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A mathematical model is presented to study the role of an applied 
magnetic field on heat transfer in a fluid flow over a stretching surface in the 
presence of temperature dependent viscosity. A similarity transformation is used 
to reduce the governing partial differential equations into ordinary ones, which 
are solved numerically by shooting method. Numerical results for the velocity 
and temperature profiles as well as for the skin friction and Nusselt number are 
obtained and reported graphically for various parametric conditions to show 
interesting aspects of the solution. 
 

1. Introduction: 

Recently, the study of nonlinear hydro magnetic flow and heat transfer 
over a stretching surface has received considerable interest, because of its wide 
applicability in energy, such as geothermal energy technology, petroleum 
recovery, glass fiber production, metal extrusion, hot rolling, the cooling and/or 
drying of paper and textiles, and wire drawing. 

 
Most of the existing analytical studies for this problem are based on the 

constant physical properties of the ambient fluid [1-3]. However, it is known 
that these properties may change with temperature [4]. To accurately predict the 
flow and heat transfer rates it is necessary to take into account this variation of 
viscosity. The study of heat transfer and the flow field is necessary for 
determining the quality of the final products of these processes as explained by 
Karwe and Jaluria [5]. 
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In studying the motion of such a fluid, the non-linearity of the basic 
equation and additional mathematical difficulties associated with it has led 
several investigators to explore the perturbation and numerical methods. 
Hydrodynamic flows of a viscous and incompressible fluid have been studied 
under different physical conditions with variable fluid properties by Hassanien 
[4] and Seddeek [6-8]. In many particle engineering system, both the plane 
surface and the ambient fluid are moving in parallel. 
 

The steady flow of an electrically conducting fluid caused solely by the 
stretching of an elastic sheet in the presence of a uniform magnetic field was 
investigated by Pavlov [9]. The flow and heat transfer of an electrically 
conducting incompressible fluid past a porous wall stretching linearly was 
considered by Chakrabarti and Gupta [10]. Chiam [11] reported solutions for 
steady hydromagnetic flow over a surface stretching with a power-law velocity 
with the distance along the surface. Up to author’s knowledge, no attempt has 
been made so far on the study of nonlinear MHD flow and heat transfer over a 
surface of variable temperature stretching with a power-law velocity. 

   
Hence, the aim of the present work is to study the effects of variable 

viscosity and magnetic field on hydromagnetic flow and heat transfer over a 
surface of variable temperature stretching with a power-law velocity.       
 

2. Problem formulation:  

Consider a two-dimensional steady flow of a laminar, incompressible 
fluid past a flat surface issuing from a very thin slit at x = 0, y = 0 and 
subsequently being stretched, as in a polymer extrusion process and subjected to 
a transverse variable magnetic field B(x) (neglecting viscous and Joule's 
dissipation). We assume that the fluid properties are isotropic and constant, 
except for the fluid viscosity  which is assumed to vary as an inverse linear 
function of temperature T, in the form [12].  
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where  and   are the fluid free stream dynamic viscosity and the fluid 
free-stream temperature. E and are constants and their values depend on the 
reference state and thermal property of the fluid, i. e. δ . In general, E > 0 for 
fluid such as liquids and E < 0 for gases. Let us assume that the speed of a point 
on the surface is proportional to the power of its distance from the slit and the 
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where u and v are the velocity components along the x- and y- direction, k, σ  
and cp are the thermal conductivity, electrical conductivity and the specific heat 
at constant pressure, respectively. ρ the density of the fluid. 
The boundary conditions governing the flow are 
 
at y = 0: , v = 0, T = Tw(x)  m xaU(x)u == (4)
as        and   :y ∞→ 0u → ∞→ TT
 
where m is the index of power-law velocity,  the wall 
temperature and a and b  are  constants. n is the index of power-law variation of 
wall temperature. The special form for magnetic field 

n
w  xb(x)T += ∞T

( ) 21
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chosen to obtain the similarity solution, where m is the index of power-law 
velocity. Now, we introduce the following dimensionless variables: 
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Substituting expression (5) into the Eqs. (1 – 4), we get 
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The transformed boundary conditions are  
 
at  f = 0 ,  ,   :0η = 1f =′ 1θ =

(8)
as         , :η ∞→ 0f =′ 0θ =  
 
 
where primes denotes partial differentiation with respect to the variable and 
the dimensionless parameters are defined as 

η

k
μc

Pr p= (Prandtl number), 
ma ρ

B σ
M

2
o=  (Magnetic field parameter), 

m  ρ
N

γ
μ∞=  

(constant) and
2

1m +
=β (stretching parameter). 

 
The important physical quantities of our interest are the skin friction 

 and Nusselt number - , and these values tabulated in Table (1). In the 
case of , Eqns. (6 and 7) are reduced to that of Anjali and Thiyagarajan 
[13]. 
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Fig. (1): Velocity distribution for various    
               values of θr at N=1, n=1,m=1,   
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Fig. (2): Temperature distribution for 
                various values of θr at N=1, n=1,     
                 Pr=0.72, M=0.5 and  β=1 

 
 
 

0
4

0.1

0.2

2

0.3

0.4

0.5

6

0.6

8

0.7

10

0.8

12

0.9

1
θ(η)f ′(η) 

θr=1.1
θr=2.0
θr=6.0
θr=10.0

η η 0

 140



141                                                              gypt. J. Solids, Vol. (31), No. (1), (2008) 

 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8

M=0.0
M=0.5
M=1.0

F   
          ,m=1, 

Pr=0.72 , θr=2,and  β=1 

ig. (3): Velocity distribution for various
  values of M at N=1, n=1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12

M=0.0
M=0.5
M=1.0
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Fig. (5): Velocity distribution for various  
            values of β at N = 1, n = 1, m =
            Pr = 0.72, 
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Fig. (6): Temperature distribution for  
               various values of β at N=1, n = 1,  
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Fig. (7): Velocity tion for various values of m  
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Fig. (9): Velocity tion for various values  
                of n at N = 1, β = 1, m =
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Table (1): Values of  and (0)f ′′ (0)-θ ′ for different values of θr, M and β with 
N = 1, n = 1, m = 1  and Pr = 0.72. 

 

θr M β (0)f ′′  (0)-θ ′  
1.1 0.5 1.0 -0.1860 0.9051 
2 0.5 1.0 -0.7769 0.8237 
6 0.5 1.0 -1.0953 0.7729 

10 0.5 1.0 -1.1490 0.7639 
2 0.0 1.0 -0.6284 0.8664 
2 0.5 1.0 -0.7769 0.8237 
2 1.0 1.0 -0.9056 0.7879 
2 0.5 0.0 -0.5744 0.8603 
2 0.5 1.0 -0.7769 0.8237 
2 0.5 3.0 -1.0910 0.7710 
2 0.5 5.0 -1.3420 0.7327 

 

3. Numerical Solution: 

 The governing Eqns. (6 & 7) with the corresponding boundary 
conditions, Eqn. (8), have been solved numerically by means of the fourth-order 
Runge-Kutta method with systematic estimates of (0)f ′′  and (0)θ′  by shooting 
technique. The step size  is used while obtaining the numerical 
solution with   and five-decimal accuracy as the criterion for 
convergence. 

50.0Δη =
12ηmax =

 

4. Results and Discussion: 

 In this section, a comprehensive numerical parametric study is 
conducted and the results are reported in terms of graphs. This is done in order 
to illustrate special features of the solutions.  
 
 Figures (1 & 2) present typical profiles for the velocity and temperature 
for various values of θr, respectively. It is clearly seen that as θr increases the 
boundary layer thickness decreases and the velocity distribution shallow. Also, 
the temperature distribution increases, this occurs because for a given fluid, 
larger θr implies higher temperature difference between the surface and the 
ambient fluid. 
 
 Figures (3 & 4) illustrate the influence of the magnetic parameter M on 
the velocity and temperature profiles in the boundary layer, respectively. 
Application of a transverse magnetic field to an electrically conducting fluid 
gives rise to a resistive-type force called the Lorentz force. This force has the 
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tendency to slow down the motion of the fluid in the boundary layer and to 
increase its temperature. Also, the effects on the flow and thermal fields become 
more so as the strength of the magnetic field increases.     
 

 Figures (5 & 6) give the effects of stretching parameter β on the 
velocity and temperature distributions, respectively. As shown, the velocity 
distribution decreases with increasing the parameter β, but the temperature 
increases with increasing it. We noted that the effect of stretching parameter is 
to reduce the thickness of the boundary layer.  
 
 The effect of the index of power-law velocity m on the dimensionless 
velocity and temperature distributions is displayed in Fig. 7 and 8. As shown the 
dimensionless velocity and the dimensionless temperature increase as the 
parameter m increases.  
 
 It’s seen from Figs. (9 & 10) that, the variation of distribution of 
velocity and temperature for several values of the index of power-
law variation of wall temperature n.. We see that the dimensionless velocity and 
the dimensionless temperature decrease as the parameter n increases 

( )ηf ′ ( )ηθ

 
 Table (1) represents values of and  for various values of θr, 
M and β. It is clear that, with increasing θr, M and β, and  decrease. 
It is hoped that the present work will serve as a vehicle for understanding more 
complex problems involving the various physical effects investigated in the 
present problem. 

(0)f ′′ (0)-θ ′
(0)f ′′ (0)-θ ′

 

5. Conclusions: 

 This work studied the effects of variable viscosity, stretching parameter, 
the index of power-law variation of wall temperature, the index of power-law 
velocity and magnetic field on hydromagnetic flow and heat transfer. The 
governing fundamental equations are transformed into a system of nonlinear 
ordinary differential equations by similarity transformation and are solved 
numerically by using shooting method. The numerical results indicate that the 
variable viscosity parameter increases as the dimensionless velocity decreases 
but, the temperature distribution increases. Also, that the velocity increases 
while the temperature decreases and M increases, further more , that the 
velocity decreases with increasing the parameter β, but the temperature 
increases with increasing β. The results show that the velocity and the 
temperature increase as the parameter M increases, but, with increasing θr, M  
and β, we found and (0)f ′′ (0)-θ ′  decrease. 
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