to be placed very close to the material structures. In 
many photonics applications, a pulsed or a continuous plane wave is injected to 
test the response of the device under study. This is done by means of an 
interpolating scheme over the limiting surface between the total field zone and 
the scattered field zone. This interpolation procedure generates noise around the 
limiting surface in the form of a spurious field. After some time steps, this noise 
contaminates the rest of the grid. This numerical error has been studied from the 
point of view of the theory of linear systems and decimated filters [9] have been 
proposed to reduce the effect.  

 
Summarizing this section we may conclude that FDTD algorithms are 

adapted very well to the analysis of geometries having different kinds of 
materials. This is the case of optical antennas, where a metallic structure is 
coupling the electromagnetic radiation and feed the excited currents towards a 
rectifying element. On the other hand, the data obtained from the FDTD are 
snapshots of the electric and magnetic field that can be arranged in a sequence 
of frames. This type of data is very well prepared to be studied by the PCA 
method. 
 
3. The Principal Component Analysis Method 

From a general point of view, the method of principal components 
analyzes the variance of different observations of a set of variables [6,7]. To 
apply the method to the characterization of frames produced by FDTD 
algorithms, we assume that the variables are the frames taken in a time 
sequence, and the values of the fields at the different locations of the 
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computational grid are the observations of these variables. The set of data is 
arranged as a multidimensional variable denoted as 
 

{ }Nt FFFFF ,...,,...,, 21=  ,        (4) 
 
where N is the number of frames and Ft is the frame taken at a given time. The 
whole set comprises all the data produced by the FDTD for the component of 
the electromagnetic field under study. To apply the principal-component 
analysis, each frame (corresponding with one of the components of the 
multidimensional variable F) is considered a random variable. The realizations 
of one of these variables are the values of the component of the electromagnetic 
field at each location of the computational grid. Then the analysis of the 
covariances between the elements of this set of variables, F, is equivalent to 
calculate the covariance matrix of the frames. The goal of the principal 
component decomposition applied to FDTD results is to obtain the set of frames 
as a sum of several processes, showing a clear behavior of their covariances, 
and presenting a physical meaning of their spatial and temporal evolutions. 
These processes have to be uncorrelated.  To build the covariance matrix of the 
data we first define the set of variables as in equation (4). Each one of these 
frames is composed of the signals obtained by the individual pixels. If the two 
spatial domain of the dimensional grid is discretized having R rows and C 
columns, it is possible to arrange the M =R × C values from the two-
dimensional frame as a column vector.  It is important to note that this 
rearrangement has to be reversible. By use of this method, the set of data is 
placed in a M × N matrix, F. Before calculating the covariance of the data it is 
necessary to transform the original frames into a new set of frames having zero 
mean. This transformation is equivalent to an offset correction that removes a dc 
level from the signal.  The covariance of this set of data is defined by a N × N 
matrix. The diagonal elements of S represent the variance of the frames. 
Meanwhile, the nondiagonal elements are related to the covariance between 
pairs of frames. The principal component expansion corresponds with new 
variables, obtained as a linear combination of the original ones, that do not 
present covariance among them. In addition, the variance of these new variables 
is arranged in decreasing order. Mathematically, this expansion is obtained by 
the diagonalization of the S matrix that produces a set of eigenvalues, λα, and 
eigenvectors, Eα. The diagonalization relation is 

 
0)( =− ααλ EIS  ,         (5) 

 
where I is the N × N unity matrix. The set of eigenvectors,  {E1, E2, … , EN}, 
can be arranged as a N × N matrix, E, where the column α contains the elements 
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of the vector Eα, obtained from the eigenvalue equation. With this matrix, the 
principal components are obtained as a M × N matrix, Y, as follows: 

 
EFY =  .          (6) 

 
Where each principal component is given by the following relation: 
 

∑=
t

tt FeY αα , .            (7) 

 

Even more interesting for the analysis of the FDTD results is the 
derivation of the original frames in terms of the principal components. The 
principal components can be taken as spatial distributions of the given 
electromagnetic field. Therefore, each one of the principal components is a field 
distribution that is properly combined to produce the original data (see figure 2). 
This capability makes possible the selection of the significant principal 
components and the filtering of the undesirable ones. In our case we will be 
interested in the principal components carrying out information about the 
evolution of the electromagnetic field and we will like to identify, quantify, and 
filter the artifacts and noise produced by the algorithm. 

 
The results of the PCA applied to N frames are N eigenvalues (λα), N 

eigenvectors (eα), and N principal components (Yα). Each principal component 
is a map having M points. The eigenvectors are orthogonal and represent the 
temporal evolutions of the contribution of each eigenimage to the original data. 
When describing frames with a given power spectrum density for a temporal-
stationary phenomena, PCA can be used to sample the spectrum and 
characterize it. In that case the involved principal components have quasi-
harmonic time dependence [10]. Finally, the eigenvalues, explain in decreasing 
order the contribution of their associated principal component to the total 
variance of the original data. It is also interesting to note that the capability of 
the PCA for sectioning the variance and quantify the individual contributions of 
the obtained principal components to the total variance of the original data, has 
made possible to reveal spatial-temporal structures hidden behind the main 
contributions to the variance of the data. In a previous paper we introduce a 
mechanism to group together a collection of principal components taking into 
account the uncertainty associated to each eigenvalue [7]. This uncertainty 
connects two consecutive eigenvalues when their respective uncertainties 
overlap [7,11]. Then, a process is defined as the frames retrieved when only the 
principal components associated with consecutively overlapped eigenvalues are 
used. The concept of process is used to ease the interpretation of the results 
obtained from the PCA (see figure 3 for the case of the analysis of the noise 
produced by an infrared camera). The classification into processes reduces and 
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groups the meaningful principal components and provides an analytical tool that 
can be automatically applied and implemented. 
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Fig. (2): The original frames (having zero mean) can be retrieved from the principal 
components obtained by the method. Pα are the projectors that allows the 
transformation from the principal component base to the multidimensional 
space where the frames F are defined. 

 

 
Fig. (3): The eigenvalues in this figure correspond with those obtained in the analysis 

of the noise of an infrared camera. The concept of process makes possible the 
identification of three different contributions. The first one corresponds with 
the highest variance and it is the fixed pattern noise. The third one groupes 
most of the eigenvalues and it was identified as the temporal noise of the 
camera. The intermediate one had a characteristic behaviour of a running 
fringe pattern crossing the image. All these contribution were quantified and 
filtered out by using PCA. 

Summarizing: the principal components, or eigenframes, are spatial distributions 
with the same units and within the same spatial domain than the original frames. 
The temporal evolution of a given eigenframe, Yα, is described by the associated 
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eigenvector, eα. The amount of variance explained by the eigenframe is λα. Noise 
is assumed to be a contribution to the data that is independent from the signal, 
both temporally and spatially. Besides, the level of the noise is usually lower, or 
even much lower, than the level of the field components calculated in FDTD 
algorithms. Then, we expect that the first eigenvalues, eigenvectors, and 
eigenimages, are related with the actual electromagnetic fields, i.e., the signal. 
Accordingly, the noise should be associated with principal components different 
from the signal and labelled with greater indices.  

 
The knowledge about the material and geometrical structures, along 

with the spatial and temporal properties of the excitation, makes possible to 
identify the results obtained from a FDTD algorithm with good judgment about 
its validity. This means that we can easily know if the obtained result makes 
good sense. This is an important issue in the applicability of the PCA method to 
the results obtained from FDTD. PCA is a blind method that can be used 
without a prior knowledge of the practical situation. However, when analyzing 
the outputs of the PCA, the conditions of the simulation and the physical 
structures under study are necessary to properly understand the results. Besides, 
some kind of filtering can be used to clean-up the noise and preserve the useful 
information. PCA gives to this postprocessing analysis the tools to identify 
those contributions having the largest variance, and therefore representing 
actual electromagnetic fields. Furthermore, PCA may reveal spatialtemporal 
structures that could be hidden in the set of data. The capability of the PCA to 
produce spatial distributions, the eigenimages, is strongly appreciated when 
analyzing the results. Besides, the spatial-temporal structures related with 
computational noise, or numeric artifacts are also identified and their contribution 
is estimated quantitatively. These advantages have been proved successfully in 
several applications involving the analysis of images [7,10,12-14]. 
 
4. PCA applied to FDTD results 

Now, we are in good condition to apply the PCA to the identification 
and estimation of numerical noise and artifacts in FDTD algorithms [15]. We 
will illustrate the method with two significant cases. The first one analyzes the 
numerical noise associated with the use of the total field – scattered field 
techniques. In the second case, we have analyzed the confined modes existing in 
a photonic crystal. In this later case we will check how the location of the 
excitation point with respect to the symmetry of the computational grid 
influences on the excited modes, and how the PCA is able to reveal field 
distributions that are hidden within the data. The geometry of the grid for the 
calculation is a two-dimensional grid. The electromagnetic fields studied here 
correspond with TMz modes, i. e., only Ez, Hx, and Hy are non zero. In the 
following, we will focus our attention on the Ez component. 
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In the first case, the Total Field / Scattered Field zoning (TF/SF) the 

FDTD is computed on a two-dimensional square grid having 222×222 points 
with a spatial step of ∆x=∆y=0.025 µm, and Courant factor of 0.7068. The 
source employed to inject energy into the grid is a cosine function having a 
Gaussian envelope that only is non zero after t=0. The pulse has a plane 
wavefront and the propagation vector is subtending an angle of 60º with respect 
to the Y axis. The simulation runs until the pulse travels along the computational 
grid (see figure 4). A collection of 50 frames is taken during this time at regular 
intervals. The number of computational temporal steps between frames is 20.  
 

 
Fig. (4): Map of the electric field obtained for the pulse travelling the computational 

grid. The limit between the total field (inner square) and the total field is 
clearly visible in this snapshot.  The units are V/m. 

 
 

The PCA is directly applied to the data obtained from the FDTD. First 
of all, we need to transform the original frames into a set having zero mean at 
each frame. After this, the covariance matrix is calculated and diagonalized to 
obtain the eigenvalues, the eigenvectors, and the eigenimages (principal 
components). The first analysis is made on the eigenvalue distribution. This is 
presented in figure 5. This figure is plotted in linear scale for the first four 
eigenvalues, that are grouped by pairs. The rest of the eigenvalues are plotted in 
logarithmic scale. When representing the spatial distribution and the temporal 
evolution of the two pairs composed by the first four principal components we 
find that the temporal evolution of the first and second are the same but shifted 
π/2.  The same is applicable to the third and fourth principal components  
(see figure 6). These four contributions represent the 92.44% of the total 
variance of the original data. Therefore, we may conclude that these four 
principal components are carrying out most of the valuable information coming 
from the original data.  Then, the numeric noise and spurious contributions are 
about 7.56% of the total variance of the original data. 
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Fig. (5): Plot of the eigenvalues obtained for the propagation of the pulse along the 
computational grid. 

 

 
Fig. (6): Representation of the first four principal components (left) and eigenvectors (right) 

obtained after applying the PCA to the original data obtained from the FDTD algorithm 
From the results of this example, we have seen how the PCA method 

has discriminate the presence of the pulse and it has described the most of 
propagated electric field by using just four principal components. The other 
principal components can be identified as noise. Besides, the contribution of the 
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different noise processes and types can be estimated allowing the determination 
of the accuracy of the method, and therefore a quantitative evaluation of the 
quality of the simulation.  

 
The second example described in this paper is the application of the 

PCA to the FDTD results obtained for a photonic crystal microcavity formed by 
dielectric cylinders immersed in air [16]. The central cylinder is different and 
configures a defect. This defect modifies the energy levels of the photonic 
crystal and creates electric field distributions that survive within the structure 
and configure the modes of the microcavity. The selected example corresponds 
with a lossy microcavity structure. This type of inhomogeneous system has 
been studied and analyzed in the literature by other methods [5]. The excitation 
is a soft source located at the center of the structure. This type of source 
diminishes the effect of the spurious retro-reflections from the source itself.  
The soft source is “switched off” after 5000 time steps in order to prevent as 
much as possible the influence of spurious reflections [1,5]. This limitation in 
the duration of the excitation broadens the spectrum. The grid for implementing 
the FDTD algorithm is square. We have analyzed two cases, one with an even 
number of nodes along the grid, 222×222, and the other with an odd number, 
221×221. The case of an even number of nodes precludes the exact centration 
of the excitation source and the results should be compared with those obtained 
from the centered source only possible for the odd number grid. The spatial and 
temporal steps are the same than those used for the first example. What we want 
to prove is the influence of the approximate centering of the source that can be 
obtained with an even number of nodes (decentred case), and the exact 
centering of the excitation source that can be obtained in the other case 
(centered case).  The Ez component is calculated and saved as a snapshot every 
10 temporal steps.  

 
The symmetries of the lattice are related with the eigenmodes of the 

system. An eigenmode is a spatial field distribution whose evolution in time is 
quasi-harmonic. The eigenmodes of our system have been calculated previously 
by other authors [5]. To test the influence of the even or odd grid in the 
eigenmode results we will apply the PCA method to the obtained electric field. 
The analysis of the eigenframes will reveal the influence of the centering of the 
source on the results.  In figure 7 we have plot the fourth principal component 
obtained after analyzing the FDTD data obtained for an excitation of the 
monopolar mode in the case of centered and decentered excitation source. The 
almost negligible decentering (only one half of the spatial period) produces the 
excitation of the hexapolar mode. The application of the PCA has revealed the 
appearance of this spurious artefact that explains only 0.0017% of the total 
variance of the original data.  
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Fig. (7): Map of the electric field for a centered source (left) and a decentered one 

(right) the decentering is only half of the spatial period.  
 
 

The first two principal components are not grouped together by the 
uncertainty of their associated eigenvalues. However, their respective 
eigenvectors, describing their temporal evolutions, are harmonic functions 
shifted π/2 one with respect to the other. This fact, that was also observed in the 
previous example has promoted the definition of the so-called quasi-
monochromatic process. This process groups together those principal 
components evolving with the same temporal frequency and showing a π/2 
delay between them. Actually, these principal components can be combined to 
form a complex principal component having a modulus and a phase. The map of 
the modulus and phase of the quasi-monochromatic modes can be of help to 
those researchers dealing with the design and analysis of photonic crystals. 

 
In a recent study, we have applied the PCA to the evaluation of the 

effect of the fabrication errors on the characteristics of a photonic crystal 
[17,18]. The huge volume of data obtained from the simulation of a large 
number of statistical realizations of the photonic crystal has been properly 
analyzed by using the PCA.  Some of the results of the electric field distribution 
are shown in figure 8.  In this analyis the PCA could detect the appearance of 
spurious modes related with the symmetries of the disordered microcavity, even 
when those contributions were almost negligible. 
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Fig. (8):  A snapshot of the electric field distribution (bottom) obtained for a given 

dielectric permittivity distribution (top) for a given level of manufacture 
error (left: 1%, and right; 5%) is plotted in this figure. The electric field 
distribution is distorted more for a larger value of the error, as it should be 
expected. 

 
 
5. Conclusions: 

The application of a multivariate statistical technique to the analysis of 
the output produced by FDTD algorithms has shown its ability to reveal hidden 
structures of the covariance matrix. Computational electromagnetism is affected 
by intrinsic deviations due the numeric implementation. The results obtained 
from FDTD is typically represented as a sequence of frames containing the 
values of the components of the electromagnetic fields. The input for the PCA 
method is a sequence of frames, spaced regularly in time, representing a 
component of the electric or magnetic fields. The results of the PCA are 
interpreted in terms of the temporal and spatial properties of the electromagnetic 



Egypt. J. Solids, Vol. (29), No. (1), (2006) 33

fields. PCA method produces as many eigenvalues, eigenvectors, and 
eigenimages as the number of analyzed frames. In a previous contribution we 
defined a way to group the obtained set of eigenimages into processes. 
Although the PCA method can be applied to any output of FDTD results, the 
demonstration of its usefulness for analyzing FDTD data has been illustrated 
with a couple of examples. The graphical output of the PCA method has made 
possible an easy and justified interpretation of the results. At the same time, the 
temporal evolution provided by the eigenvector has been linked to the actual 
time frequency of the analyzed example with a very good agreement. On the 
other hand, the PCA method does not need any prior pre-processing of the 
FDTD data, nor any adaptation of the method itself. It is a blind procedure that 
can be applied to any temporal sequence of maps of a given electromagnetic 
field. The outputs of the PCA are analyzed taking into account the knowledge 
about the geometry and practical realization of the simulated structure and field 
excitation. This post-processing of the results makes possible to filter the data, 
to quantify the noise contribution, to identify noise sources and numerical 
artifacts, and to locate them both spatially and temporally. In this sense, we may 
say that PCA makes possible to evaluate the quality of FDTD simulations, 
showing a way to improve them. Finally, we may conclude that PCA method 
not only provides a way to estimate quantitatively the artifacts induced by 
FDTD algorithms. It also gives spatial-temporal structures, different from the 
numerical artifacts, that are expected to appear in actual experiments. The inputs 
to identify the physical origin of these structures can be found in the temporal 
evolution given by the eigenvectors and the spatial patterns given by the 
principal components.  

 

Summarizing, the use of the PCA in the evaluation of the results of 
FDTD algorithm has been proved successfully and full of advantages with 
respect to some other approaches. It identifies, quantifies, and maps the electric 
field distributions explaining a given amount of variance of the data. An 
appropriate application of the method can be used to filter or enhance some 
contributions that could be well hidden within the data.  
 
Acknowledgments 

Most of the work presented in this paper has been possible due to the 
economic support of several research projects. Among them, we would like to 
acknowledge the participation of the Ministerio de Ciencia y Tecnología of 
Spain through the project TIC2001-1259, and to the Consejería de Educación of 
the Comunidad de Madrid (Spain) through the project GR/MAT/0497/2004. 
The collaboration between the University Complutense of Madrid, and the 
University of Central Florida has been possible thanks to a collaboration 
agreement among these two institutions.  



José Manuel López-Alonso et al. 34

References 

1. Taflove, Computacional Electrodynamics: The Finite-Difference Time Domain 
Method, 2nd edition, Artech House (2000). 

2. L. Gürel and Ugur Ogüz, “Signal-Processing Techniques to Reduce the Sinusoidal 
Steady-State Error in the FDTD Method”, IEEE Trans. Antennas Propagat., 48,  
585-593 (2000). 

3. A. Taflove and K. Umashankar, “Radar cross section of general threedimensional 
scatterers”, IEEE Trans. Electromagn. Compat., EMC- 25, 433-440 (1983). 

4. V. Oppenheim and R. W. Schafer, Discrete-Time SignalProcessing, Englewood 
Cliffs, NJ. Prentice-Hall, 1989. 

5. S. Guo and S. Albin, “Numerical Techniques for excitation and analysis of defect 
modes in photonic crystals”, Opt. Express, 11, 1080-1089 (2003). 

6. D. F. Morrison, Multivariate Statistical Methods, 3rd ed. McGraw-Hill, Singapore, 
1990, Chap. 8. 

7. J. M. López-Alonso, J. Alda, E. Bernabéu, “Principal components characterization 
of noise for infrared images”, Appl. Opt., 41, 320-331 (2002). 

8. J. S. Juntunen, D. Tsiboukis. “Reduction of numerical dispersion in FDTD method 
through artificial anisotropy”.   IEEE Trans. Microwave Theory and Technology 
48, 582-588 (2000).  

9. U. Ogüz, L. Gürel, and O. Arikan, “An efficient and accurate technique for the 
incident-wave excitations in the FDTD method”, IEEE Trans. Microwave Theory 
and Technology, 46, 869-882 (1998). 

10. J. M. López-Alonso, J. Alda, “Operational parametrization of the 1/f noise of a 
sequence of frames by means of the principal components analysis in focal plane 
arrays”, Optical Engineering, 42, 1915-1922 (2003)  

11. R. B. Cattell, “The scree test for the number of factors,” J. Multivar. Behav. Res. 1, 
245–276 (1966). 

12. J. M. López-Alonso, J. Alda, “Bad pixel identification by means of the principal 
components analysis”  Optical Engineering, 41, 2152-2157 (2002)  

13. J. M. López-Alonso, J. Alda, “Characterization of dynamic sea scenarios with 
infrared imagers”, Infrared Physics and Technology,  46, 355-363 (2005)  

14. J. M. López-Alonso, J. Alda, “Characterization of artifacts in fully-digital image-
acquisition systems. Application to web cameras”, Optical Engineering, 43, 257-
265 (2004)  

15. J. M. López-Alonso, J. M. Rico-García, J. Alda, “Numerical artifacts in finite-
difference time-domain algorithms analyzed by means of Principal Components”, 
IEEE Transaction on Antennas and Propagation, 53, 2920-2927 (2005). 

16. J. M. López-Alonso, J. M. Rico-García, J. Alda, “Photonic crystal characterization 
by FDTD and Principal Component Analysis”, Optics Express, 12, 2176-2186 (2004) 

17. J. M. Rico-García, J. M. López-Alonso, J. Alda, “Multivariate analysis of photonic 
crystal microcavities with fabrication defects”, Proceedings SPIE, 5840, 562-571, 
(2005) 

18. J. M. Rico-García, J. M. López-Alonso, J. Alda, “Characterization of Photonic 
Crystal Microcavities with Manufacture Imperfections”, Optics Express 13, 3802-
3815, (2005) 


