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The Green function theory was used to determine the temporal behavior 

of the two dimensional temperature distribution in a cylindrical rod placed in 

the focal axis of a cylinder of elliptical cross-section where in the other axis a 

flash lamp was mounted to pump the rod. The rod which was subjected in axial 

direction to a laser radiation to be amplified was assumed to be heated from 

the volume absorption of both the pump radiation and the laser radiation. 

Mathematical expression for the temperature distribution was obtained 

considering linear behavior of the rod, different focusing configuration of the 

pump beam and different radii of the laser radiation. As an illustrative example 

computation was carried out on a Ruby rod. 

 

1. Introduction: 

Since the development of lasers, a lot of applications based on their 

particular properties have been made possible in the field of science and 

engineering. High power lasers which are applicable in plasma generation, 

change of the phase of the absorbing material[1] and producing pn-junction [2] 

are already gaining acceptance in material processing areas such as spot 

welding, cutting and drilling of holes [3,4,5]. This come up from the 

theoretically reliable extreme small-focused spots that allow material 

processing to be localized at well defined locations in the target. Thus the study 

of thermal effects of the laser on the solid target when the light is absorbed is 

necessary because it gives the required information to control material 

processing or to avoid damage of the irradiated surfaces as in case of laser 

mirrors [6,7]. [8-14]  studied the deleterious effects of the pump power induced 

heat on the performance of solid state lasers as for instance the increase of 

diffraction losses due to lensing and aberration.  
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As high output power is required, just for instance for laser machining 

processes, and the output power of the laser oscillator is not great enough the 

radiation will be guided through an amplifier that has to be pumped. The 

radiation to be amplified and the pump radiation both heat the amplifier and 

this may lead to phase change, thermal stresses leading to cracks and variation 

of the refractive index and under circumstances to vary the plane form of the 

input and output surfaces of the amplifier. These effects may lead to damage 

the amplifier or varying the front surface of the radiation leading to inaccurate 

laser machining. 

 
To avoid these changes a pre-study of the spatial and temporal 

temperature distribution has to be carried out in linear and nonlinear medium. 

The results of this study will be later applied in equations concerning the 

thermal stresses, the results of which will be necessary to determine the 

variation of the refractive index. With the aid of Maxwell equations the wave 

propagation in such an optically deformed amplifier will be determined. From 

the obtained results it will be hoped to find a way to correct the front surface of 

the wave and so to increases the accuracy of laser machining.  

 

Theory 

 Assuming that a homogeneous isotropic cylindrical shaped target with 

circular cross-section was illuminated in axial direction with a laser beam that 

has to be amplified. Due to this assumption the target was pumped radially with 

a radiation originating from a gas discharge tube located in the focal axis of a 

cylinder with elliptical cross-section having reflecting surface. The target was 

placed in the other focal axis where the pump radiation was differently focused. 

The laser beam, which has a maximum temporally coinciding with that of the 

pump pulse, was considered to have the same temporal profile but with 

different pulse duration. Its spatial distribution was considered to have either a 

Gaussian shape of different constant or increasing cross-section along the 

propagation direction (Gaussian beam).  Moreover it was assumed that a part of 

the pump radiation and that of the amplified laser were absorbed during their 

propagation process within the target which was cooled radially at the outer 

cylinder surface. 

 

Considering no plasma formation at the irradiated surface, and negligible 

multiphoton absorption, the equations governing the temperature distribution 

are given by 

 

1) The heat diffusion equations in cylindrical coordinates 

i- Originating from the pump beam 
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ii- Originating from the laser radiation 
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2) The boundary condition describing the cooling at the outer radius of the rod. 
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with   Tt(r,z,t) = TL(r,z,t) + TP(r,t)                                               (4) 

 

Where  

 

TP (r,t)   is the temperature distribution generated from the absorbed pump 

radiation; 

TL (r,z,t) is the temperature distribution generated form the absorbed part of the 

amplified laser beam; 

K is the thermal conductivity of the material;  

P

k

C



  is the thermal diffusivity of the material;   is the mass density of 

the material; CP is the specific heat of the material at constant pressure;  gp (r,t) 

is the rate of energy generated from the absorbed part of  the pump beam per 

unit volume;  gL(r,z,t) is the rate of energy generated from the absorbed part of 

the amplified laser radiation per unit volume and h is the heat transfer 

coefficient.  

 

To determine the temperature distribution within the target resulting 

from the pumping process, the Green's function approach for solving non-

homogonous transient heat conduction was applied. This gives according to 

[15]   
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where 

( , , )G r t r   is the Green function, R is the entire volume of the considered 

region;  

Si is the boundary surface of the region R, i=1,2,….., N;  N is the 

number of continuous boundary surfaces;  

 

dv  and ids   are the differential volume and surface element in the r   variable 

respectively, ( )F r  is the initial temperature distribution, ( , )g r t is the rate of 

energy density responsible for the heat generation, ( , )if r  is the boundary 

conditions function. 

 

To get the Green's function one has to solve the homogenous transient heat 

conduction problem obtained from the following inhomogeneous set of 

equations, after setting ( , )g r t , ( , )if r  equal to zero and substituting 

( , )r t  for ( , )T r t  

 

2 1 1 ( , )
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T r t g r t

k t
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
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T r t
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n


 


  on Si,  t > 0       (7) 

( , ) ( )T r t F r                      For  t = 0    in R            (8) 

 

This gives after some mathematical manipulations [15] : 

  

( , ) ( , ', ). ( ') '
R

r t K r r t F r dv                         (9)  

 

( , , )K r r t is the kernel of integration. The Green's function is obtained at τ= 0 

by setting [15] 

 

 0( , , ) ( , , )G r t r K r r t 
                                           (10) 

 

( , , )G r t r  for the transient heat conduction is obtainable from ( , ,0)G r t r   

by replacing t by (t-) in the latter [15]. 
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Applying this procedure on equation [1] subjected to the boundary 

condition, one gets: 
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with m are the positive roots of the equation ( ) ( ) 0m o m o mJ R HJ R     and  
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where H=h/k,  ( )o mJ r  and ( )o mJ R  are the Bessel functions of zero order 

and first order respectivly. 0( , , )G r t r  
  is given by  
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Applying this procedure on the present case ( ( ) 0F r  and ( , ) 0if r   ) one 

gets: 
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The temperature distribution resulting from the absorbed part of the 

amplified laser radiation described by equation [2] and subjected to the 

boundary conditions 
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is found to be given by: 
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Replacing t by (t-) in equation (15) one gets ( , , )LG z t z  and thus TL(r,z,t) 

can be written as: 



M. M. El-Nicklawy, et al. 

 

250 
2

2

2 2 2 20 0
0

2.2 1
( , , ) ' exp ( )

( ) ( )

R t
m

L m
r

m m o m

T r z t r t
k R H J R

 
 

 



 


    
 

( ) ( ) ( , ', ). ( ', , ) '
L

o m o m L L
o

J r J r G z t z g r z dr dz d              (16)   

- Determination of the heat generation function of the pump beam    gp(r,t) 

Setting the pump source and the rod to be pumped in the two focal axis 

of a cylinder with elliptical cross section and highly polished reflecting surface, 

leads to confining the radial symmetric irradiation into an area tending to zero, 

and therefore to an intensity tending to infinity. 

 

Due to the diffraction of the radiation on the reflecting surface and the 

imperfection of the elliptical cross section, circular spot of radius Ro with its 

center located on the focal axis of the cylinder will be considered. Due to this 

assumption the differential equation of the intensity distribution in radial 

direction within the rod will be given by: 
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The first term of the R.H.S. of equation [17], which is responsible for the 

focusing process, is negative because the intensity decreases by increasing r 

value.  The second term on the R.H.S., which is responsible for the attenuation, 

is positive due to the increase of the intensity with increasing r value. 

 

With ( , ) ( )p opI R I    the solution of equation [17] can be written as: 
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( , )pI r   is the spectral intensity distribution of the pump beam as a function 

of location r and frequency   

( )   is the attenuation coefficient as a function of frequency   

r  is the radius at which the intensity has to be calculated measured 

from the center of the rod, 

R  is the radius of the cylindrical rod to be pumped. 
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Because the factor o

o
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
 is responsible for the focusing effect and not for the 

heating process the radial derivative of the exponential factor has to be 

considered alone for the heat generation, this gives  
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Considering the time dependence of the pulse shape to be given by  
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the absorbed power density of the pump beam leading to heat the rod in case of 

highly polished surface is given by 
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where  

tp  is the duration of the pump beam.  

X  is the part of the absorbed radiation which heats the rod. 

( )opI    is the spectral intensity distribution given by Planck’s formula for the 

black body radiation. 

 

In case when the walls scatter the radiation homogenously in all directions i.e 

( )oR   gp(r,t) is given by  
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( , )pg r t  given by equation [25 and 26] can be written as 

( , ) ( ) ( )p p pg r t g r G t  

 

- Determination of the heat generation function of the laser beam to be 

amplified through the pumped rod gL(r,z,t) 

Considering the physical and optical parameter of the medium to be constant 

i.e. independent of the intensity of the laser radiation one gets:  
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where 

( , ,0, )oLI r t   is the spectral intensity distribution of the laser beam incident in 

z direction on the pumped laser rod at z=0. 

( , , , )LI r z t   is the spectral intensity distribution of the beam at any location 

within the pumped rod.

L  (  ,r,t)    and L  (  ,r,t)   are the linear attenuation and amplification 

coefficient of the pumped rod in the frequency range of the 

incident laser radiation respectively. 

The absorbed laser power density leading to heating the pumped rod is given 

from ( , , , )LdI r z t
d

dz


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
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h   is the coefficient responsible for the heating process  and equal to 20 

1/m[17].
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where 
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tL is the pulse duration of the laser radiation, to is the time retardation 

leading to coinciding the maximum intensity of the laser radiation with the 

maximum of the pump beam, oL is the full width at half maximum of the 

laser radiation,oL is the center frequency of the laser radiation , wo  is the width 

of the laser beam , L is the length of the resonator which is equal to the length 

of the rod inside the amplifier,  is the laser wave length, n01 is the refractive 

index of the rod inside the resonator, n02 is the refractive index of the medium 

between the resonator and the amplifier, d is the distance between the laser 

resonator and the amplifier, w(z) is the width at any location z in the amplifier; 

 

- Estimation of the temperature of the blackbody radiation  

Considering the pumping process to be given by a blackbody radiation 

penetrating radialy the rod and initiating inversion population leading to a 

defined amplification at the maximum of the temporal distribution of the pump 

intensity, the central frequency of the spectral distribution of the laser radiation 

and the maximum of the spatial laser profile which is at r = 0.  

For an amplification factor 10n at z =L one gets from equation [22] 
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Lo  is the central frequency of the laser radiation, t  is the time at which 

the pump radiation has its maximum value.  

With the spectral gain profile of the medium at oL  given by 
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where g2 and g1 are the statistical weights,  N1 and N2 are the densities of the 

atoms in the lower and upper level respectively.  

Considering a three level system with g2=g1, one gets from the rate equations 

after setting the density of the laser radiation equal to zero at the threshold 

condition and 2 1N N  from equation [32]. 
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with W13 = ( )   B13 one gets from the last equation 
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where 

 A21 and B13 is the Einstein coefficient for spontaneous emission and 

absorption respectivly. No is the total number density of active atoms,  () is 

the spectral density of the pump radiation.  

 

Considering ( )   to be the spectral energy density of a black body 

manipulated through the optical system, which contains the pump source, the 

reflecting surface and the laser rod. ( )   can be calculate if the variables of 

the RHS are known. Since all parameters of the RHS of equation (40) are 

tabled except B13, it has to be estimated. 

 

From the linear absorption coefficient at the maximum of the two 

absorption lines 4F1 and 4F2 one gets [17]. 
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where oI and oII are the central frequencies of the absorption line 4F1 and 4F2 

respectively. 



13I and 13II are the Einstein absorption coefficient for the absorption lines. 

I and II are the full width at half maximum of the absorption lines.   

 13 = 13I + 13II at  
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To determine the temperature of the black body which has to pump the 

laser rod to get at r = 0,z=L and t t , the desired amplification 10n, one has to 

set the black body spectral energy density distribution at 
2
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  after 

multiplication with ( )pG t t and gp(r=0) given by equation [25] to get 
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(37)  

Since 2 1N N  at the time and locations at which the pump radiation is 

maximum, is given according to equation [39] by 
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one gets after replacing ( 0)pg r  and ( )pG t   by ( )pg r  and ( )pG t  

respectively in equation [38]  

( , , , ) ( , , , )L oL L oLr L t r L t    as: 
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2. Computation: 

Calculation of the temperature distribution resulting from the pumping 

process  ( , )pT r t : 

To get ( , )pT r t equation [13] was calculated after substituting 

for ( , , )pG r t r  , ( )pG t  and ( , )pg r  from equations [12],[19]and [20] 

respectively. 

 

X in equation [20] which represents the part of the absorbed radiation 

responsible for heating the rod was given the value 0.3 [17]  
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Calculation of the temperature distribution resulting from the laser 

radiation ( , , )LT r z t : 

To get ( , , )LT r z t equation [16] was calculated after substituting for 

( , , )LG z t z  , ( , , )Lg r z    and ( )LG t  from equations [15], [23] and [25] 

respectively. In equation (15) t is replaced by ( )t  . 
 

The radial intensity distribution of the laser radiation was considered to 

be given by equation [27] for the case of Gaussian distribution and equation 

[28] for the case of Gaussian beam, where w(z) was taken from equation [29]. 
 

The computation was carried out considering wo =10-4m for the Gaussian 

distribution and wo= 1.77X10-4m for the Gaussian beam and a maximum 

monochromatic laser intensity oI  given by
11 210 /oI W m  at r=0 and 

/ 4pt t  . 

 

The locations and the times at which the temperature was calculated are the 

multiple of the following , iz r  and it values 

z is considered to be given by 

/10z L   

ir values are given according to the following table 

The radius of the rod R was according to the width of the laser beam and Ro 

values subdivided into three zones ir  

1 /10or R                          0 or R        

2 ( ) /10o or w R              o oR r w or  o ow r R   

3 ( ) /10or R w        ow r R   

The time was sliced into four different intervals it .  

1t  the time before initiating the laser pulse was divided by 5 

1 1t t n         1n = 0……5 

2t  the time during the laser pulse duration was divided by 16 

1 25 /16Lt t t n          2n = 1…….16 

 

3t  the time calculated from the equation (the pump pulse duration – (the 

time before initiating the laser pulse + pulse duration )) was divided by 5 
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1 3 1( ( 5 )) / 5 ( 5 )p L Lt t t t n t t              3n = 1…..5 

 

the time after switching off the pumping process was given by 

4t   2X pulse duration of the pump beam 

4 4pt t n t         4n = 1……7 

Since the integration was carried out over ,z r  and , 

, i iz r and t   were subdivided into 6,6,5 equal interval respectively. 

 

Table (1): physical and thermal parameter of Ruby: 
 

Symbol 

Unit  

3

kg

m
 

Cp 

.sec

.o

W

kg k
 

No 

3

ions

m
 

01  

Hz 

21  

Hz 

22  

Hz 

31  

Hz 

32  

Hz 

21F

1/m 

Value 4300 43 1.58E25 1.5E15 7.3E14 7.1E14 5.4E14 5.53E14 320 

Symbol 

 

Unit 

31F  

1/m 

32F  

1/m 

01F  

1/m 

22F  

1/m 

o  

Hz 

k  

o

W

m K
 

H 

o

W

m K
 

crp  

W  

no 

Value 155 285 360 280 0.3298E12 42 10000 5000 1.759 

ijF   is the absorption coefficient parallel and perpendicular to the C –axis of 

the crystal  

ij  are the corresponding central frequency to 
ijF  

No  is the 
3Cr 

 concentration  

 

3. Results and Discussion: 

- Heating Resulting from the Pump Beam: 

Figure (1) represents the radial intensity distribution of the black body 

radiation (pump beam) within a ruby rod after integrating its spectral intensity 

distribution over the frequency with Ro as a parameter. The considered 

frequency interval covers the range of maximum absorption of the ruby rod 

[17]. The calculation of the curves was carried out at t = tp/4 according to the 

equation: 
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where Iobb is the intensity distribution of the black body radiation as a function 

of r and T which leads to an amplification of 100 at r=0, z=L and / 4pt t  . 

The temperature fulfilling this condition have the values 5745, 8073, 9575, 

19421 k for Ro = 10-4, 5 x 10-4, 10-3 and   m respectively. This behavior can be 

explained as follows. Since a particular population inversion along the z axis at 

r=0 and in turn a particular intensity is needed to get the required amplification 

for each Ro value, therefore smaller temperature of the black body, results as 

the focusing becomes more pronounced i.e. Ro decreases. Due to the reduced 

focusing as Ro increases greater black body temperature is needed to initiate the 

intensity required for the population inversion along the z axis. This fact leads 

for Ro =   m to greater intensity in the outer regions than in the axis of the 

rod. From the Figure it is also found that the gradient of the intensity in the 

vicinity of r = 0 is negative and smallest for Ro = 10-4m and greatest for Ro= 10-

3m and that it changes its sign as Ro becomes infinite. This behavior can be 

attributed to the fact that since the radiation is incident in the radial direction 

towards the axis of the rod, it will suffer decay due to the absorption as r 

decreases. This decay will be over compensated as focusing is introduced.  
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Fig. (1): The radial intensity distribution of the black body radiation (pump beam) after 

integrating its spectral distribution over the frequency from 0.46X1015Hz to 

1.5X1015Hz with Ro as a parameter. The calculation was carried out at t = tp/4. 

Ro= 10-4m curve A      Ro=5X10-4m curve B    Ro= 10-3m curve C       Ro= ∞ m curve D 

Figure (2) represents the radial distribution of the heat generation 

function ( , )pg r t calculated at / 4pt t  with Ro as a parameter. The figure 

shows the same behavior as Figure (1) except that their appears a relative 

minimum for all finite Ro values. It is more pronounced and more shifted 

towards smaller r values as Ro increases. This is because the function 

( )( )0

0

r RR R
e

R r

  


 which is included in the radial intensity distribution of the 

pump beam as well as in ( )pdI d

dr

   has a minimum at
0

1

( )
r R

 
 

. 

 

 
 

 

Fig. (2): The heat generation function gp(r,t) resulting from the modified first derivative 

of the radial intensity distribution represented in figure (1) w.r.t. r with Ro as a 

parameter. The calculation was carried out at t = tp/4. 

Ro= 10-4m curve A      Ro=5X10-4m curve B    Ro= 10-3m curve C        Ro= ∞ m curve D 
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The location of this minimum will, according to the above relation, be shifted 

towards smaller values of r as Ro increases. The increased pronunciation of the 

minimum for great Ro values might be due to mutual interaction between the 

focusing and attenuating effects. While the first effect 
0

0

R R

R r





leads to greater 

values of gp(r,t) at small values of r, leads the second one ( )( )r Re   to smaller 

gp(r,t) values at r=0. Since as Ro increases the effect of focusing will decrease 

while that of the attenuation remains practically unchanged, thus the intensity at 

r=R will increase with increasing Ro and will attain its greatest value at Ro=   

m giving rise to an absolute minimum to appear at r=0. The increase of gp(r,t) at 

r=R with increasing Ro values is due to the higher temperature of the pump 

beam which leads to shift the maximum frequency of the spectral intensity 

distribution towards greater frequencies where the absorption is also great. The 

constant value of gp(r,t) at r=0 is due to the considered constant amplification 

i.e. ( )L L  at this location.  

 

Figure (3) represents the time dependence of the temperature induced by 

the pump beam calculated at any z value, r= 0 with Ro as a parameter. From the 

figure it is evident that for all finite Ro values the temperature increases as the 

irradiation time of the pump beam increases. It reaches its maximum value at t 

= 0.6 x 10-3 sec which is greater than the time at which the intensity of the 

pump beam is maximum. This can be attributed to the fact that at the beginning 

of the pump pulse the temperature at the outer irradiated surface of the rod is 

small and therefore the cooling which is proportional to the temperature is 

negligible and has no effect on the temperature at r=0, moreover the heat 

conductivity of the ruby and the gradient of the temperature everywhere along 

the radius is so small such that the absorbed radiation heats only the location 

where it is absorbed. As the time of the irradiation increases the temperature 

increases and a greater gradient at r =0 will build up. But because of the bad 

heat conductivity and the relatively small pulse duration the conducted energy 

remains small. This process lasts until the time at which the rate of the 

conducted heat energy into the cooler zones is equal to the rate of the energy of 

the absorbed radiation. At this time the temperature reachs its maximum value 

after that the rate of the losses overcompensate the absorbed radiation and the 

temperature begins to decrease. Because of the great temperature gradient at the 

beginning of its reduction, the temperature decreases with a great slop followed 

by a smaller one till the end of the pump beam. After switching off the pulse of 

the pump beam the temperature reduces with a more smaller rate. This behavior 

is found, as seen from the figure, to be valid for all finite Ro values.  
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Fig. (3): The temporal distribution of the temperature induced by the pump beam 

calculated at z = 0 , r 0 with Ro as a parameter.  

Ro= 10-4m   curve A    Ro=5X10-4m   curve B   Ro= 10-3m   curve C   Ro= ∞ m    curve D 

 

The curve representing Ro=  m differs markedly from that of finite Ro 

values. The temperature is maximum at a much longer time after switching off 

the pump pulse. This behavior is due to the fact that greater amount of heat is 

stored in the outer regions where 
dr

TrdI ),(  is high. After switching off the 

pumping process the temperature tends to be homogenous across the cross-

section of the rod leading to an increase of the temperature in the vicinity of r = 

0. This process lasts until the heat conduction inside the material takes such 

small values, that the cooling of the outer regions overcompensates the 

conduction inside the material. At this time a monotone reduction of the 

temperature takes place. 

 

Figure (4) illustrates the radial temperature distribution calculated at 

/ 4pt t  , arbitrary z value and Ro as a parameter. From the figure it is 

evident that for Ro  m the temperature due to the focusing effect is 
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maximum at r= 0 and it decrease with decreasing Ro values. This ids due to the 

required constant ( )L L   value at r= 0, which leads to a constant intensity 

in this location for each Ro value. Since the radial intensity distribution will be 

more flatter in the vicinity of r=0 as Ro increases and since 
( , )dT r t

dr
 is 

responsible for the heat conductivity to the cooler zones and this is, smallest for 

Ro= 10-3m and greatest for Ro=10-4 m, therefore the temperature in case of Ro 

=10-4m is smaller than for Ro=10-3m. The increase of the temperature in the 

outer regions by increasing Ro values is due to the increase of gp(r,t) in that 

region by increasing these values.  

 

 
 
Fig. (4): The radial temperature distribution induced by the pump beam calculated at  

t = tp/4 at z = 0 with Ro as a parameter.  

Ro= 10-4m curve A      Ro=5X10-4m curve B      Ro= 10-3m curve C      Ro= ∞ m curve D 

 

 

The much higher temperature found in the outer regions of Ro=   m is 

due to the greater value of gp(r,t) in these regions compared with that at r = 0. 
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The higher temperature in the vicinity of r =0 than the cases of finite Ro values 

is due to the reason given for the curves having finite Ro values. 

Figure (5) represents the radial distribution of 
L L( - )    calculated at 

/ 4pt t  and Ro as a parameter. The observation of the curves shows that, for 

Ro=10-4m and 5x10-4m ( )L L   in the vicinity of r =0 has a relative minimum 

shifted towards smaller r values as Ro increases, and that the minimum of the 

former Ro value is more pronounced than that of the latter one. The curves 

calculated for Ro=10-3m and   m grow monotonically and exhibit specially for 

the case Ro=m a saturated behavior at r=R. This behavior can be explained in 

view of the fact that the behavior ( )L L  is dictated from the intensity 

distribution of the pump beam given by )(

0

0 Rre
rR

RR 



   which exhibits a 

minimum at
0

1
Rr 


. Since the value of   is about 10-3m-1 it follows that by 

increasing Ro values the position of the minimum will shift towards smaller r 

values. As Ro is given values greater than or equal to 1/ the position of the 

minimum will shift to such small or negative r values where the relative 

minimum disappears. Since ( )L L   at r = 0 must be 46.05 m-1, this is 

because an amplification of 100 at z = L is set as a condition, and ( )L L    

depends on the pump energy density elsewhere, thus a minimum laying to the 

right of r = 0 can have positive or negative values. In case of strong focusing 

the intensity of the pump radiation drops strongly with r leading to negative 

( )L L   values. The saturation at r=R for R0=   m results from the 

behavior of ( )L L   which is generally according to equation (38) given by 

( )0
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  .  

- Heating resulting from the laser beam of intensity
11 210 /oI w m : 

- Case of Gaussian distribution of width W = 10-4m 

Figure (6) represents the temporal temperature distribution calculated 

at z=0,  r =0 and Ro as a parameter. The figure shows that the maximum of the 

temperature occurs at a time greater than that at which the laser radiation is 

maximum i.e. / 4pt t  . This is because at the beginning of the laser 

radiation more energy will be stored than transfered to the surrounding. This 
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effect leads to an increase of the temperature. At times at which the radiation 

becomes smaller, such that the converted radiation into heat equals the 

conducted one, the temperature attains maximum value. As the time goes on 

and the radiation becomes smaller, the heat conduction becomes greater than 

the converted laser radiation into heat and the temperature reduces 

monotonically. That the temperature is independent of Ro and depends only on 

wo,as seen from the calculation, is an indicator that the temperature results from 

the absorbed laser radiation in the neighborhood of 0z  and 0r   although 

it is calculated through integration of the function 

2

2
2

( ) oL L

r

wz
e e

 





 over all 

r  and z  values ranging respectively from 0r   to r R  and 0z   to 

z L  . Since the exponent of the exponential function including z  varies 

with the time so due to this fact its effect will be more reduced than 

2

2
2

o

r

w
e




 

which is time independent and depends only on wo. 

 

 
 

Fig. (5): The radial distribution of the net amplification coefficient of the laser radiation 

(L-L) calculated at t = tp/4 with Ro as a parameter.  

Ro= 10-4m curve A       Ro=5X10-4m curve B       Ro= 10-3m curve C     Ro= ∞ m curve D 
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Fig. (6): The temporal temperature distribution induced by a laser beam having a 

Gaussian spatial intensity distribution of width wo = 10-4m and pulse duration 

tL= 10-4 sec calculated considering linear behavior at z = 0 , r = 0 and Ro as a 

parameter.  

Ro= 10-4m curve A      Ro=5X10-4m curve B      Ro= 10-3m curve C      Ro= ∞ m curve D 

 

 

 

Figure (7) represents the temperature versus time calculated at Z=L, r = 0 

and different Ro values as a parameter. Also here the maximum of the 

temperature, due to the above cited reason, occurs at higher t values than 

/ 4pt . Due to the radial distribution of ( )L L   given in figure (5) which 

leads to a greater radial amplification of the laser radiation as Ro increases, the 

temperature increases with increasing Ro values. Due to the small wo value 

which will not be effectively reduced from the negative value of ( )L L   for 
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Ro=10-4m and the amplification of the laser radiation, the temperatures for all 

Ro values are greater than the corresponding ones of Fig. (6). 

 

 
 

Fig. (7): The temporal temperature distribution induced by a laser beam having a 

Gaussian spatial intensity distribution of width wo = 10-4m and pulse duration 

tL= 10-4 sec calculated considering linear behavior at z = L , r = 0 and Ro as a 

parameter.  

Ro= 10-4m curve A       Ro=5X10-4m curve B     Ro= 10-3m curve C       Ro= ∞ m curve D 

 

 

Figure (8) represents the temperature distribution along the z axis 

calculated at / 4pt t  , r= 0 and Ro as a parameter. From the figure it is 

evident that the temperature for Ro = 10-4m exhibits a minimum at z= 0.03 m 

and that for Ro>10-4m it increases monotonically with increasing z values. 

Moreover it shows that the temperature at z=L increases with increasing Ro 

values. The first behavior is due to the fact that for Ro = 10-4m the radial 

distribution of ( )L L   exhibits negative values in the wings of the spatial 

distribution of the laser radiation. This leads in the vicinity of z=0 to smaller 

amplification for r<10-4m and reduction in the radial distribution of the laser 
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radiation due to the negative ( )L L   for r>10-4m as well as a conduction of 

heat in the cooler parts adjusting to r=0. Due to this fact the temperature will 

firstly decrease with increasing z values. By further increase of z the wings 

become strongly reduced and will practically play no role in the heating 

process. The resulting laser radiation with the markedly smaller half width will, 

due to ( )L L   radial distribution, be amplified and overcompensates the 

heat conduction in the cooler parts leading to an increase of the temperature. 

That for all other Ro values, the temperature increases monotonically with 

increasing z values is due to the positive radial distribution of ( )L L   which 

heats the surrounding of r = 0 more or less than that at r = 0. The increased 

value of temperature with increasing Ro values is due to the increased value of 

( )L L     in the wings of the laser radiation as Ro increases.  

 

 
 

Fig. (8): The temperature distribution as a function of z induced by laser beam having a 

Gaussian spatial intensity distribution of width wo = 10-4m and pulse duration 

tL= 10-4 sec calculated considering linear behavior at t = tp/4 , r = 0 with Ro 

as a parameter.  
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Ro= 10-4m curve A      Ro=5X10-4m curve B      Ro= 10-3m curve C       Ro= ∞ m curve D 

 

 

Figure (9) represents the radial temperature distribution calculated at 

/ 4pt t  , z= L with Ro as a parameter. Due to the reasons given in figure (8) 

belonging to the radial distribution of ( )L L   for different Ro values the 

temperature at r = 0 increases with increasing Ro values. That the radial 

distribution of the temperature is broader than that of the incident radiation is 

for Ro=10-4m due to the heat conduction. For Ro=5x10-4m and 10-3m it is due to 

the heat conduction   and the radial distribution of ( )L L  . Because of the 

great positive slope of ( )L L   in the case of homogenous illumination the 

radial half width in this case is broader than the others. The appearance of the 

step in the radial distribution comes from the variation of the r – values at 

which the temperature was calculated. The difference between two successive r 

values r was small in the vicinity of r = 0. As r was increased r was 

increased twice.  
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Fig. (9): The radial temperature distribution induced by laser beam having a Gaussian 

spatial intensity distribution of width wo = 10-4m and pulse duration tL= 10-4 

sec calculated considering linear behavior at t = tp/4 , z = L= 0.1m with Ro as 

a parameter.  

Ro= 10-4m curve A      Ro=5X10-4m curve B     Ro= 10-3m curve C       Ro= ∞ m curve D 

- Case of Gaussian Beam: 

Figure (10) represents the variation of the w(z) values along the z axis. It 

shows that w(z) at z= 0 is equal to 1.77 x 10-4m and w(z) at z=L is equal to 

3.9X10-4 m. 

 

The calculation of the temporal temperature distribution carried out at 

z=0, r=0 and different Ro values as a parameter, shows that the results, as seen 

and explained in Figure (6), are independent of Ro. They have the same 

behavior as the curves of figure (6) but with about 3.75 times higher 

temperature. This is due to the greater area of the incident laser radiation which 

caries about 3.2 times higher power. 

 
Fig. (10): The width w as a function of z of a laser beam having a Gaussian intensity 

distribution considering linear case. 
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Figure (11) represents the temperature versus time calculated at r=0, z=L 

with Ro as a parameter. That the temperature at z=L for Ro= 10-4m is smaller 

than the temperature at z=0, is due to the much broader spatial laser radiation at 

z=0 than at z=L which results, as seen from Figure (5), from the negative 

( )L L  . Although the laser radiation at r=0 will be amplified by factor 100 

it seems that the reduction of the intensity due to the increasing width of the 

laser radiation and the truncation of the wings which occupy a great area is 

more effective than the small area which is amplified. Due to the radial 

distribution of ( )L L   which leads to a greater radial amplification of the 

laser radiation as Ro increases, the temperature increases with increasing Ro 

values.  

 
 
Fig. (11): The temporal temperature distribution induced by a laser beam having spatial 

intensity distribution of increasing width with increasing z – value (Gaussian 

beam) originating from a laser oscillator 0.1 m long, laying 0.1m a part from 

a laser amplifier. The Gaussian beam has a width of 1.77X10-4m at the input 

of the laser amplifier. The calculation was carried out considering linear 

behavior at z = L , r = 0 and Ro as a parameter.  

 Ro= 10-4m curve A      Ro=5X10-4m curve B     Ro= 10-3m curve C       Ro= ∞ m curve D 
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Figure (12) represents the temperature distribution along the z axis 

calculated at / 4pt t  , r =0 and Ro as a parameter. The figure shows for all 

Ro values except for Ro= 10-4m the same behavior as seen in the previous case 

except that the temperature in this case, due to the increased w value with 

increasing z and the behavior of ( )L L  which allows amplification that 

overcompensates the reduction of the intensity, is greater than the 

corresponding curves of w=10-4m. In contrary to the previous case the 

temperature calculated for Ro= 10-4m decreases monotonically with increasing z 

values. This behavior is due to the fact that by increasing the z values the cross 

section of the laser radiation grows leading to reducing its intensity and to 

covering greater and greater zones of the negative ( )L L   values. These 

effects lead to the decrease in the intensity and therefore in the temperature 

values. 

 

 
 

 
Fig. (12): The temperature distribution as a function of z induced by a laser beam 

having spatial intensity distribution of increasing width with increasing z – 
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value (Gaussian beam) originating from a laser oscillator 0.1 m long, laying 

0.1m a part from a laser amplifier. The Gaussian beam has a width of 

1.77X10-4m at the input of the laser amplifier. The calculation was carried 

out considering linear behavior at t = tp/4, r = 0 and Ro as a parameter.  

Ro= 10-4m curve A     Ro=5X10-4m curve B     Ro= 10-3m curve C       Ro= ∞ m curve D 

 

 

 

Figure (13) gives the radial distribution of the temperature calculated at 

/ 4pt t  , z=L and Ro as a parameter. The curves in the figure behave as the 

previously calculated ones. They differ only in the absolute value of the 

temperature and the appearance of a dip around r=0 at
oR m  . This behavior 

can be explained as follows: at r=0 the amplification of the great laser intensity 

and the accumulation of heat generation at small times leads to the appearance 

of a peak at this location. As r increases the decay of the intensity of the laser 

radiation cannot be compensated from the increased value of ( )L L  . This 

behavior lasts till ( )L L  takes such values able to compensate the reduction of 

the intensity where a minimum appears. By further increase of r, ( )L L  will 

take values great enough leading to overcompensate the decrease of the radial 

radiation. This behavior is continued till the appearance of a maximum after 

which the temperature begins to decrease.  
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Fig. (13): The radial temperature distribution induced by a laser beam having spatial 

intensity distribution of increasing width with increasing z – value (Gaussian 

beam) originating from a laser oscillator 0.1 m long, laying 0.1m a part from 

a laser amplifier. The Gaussian beam has a width of 1.77X10-4m at the input 

of the laser amplifier. The calculation was carried out considering linear 

behavior at t = tp/4, z = L and Ro as a parameter.  

Ro= 10-4m curve A     Ro=5X10-4m curve B     Ro= 10-3m curve C       Ro= ∞ m curve D 

4. Conclusion: 

From the obtained results the following can be concluded: 

 

-Concerning the pumping process. 

The focusing of the pump beam characterized by Ro values leads to: 

- Effects concerning the pump source itself such as the dissipated energy, 

cooling and life time. So for instance leads small Ro values to small 

temperature of the pump source which means small energy consumption, 

reduced cooling problems and great life time.  

- Effects concerning the interaction of the pump beam with the amplifying 

medium such as temperature and ( )L L   radial distributions. So for 

instance leads small Ro value to concentration of the temperature resulting 
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from the pump source around r= 0. The amplification factor is positive only 

around r=0. Great Ro values leads to increase the value of the radial 

distribution of ( )L L  and the temperature at greater r values.  

 

- Concerning the laser beam to be amplified: 

The drastically decrease of the radial distribution of ( )L L  for Ro=10-4m, 

which after reaching the required value of about 50 m-1 at r=0, takes at r  10-

4m negative vales leads to decrease the width of the laser radiation during its 

propagation along the rod. As Ro was increased the wings of the laser radiation 

were more amplified than the parts located around r=0. 

 

- Concerning the laser material interaction the following was observed: 

The calculated temporal temperature distributions at r = 0, z = 0 with Ro 

as a parameter are found to be practically independent of Ro and depend only 

on the radial width of the laser radiation and its shape. This behavior can be 

attributed to the small time interval within which the temperature was 

calculated and the small heat conductivity of the ruby which leads to the fact 

that the temperature at any point is affected only by its surrounding points. 

Since the effects of the studied case (amplification) lay far away from r=0 and 

z=0 thus only the property of the just incident laser radiation can affect the 

temperature at this location. 

 

An increase of the temperature with increasing z for all Ro and w values 

except Ro=10-4m. For Ro=10-4m and w 10-4m the temperature decreases with 

increasing z values. For Ro=10-4m and w=10-4m the temperature attains a 

minimum. 

The radial distribution of the temperature depends on Ro and w and 

attains for great w and Ro values beside higher temperature the appearance of 

side maxima. 
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