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ABSTRACT

The nonlinear instability analysis of the free surface of two weak
viscous magnetic fluids, subjected to vertical vibrations and a
horizontal magnetic field, has beén examined in porous media. The
two fluids are immiscible in all properties. Both have finite-
thickness, homogeneous, and incompressible fluids. Although the
motions are assumed to be irrotational, weak viscous effects are
included in the boundary conditions of the normal stress tensor
balance. The influence of both surface tension and gravity force is
also considered. The method of multiple scale perturbations is used
to obtain a dispersion relation for the linear theory and a Ginzburg-
Landau equation for the nonlinear theory, describing the behaviour
of the system. There is also the obtaining of a nonlinear diffusion
equation, describing the evolution of the wave packets, near the
marginal state. Further, the nonlinear Schrodinger equation is
obtained when the effect of both the viscosity and Darcy's
coefficients are neglected. The stability conditions are discussed
and the interplay between the applied magnetic field and several
other factors in determining the interface behaviour is analyzed.
Stability analysis and numerical calculations are used to describe
linear and nonlinear stages of the interface evolution. The numerical
calculations indicate the existence of more than a new region of
stability and instability due to the nonlinear effects. In the linear
theory, it is found that the horizpntal magnetic field decreases as
the wave number increases. This'means that the magnetic field has
a stabilizing influence on the wave motion. While the viscosity and
Darcy's coefficients have a destabilizing effect. In the nonlinear
theory, it is found that these parameters have an important role in
the stability criterion of the problem.

INTRODUCTION

Ferrofluids, also known as magnetic fluids, are composed of three
fundamental components: magnetic particles, surfactant and base
oil. The study of various phenomena of ferrofluids is of fundamental
interest and importance with respect to the variety of applications.
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2 Nonlinear instability of ferrofluids...

Therefore, extensive investigations of ferrohydrodynamics have
been conducted and reported [1].

These fluids are stable colloidal systems containing single domain
ferro-or ferri-magnetic particles [2]. They respond readily to magnetic
ficlds and have a saturation magnetization which can bhe as high as 20
% of the solid magnetic component. A large number of applications for
these fluids appears possible, including novel energy conversion schemes,
levitation devices, magneto-optical devices, novel zero-leakage rotary shaft
seals and pressurc scals. In these developments, an understanding of the
fundamental magnetic fluid dynamics is essential. In systems of stable ho-
mogeneous magnetic fluids, surface interactions are particularly important.
A number of striking interfacial phenomena are exhibited by the magnetic
fluids in response to applied magnetic ficlds.

A magnetic ferrofluid is an interdisciplinary topic having inherent in-
terest of a physical and mathematical nature with applications in tribol-
ogy, separations science, instrumentation, information display, printing,
medicine, and other fields. Many experimental results confirmed that col-
loidal particles in ferrofluids coagulate and form chain clusters as a result
of their mutual interaction; this process being enhanced in the presence of
a magnetic field. The chain formation process, together with the reorienta-
tion of individual particles in the presence of a magnetic field, are respon-
sible for the anisotropy of the physical properties of the 'magnetic fluids.
For example, the sound velocity and the acoustic attenuation coefficient in
magnetic fluids are dependent on the angle between the sound propaga-

tion direction and the external magnetic field [3]. The reader can find much
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more information about these fascinating complex fluids in Rosensweig's
classical book][1].

On the other hand, the moving interface between two superposed fluids
in a porous medium or in a Hele- Shaw cell is unstable forming penetrating
fingers, when the more viscous fluid, is pushed by the less viscous fluid [4].
Previously reported analysis has shown that the use of a magnetizable
fluid laycr can stabilize the interface if a uniform magnetic field is applied
tangentially to the interface [1]. A magnetic field component perpendicular
to the interface is always destabilizing. In the absence of the magnetic
field, Mikaclian[5] studied the effect of viscosity with the surface tension on
Rayleigh- Taylor instability for two finite- thickness. He obtained numerical
results, by solving the dispersion relation, which determines the growth rate

as a function of the physical parameters of the system.

Porous media theories play an important role in many branches of en-
gineering, including material science, the petroleum industry, chemical en-
gineering, and soil mechanics , as well as, biomechanics. The flow through
a porous medium has gained considerable interest in recent years, partic-
ularly, among geophysical fluid dynamicists [6]. A porous medium is a
matter, which contains a number of small holes distributed throughout the -
matter. Flows through porous medium occur in filtration of fluids. Fluid
flow in porous media is an important subject in hydrology and is of vital
interest to the petroleum industry. Henry P.G.Darcy gave the law govern-
ing seepage flow of a homogeneous fluid in a homogencous and isotropic
porous medium in his Paris Treatise (1856). This law is valid only for
very slow flows. The gross effect, as the fluid slowly percolates through the
porous rock, is represented by Darcy’'s law, which describes the flow of an
incompressible fluid through a homogeneous and isotropic porous medium.
El-Dib and Ghaly [7] studied the unsteady flow of a viscous fluid through a

porous medium, by an infinite vertical surface, by taking into account the
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pressure of the free connective currents, when there is a variable suction at
the surface.Nonlinear waves occurring in multi-phase flow in porous media
have a rich structure. In contrast to two-phase fow, the structure is often
very sensitive to diffusive terms, i.e. capillary pressure.

The study of viscous flow in a Hele- Shaw cell is of interest for both
scientific and practical reasons. On the scientific level, the influence of
spatial curvature on hydrodynamic flow is a matter of fundamental interest.
It also provides a simple mathematical model to describe more general
situations involving the filling of a thin cavity between two walls of a given
shape with fluid. On the practical level, it may have applications in a
number of industrial, manufacturing processes, ranging through pressure
moulding of molten metals and polymer materials, and formation of coating
defects in drying paint thin films [1,6].

Work in nonlinear stability theory has received greater interest in recent
years. The study of the nonlinear interfacial instability has received a con-
siderable number of contributions [8-13]. Hasimoto and Ono (8] derived a
nonlinear Schrodinger equation describing the finite amplitude wave pack-
ets on a fluid surface with the use of a multiple scale method. Nayfeh [9]
carried out the nonlinear analysis for the Rayleigh-Taylor instability and
obtained two nonlinear Schrédinger equations for the progressive and sta-
tionary waves. E]hefnawy [12] used the method of multiple scales to study
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ics. He derived a nonlinear damped Klein-Gordon equation and formulated
the Melnikov function to show that if the ratio of forcing to dissipation is
sufliciently small, then there exists transverse homoclinic orbits resulting
in chaotic behaviour. Moatimid [13] deduced the well-known nonlinear
Schrédinger equation with complex coeflicients, describing the evolution of
the wave train of a magnetic fluid jet through porous media. He found that

the porous media have a destabilizing influence. This influence is enhanced
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when the Darcy's coefficients arc different.

However, the uniformn horizontal magnetic field only stabilizes those
waves propagation in the direction along the magnetic field, having no
effect on transverse waves. Previous works by others with analogous invis-
cid systems has shown that the non-uniform magnetic field can stabilize all
waves with a lower required value of magnetic field. This occurs because
the interface feels a restoring perturbation force even without distorting but
by simply moviug through the non- uniform magnetic field. This paper ex-
amines the nonlinear effect of a horizontal magnetic field on stabilization

or destabilization of fluid flows through porous media.

The instability in a porous medium of a plane interface between two weak
viscous magnetic fluids may be of interest in geophysics and biomechanics
and is therefore studied in the present paper. The effect of a surface tension,
a constant acceleration and a horizontal magnetic field, being relevant for

geophysics, are also considered.

The aim of the work presented here, is to study the impact of nonlinear
weak viscous effect of interfacial instabilities of two superposed magnetic
fluids. In addition, we intended to examine the porous material effects
with the presence of viscous force. The system is stressed by a horizontal

magnetic field. The linearized problem has been demonstrated, without
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the following, we shall first formulate the general interfacial problem. Then
the nonlinear analysis, using a multiple scale expansion, is to be carried
out. The stability criteria are discussed both theoretically and numerically

for the different cases, and the stability diagrams are drawn.
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6

5. SYSTEM AND EQUATIONS OF THE PROBLEM
2.1 BASIC EQUATIONS

The system under consideration, is composed of two incompressible mag-
netic fluids separated by the plane z = 0. Each fluid is of infinite horizontal
extent. We take the origin o at the mean level of the interface, and the axis
o0z pointing vertically upwards into the upper fluid. Let the two fluids be
confined between rigid horizontal planes z = —hy (the lower boundary)and
z = hy (the upper one). The two fluids are influenced by a uniform mag-
Letic field Hy acting along the positive - direction, where the axis ox
is the mean level of the wave. The two media are considered as porous.
Darcy's equation is a macroscopic equation which describes the flow of an
incompressible Newtonian fAnid of viscosity g through a homogeneous and
isotropic porous medium of permeability K. In this equation the usual
viscous term is replaced by the  resistance term (—nw), where v is the
filter velocity of the fluid and 7 is the Darcy's coefficient which depends on
the ratio of the fluid viscosity to the flow permeability through the voids.
The system is also subjected to a gravitational force g in the negative z
-direction.

Thus, the system 1s governed by the continuity and the Darcy's equa-
tions, of an incompressible fluid through a porous medium where the poros-

ity is considered as a unity,

Vuyu=0, (2.1)

+ (0.V)y = —Vp — pge: — 1Y (2.2)
where p, p and e, are the fluid density, the pressure and the unit vector
in the 2- direction. Since the viscous force (uV?p) is dropped from equa-

tion(2.2), the viscosity contribution will be given in the stress tensor[1,7]

) .0
oo — (ot GH 20+ HiBe (2 + 2%, (2.3)

Oz, 0z
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where i, H, B and d;; are the magnetic permeability, the magnetic field,
the magnetic induction and the Kronecker's delta. |

We now follow the analysis of Joseph et al.[14] with two uniform parallel
flows along the z - axis. The upper fluid has density p;, viscosity s,
Darcian coefficient 7>, and magnetic permeability fip, while the lower one
has p1, p1, m, 1 A surface tension exists between the two fluids and
denoted by 0. We assumc that the small perturbations in each fluid are
irrotational. The dynamics of this two - fluid problem can be analyzed
using viscous potential flow [15]. Then, the fluid velocity is given as the
gradient of a potential, i.e. v = V®, and for incompressible fluids, the two
velocity potentials ¢, (z, z,t) and $y(z, 2, 1) satisfy the following Laplace's

equations:
V20, =0 for - hy <z <y(z,t), (2.4)
ViP, =0 for Y(z,t) < z < hy, (2.5)

where v(z,t) denotes the elevation of the interface at time ¢.

In the case of a magneto- quasi- static system with negligible displace-
ment current, Maxwell's equations in the absence of free currents reduce

to Gauss' law and Ampére's law (no currents),
V.B=90 and VANH =0, (2.6)

whereB = i H is the magnetic induction vector.

From Ampére's law, the magnetic field can be expressed in terms of a
magnetic scalar potential U(z, z,t) in each of the regions occupied by the

fluids, i.e.
H_jZHoQI-—V‘I/]' , 7 =12, (27)

where e, is the unit vector along the z- direction and the subscripts 1 and

2 refer to quantities in the lower and upper fluids, respectively.
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8 Nonlinear instability of ferroliwnds. ..

Then, combining the latter equation(2.7) with Gauss’ law, considering
i is a constant, one finds that the magnetic scalar potentials, also, obey

Laplace's equations:
Vi, =0 for —h <z <v(z,t), (2.8)

V2w, =0 Jor y(z,t) < z < ha. (2.9)
To complete the formulation of the problem, we must define the surface
geometry and supplement the magnetic cquations with the corresponding

houndary conditions. The interface is represented by the expression
F(z,z,t) =z —y(z,t) =0,

for which the outward normal vector is written as
VF oy
s htll
WFl['+%x
2.2 NONLINEAR BOUNDARY CONDITIONS

E:

et (8
)] ( 81,0,1)- (2.10)

The solutions for both, ®; and U, , j=1,2, have to satisfy the following
revelant boundary conditions for our configuration [7,9,10,11.13,14]:
(i) On the rigid boundaries z = —h; and z = ha,
(1)the normal fluid velocities vanish on both the bottom and the top bound-
aries, 1.e.
oP;
0z

—0.on z=(-1h, J=12 (2.11)

(2)the tangential components of the magnetic field vanish on these bound-
aries, 1.e.
‘()\I}j
ox

—~0,on z=(-1hs, j=1,2 (2.12)

(ii) On the free interface z = v(z,t),
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(1)the normal components of the velocity potential are compatible with
the assumed form of the boundary. This is called kinematical boundary
condition , which gives

Oy Oy 00; _8(&

E+5:r - 8 i=12, (2.13)

(2)the normal components of the magnetic induction vector are equal, since
we have assuined that there is no free currents at the interface. This can
be written as n - [|B] =0, or

1822+ i~ )3 = Tl (2.14)
where [|  |lindicates the jump or difference across the interface, i.c.
I X | = X2 = X,
(3)the tangential components of the magnetic field are equal at the inter-
face, n A [|Hi] =0, or

av vy, 0¥

50+ 5, g7 11=0 (2.15)

(4)finally, the coutinuity of the normal stress at the perturbed surface

=~v(xz,t) is
QHH”:U V'IL,

or

QJ

0 2y 0
(5 G (2a0)
UL

where II  is the force vector acting on the interface, given by

g11 031 n
713 933 ng

The continuity of the tangential components of the stress tensor is identi-

) !O'“” a‘.“013”+[|033” = ,q

LN

0=

cally zero because of the continuity of the magnetic inductions and fields
n (2.14) and (2.15), respectively.
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10 Nonlinear instability of ferrofluids...

2.3 PERTURBATION ANALYSIS

To describe the nonlinear interactions of small but finite amplitude, we
use the method of multiple scales formulated by Nayfeh[9]. We 'l find
solutions in the neighbourhood of the neutral curve where the linear growth
rate of instability is small. We intend to describe the mode which is being
modulated slowly in time and space. We, therefore, introduce spatial and

temporal scales:
T =€ bty =€t (m=20,1,2) , (2.17)
where € represents a small parameter characterizing the steepness ratio of

the wave.

The various phvsical quantities can now be expanded in the form:

-

f(:l’.v Zat) = S 6mfm(:["U):L.lul.'b Z,t(), tl)t?_) + 0(64)a (218)
m=1

where f can be any onc of the physical quantities ®; , W; and ~y(z,¢).
While writing the expansion for ¥, it will be noted that v depends only on
2 and t and not on z. Also, for the derivatives, we write

o & .0
5:5 —mir-:OC aﬁm

where ( is any of the variables z or ¢.

+ O(%), (2.19)

To evaluate the boundary conditions on the interface z = v(z,t), we
use the Maclaurin series expansions at z = 0 for the quantities involved.
The approximate solutions of equations (2.4) , (2.5) , (2.8) and (2.9), with
the nonlinear boundary conditions (2.13) - (2.16) are derived with use of
equations (2.17) - (2.19) and equating the coefficients of equal powers of
e. The hierarchy of equations so obtained for each order can be solved
with the knowledge of solutions for the previous orders. The procedure is
straightforward but lengthy and it will not be included here. The details

are available from the authors (and are outlined by [9]).
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3. THE LINEAR THEORY

The solution of the first - order or linear problem, in the form of a

travelling wave, is

1 =A em—i—c.c., (3.1)
Oy = —iwCZi}ilni(Z}: M), e’ tec, (3.2)
Oy = w C;:ilillﬁl(;}; hg)A eio + c.c., (3.3)
vy = TR ) o (3.4

where fi(k) = jis coth(khs) + /iy coth(kh,), 0 = kay — wty and (o, to) is the
lowest scale. The amplitude A of the progressive wave is a function of the
faster scales (1, 29, t1, t2) and will be determined later from the solvability
conditions , c.c. denotes the complex conjugate of all the preceding terms,
i (=v/=1) is the imaginary number, k is the wave number, w is the fre-
quency of the wave which can be a complex number. An imaginary part
for w indicates a disturbance which either grows with time (instability) or
decays with time (stability), depending on whether this imaginary part is
positive or negative, respectively. If w = 0 the disturbance is neutrally
stable.

The non- trivial solutions (3.1) - (3.5) satisfy the dispersion relation,

with frequency w and wave number k, given by

D(w, k) = glp1 — ps) + kHZ5o(k) + ok? — %"[m coth khy + 1 coth khy

(3]

+2k2(p1 coth khy + 15 coth khy)] — % (p1 coth kh) + ps coth khsy),
(3.6)
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12 i Nonlinear instability of ferrofluids...

where do(k) = (712 — f)*/ (k).

It may be noted that, the results obtained by Mikaelian [5] and Pan
et al. [15] for the Rayleigh-Taylor instability of viscous fluid layers can be
deduced from equation (3.6) by setting Hy = n; = 1) = 0 {1 and 7, are the
Darcy's coefficients of the two fluid layers), for two superposed magnetic
fluids between two parallel plates [16] by sctting 1y = 1y = iy = g = 0
and for two semi- infinite superposed fluids through a porous medium [17]
by setting 1110 =0, Hy = 0 and 15 — 0.

We consider now the general case of two superposed magnetic fluids, each
of a finite thickness, in the presence of viscosity and Darcy's coefficients.

The dispersion relation (3.6) is rewritten in the form, D(w, k) =0,
agw? +iajw—ay =0, (3.7)

where

ag = p coth khy + po coth khy,

a; = 7y coth khy + 12 coth khy + 2k%(p1; coth khy + jig coth k),

ay = klg(py — p2) + kH(fiz — fi1)?(fiz coth khy + jiy coth khy) ™! + ak?.

It is clear that the magnetic field has a stabilizing influence on the wave
motion.This theoretical result was first obtained and confirmed experimen-
tally by Zelazo and Melcher (see Rosensweig [1]). In addition, the viscous
effects, as well as, the Darcy's coefficient influence have a destabilizing role
(14, 15, 17].

Applying the Routh - Hurwitz criterion to (3.7) we obtain conditions for
stability (in other words, having the imaginary part of w to be less than

zero ):

ap >0 and az > 0, (3.8)

since ag is always positive.
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From above, we notice that the condition a; > 0 is trivially satisficd,

while the condition as > 0 reduces to

HE > [g(p2 — p1) — ok?)(jis coth khy + fig coth kha)/[k(jiy — jiz)?] . (3.9)
For values of Hy > H,. (the critical magnetic ficld), where

H? = [g(p2—p) —ok?) (il coth kh, +fio coth kho) /[k(fi1 — f2)?] | (3.10)

the system is linearly stable. But, for Hy < H. the system is unstable.
Thus, the critical magnetic field H, is the linear cutoff magnetic field sepa-
rating stable from unstable disturbances. In the following, we 1l study the
growth in time of perturbations of the free surface throughout the fluid at

the critical magnetic field.

4. THE NONLINEAR AMPLITUDE EQUATION

With view to deriving the equation for the evolution of the amplitude
modulation of a travelling wave packet, we proceed to solve the second - and
third - order problems. Following the procedure developed by Nayfeh [9],
the nonsecularity conditions for the existence of uniformly valid solutions

in the second-order problem are

_0DOA_ 9DOA
w dt, Ok Oxy

and its complex conjugate relation. If 9D/0w # 0, the above equation

(4.1)

becomes
JA  dw OA
e 4.2
8t1 + dk 811 ’ ( )
where dw/dk = —(0D/0k)/(0D/0w) is the group velocity of the wave

packet. It follows, as usual, that the amplitude A depends on the slow
variables x) , t; through the combination x; — (dw/dk)t,;.
To develop the amplitude modulation for the progressive waves, we need

to go to the third - order problem. By substituting the first- and second -
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14 Nonlinear instability of ferrofluids...

order solutions into the third - order one, we obtain the following solvability

condition for the perturbation 3 to be nonsecular,

O0DOA ODOA, 18°DO*A 0°D 9°A 19°D %A

(_____

AN — Z — 2
Ow Oty Ok 8x2)+ 2007 08 0wdk 02,08, 2 OF? 023 clAara,

(4.3)

where the coeflicients of the linear terms are simply the derivatives of the

characteristic function(3.6), while the coefficient of the nonlinear term is
G = 2A{w?*[pi(coth® khy + 0.5csch?khy) — p2(coth? khy + 0.5cschkhy)]
+iw(n1 coth? khy — 1 coth? khy + 2k csch?khy — [lQCSChzkhz])
+KPHGOL(K)} + 2k{w?[p) coth khy (1 — cschkh,) + py coth kho(1—
C.SC/),Q/C/I'_))] + iw(m coth khy(1 — 0.5 coth? khy) + n coth khy(1-
0.5 coth® kho) + 162{/,1.1 coth khy(4 — coth? khy) -+ po coth khy(4—
coth? kho)] ) } — 2K3 20, (k) — 150k, (4.4)

where

A = {*[pr(coth? khy + 0.5csch®khy) — py(coth? khy + 0.5¢cschkhy))
%—().Siw(u-_)csc/[zlch,g — mesch?khy + 415‘2{/1,2(00th2 khy + cscthhg)
—ui(coth® khy + esch?kiy)]) — k2H28,(k)} /D (2w, 2k), (4.5)

N _ N 2 1 20(k) 1
B = e IOy ) G a0 a8

9%
(jis coth? khy—[iy coth? kh, )—F(“2 — Z;; ;(%) (coth khy+coth khy)

X (coth 2kh; + coth 2khy)], (4.6)
(A f1)° (B2 — )
do(k) = dg(k){2 — =—=— i (i coth khy coth 2kh; —
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X coth khy coth 2khy) + —L1/%2 i (coth Kl =+ coth khy)[(coth 2K

p(k)a(2k
+coth 2khy) — 2 coth 2kh; coth 2khsy(coth khy + coth khy)|} . (4.7)

Note that the asymptotic expansions break down when the denominator
in (4.5) is zero, which corresponds to the second - harmonic resonance.
Here we have assumed that D(2w, 2k) s 0.

‘The solvability conditions(4.1) and (4.3) can be simplified and combined
together to produce a single equation. By using (4.2), derivatives in ¢, can
be eliminated from equation (4.3). From (4 2), let 's write

%A _ dwd’A A _ ( )2 %A
dr\0t; dk0a? otf ~ ‘dk’ 021

Substituting (4.8) into (4.3), dividing through by (-9D/0w), and re-

placing z,, and ¢,, by €™z and ™, respectively, we have
2 4
i(%—?+%%§)+}jg 5 = 2Q|A|*A, (4.9)

where the group velocity rate P and the nonlinear interaction coefficient

Q are

(4.8)

_ 1d%w
 2dk?
_1,6*°D 8D, 6D oD &?°D <92D((9‘D)2]/(0D)3
~ 2o (&) 2 aanas A ) VG0
and oD
Q= —G/(%) :
Introducing the transformation
,Yze(x—‘j;:’t) ,  T=¢ét, (4.10)
ak
equation (4.9) is reduced to
.0A 924
— AlPA :
o7+ Paa = QMFA. (4.11)
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which is a complex Ginzburg-Landau equation, i. e.

P=P +iP and Q=Qr+1Q; .

The complex Ginzburg-Landau equation (4.11) has a long history in
physics, as a generic amplitude equation, near the onset of instabilities that
lead to chaotic dynamics in numerous physical systems [18,19]. Analytical
solutions are found by Landman [20]. He studied a particular class of
solutions, which are called quasi-steady solutions, and found that their
spatial variation may be periodic, quasi-periodic, or apparently chaotic.
The stability of the complex Ginzburg-Landau equation(4.11) is discussed
by Lange and Newell [21] and Matkowsky and Volpert [22]. They showed

that stability conditions are
P.Q,+ PQ;>0 and Q. <0. (4.12)

To study the stability of the system in the neighbourhood of the linear
critical magnetic field(3.10), we notice that P, = , = 0 and therefore
the complex Ginzburg- Landau equation(4.11) is reduced to the nonlinear
diffusion equation,

0A 92 A
— 4 ]31__
aT 0X?
where the coefficients P; and Q; are the imaginary parts of P and Q,

= QilAPA, (4.13)

respectively, near the marginal state.

The solution of the nonlinear diffusion equation (4.13) is valid near the
marginal state (i.e. Hy — H. )and can, therefore, be used to study the
stability of the system. From the inequalities (4.12), we find the stability

conditions of equation (4.13) as
P <0 and Qi<0. (4.14)

Thus, if the above conditions (4.14) are satisfied, the finite deformation

of the interface is stable and finite amplitude waves can be propagated
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through the interface. We 'll discuss the implications of conditions (4.14)

in the following section.

5. STABILITY ANALYSIS

As shown above the analysis of the system for finite disturbance depends
on (4.14). The stability can, therefore, be discussed by dividing the H:—k
plane into stable and unstable regions. The transition curves are given by
the vanishing of P, and @Q;. These curves are
AHY 4+ AyHE + Ay =0 (5.1)
and
144]‘]61 + flng + Ag
A7HE + As

where the A's are functions of p12, fi12, M2, 112, h2, g, oandk. Ve

=0, (5.2)

observe that the condition (5.2) splits into
AgHi+AsH+As =0,  and  A;HE+As=0 . (5.3)

From equations (5.1), (5.3) and inequalities (4.14), we find that the sys-
tem is stable provided that the magnetic field satisfies either the following

conditions

AlHg+AsHE+A3 <0, AjH§+AsHZ+As <0, A7H2+Ag>0, (54)
or

AHy+AH 4 A3 > 0, AGHi+AsH2+As >0, AjHZ4A3<0.  (5.5)

The curve A7HZ + Ag =0 , or

Hg = [g(p2— p1) —401;2}/[21;-50(2&] ) (5.6)

is the second-harmonic internal resonance. Therefore, equation (5.6) rep-

resents a third transition curve in the stability charts. The phenomenon of
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internal resonance arises because of the occurrence of zero divisors in the
representation of the second-order solutions. The analysis given, in this

paper, is not valid in the neighbourhood of such a resonance.

The graphs represented by equations (5.1) and (5.2) are useful in study-
ing the effects of the horizontal magnetic field, the viscosity and the Darcy's
coefficients on the stability of the system, for various values of h; and hs.
Also the linear stability curve (dotted-line) representing relation (3.10) is
given , which is assumed to divide the plane into an unstable region, sym-
bolized by U (below the curve) and a stable region, symbolized by S (above
the éurve). The shaded regions are newly formed regions and are due to
the nonlinear effect:S; and Sy are stable and Uy, U, and U; are unsta-
ble regions. We observe that the second - harmonic resonance curve, (the
broken-line) given by equation (5.6), is independent of both the viscosity
and Darcy's coeflicients.

Figures la — 1d are the stability diagrams corresponding to the cases
hig — 0o, hy > ha , hy = hy , and h; < hy , respectively. For the case
of two semi- infinite fluids, i.e. hj, hy — 00, we observe that the curve
of the second - harmonic resonance lies below the linear curve. We, also,
observe that the curve of the group velocity rate P, = 0 has one branch,
which cuts the linear curve, the resonance curve and the curve @; = 0. The
latter curve lies below the resonance curve. Therefore, three new regions
(Uy, Uy, Sy), due to nonlinear effects, have appeared. The first unstable
region U; lies above the linear curve and below the curve P, = 0. The
second unstable region Us lies above both the linear curve and the curve
P, =0, and the stable region S) lies among the curve @; = 0. the resonance
curve, and the curve P, = 0.

Figure 10 represents the same system considered in figure la but with
hiy = 1.0cm and hy = 0.1¢m (i.c. by > hy). The behaviour of the system is

similar to that in figure 1a with a decrease in the region U; and an increase
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in the region S). For h; = hy = 0.1cm ( figure 1c ) we see that the curve
@i = 0 has two branches. One of them intersects with the linear curve and
produces a new stable region S,. The other branch lies below the resonance
curve. This branch disappears in figure 1d, where h; < hy. We also notice
that (in figure 1d) the region U, disappears, while the new regionU; appears
and lies below the curve@; = 0 and above the linear curve. In these figures,
we see that the system is stabilizing for larger values of HZ with smaller
values of k, and destabilizing for larger values of k.

Figures 2a — 2d are the stability diagrams corresponding to the cases
hip — 00, hy > ha, hy = hy , and hy < hy | respectively. In these figures,
we considered 7 = 12 = 0 (i.e. in the absence of Darcy's coefficients ). For
the case of two semi- infinite fluids, i.e. hy, hy — 00, we observe that the
curve of the second - harmonic resonance lies below the linear curve. We,
also, observe that the curve Q; = 0 has one branch, which 1ies below the
resonance curve, while the two branches of the group velocity rate P, = 0
disappear. Therefore, two new regions (U, S)), due to nonlinear effects.
have appeared. The unstable region U; lies above the linear curve, while
the stable region S lies between the curve Q; = 0 and the resonance curve.

Figure 2b represents the same system considered in figure 2a but with
hy = 1.0cm and hy = 0.1cm (i.e. hy > ho). The behaviour of the system is
similar to that in figure 2a with a decrease in the region U; and an increase
in the region Sy. For hy = hy = 0.1em ( figare 2¢ ) we sce that the curve
Qi = 0 has two branches. One of them intersects with the linear curve and
produces a new stable region Sy. The other branch lies below the resonance
curve. This branch disappears in figure 2d, where hy < hy. We also notice
that the region U, disappears, while the new region U, appears and lies

below the curve Q; = 0 and above the lincar curve.
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6. NONLINEAR SCHRODINGER EQUATION

A special case occurs when the viscosity and Darcy's coefficients are
negligible by taking 1) = p5 = 7, = 75 = 0 in the evolution equation (4.11).
In this case, P; and @Q; in equation (4.11) are equal to zero. Therefore,

equation (4.11) is reduced to the nonlinear Schrédinger equation

A %A
: Pri = QuAPA, 1
RS =QA (6.1
where
1, 2w -1 of + on o 2uw?
P, = —2-{{7(,01 coth Khy + py coth khy)} {20 + H (kéo (k)+ Qoo(k)) 57
2w? 22

X(py coth khy+py coth khy)— (/)1111( sch®kh, +pohocsch? kha)— -
x (p1h coth khyesch?kh, +p2h§ coth khacsch?khy) P24 : (p1 coth ki,
IS
2w 2w 9
+ppcoth hdy )} '{F(/)] coth kv +py coth /\'7/1,-_))%——1‘—(/)1/1;C.S(.‘/l, khy-+po
x hycsch?hha) V20 h+ U(, (A(SO k)+dg(k )+ p1 coth by +py coth khy)

2

- UJT (pileseh®kh, +pahaeschihhyg) }+ 2w

h kb -+,00 coth klz,g)} -3

x{—(pl coth kliy + po coth khw)} 20k + H2 (A(S (k) + du(k) ) + — T3 (p1
W

coth khy + pycoth kha) + —(pyhaesch®khy + pohycsch®kh
I% )T (« P2/t2 2]},

N
A

2
Q, = —{%(p, coth khy + py coth khy)} ™! {Q[w2 (,z)g((:oth2 kho+ O.5csch2kh2)
—p1(coth? kh; +0.5¢csch®khy )) — K HG8, (K)*(g(p1 — pa) + 2k HE60(2k)

9 2
+4ok? — %(pl coth 2kh; + p; coth 2khy)] ™ + 1.50k* + 2k3H§(52(k)
~2kw*[p; coth khy (1 — csch®khy) + py coth kho(1 — csch?kho)]},
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and
w? = k(g(p) — pa) + kH28(k) + ok?)/(py coth khy + py coth khy).

Equation(6.1) describes the modulation of a one- dimensional weakly
nonlinear dispersive wave in the presence of an externally applied magnetic
field and in the absence of both the viscosity and Darcy's coeflicients. It is
well known that the solutions of this equation(6.1) are stable if and only if

P, >0. (6.2)

Thus, a finite- amplitude wave propagating through the surface is sta-
ble when the condition given by (6.2)is satisfied. This condition depends
onk, g, 0. Hy. hys, pio and fir,2. The critical values of these parameters
required for stability may be obtained from the equality of condition (6.2),
namely

PQ,=0. (6.3)

The last condition (6.3) is given by the vanishing of both P, and @Q,,

where Po= 0 and @, = 0 are polynomials of the second degree in H2.

Figureda shows the stability diagram for the two semi- infinite magnetic

fluids case(i.c. hyg —> 00). In this case, the condition P, =0 gives

Hi = [¢*(p1 = p2)* = 60gk> (p1 — pa) — 30°K") /(430 0y) | (6.4)
where

So = (B2 — fun)*/ (2 + 1),
while the condition Q, = 0 gives
29(p1 = p2) + 0.50k% + 2(p1 — p2)*{g(p1 — p2) + ok + kG H2[1 + (fi2 — fi1)
<(prtp2) /(B 7) (o1 =) Y /{1 +p2) 19 (p1—p2)—20KY} = 0 . (6.5)
We may observe that

kK = glp1—p2)/20 | (6.6)
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is the second- harmonic resonance. Then the curve given by equation (6.6)
is independent of the magnetic field. Also, this curve does not appear in
this figure(3a) because we take po > py. For this reason, the two roots of
Q, = 0 are complex numbers, and therefore, the two branches of @), = 0
does not appear in the graph, while the curve P, = 0 has one branch. We
also observe that the graph is divided into stable regions (S, Sy)and an
unstable region U;. The unstable region U; lies above the curve P = 0.
The first stable region S lies below the linear cirve (the dotted-line), while
the second region S lies between the lincar curve and the carve P = 0.
Therefore, the field is stabilizing for smaller values of &.

Figure 3b represents the same system considered in figure 3a, but with
finite thickness, i.e. h; = 1.0cm and hy = 0.1cm (i.e. hy > hg). We, also,
observe that the curve of the second harmonic resonance does not appear.
The branch of Q, = 0 lies-above the linear curve and cuts the upper branch
of P. = 0. Therefore, two new unstable regions U; and U, appear. The
lower branch of P. = 0 lies below the linear curve creating a new stable
region Sy, which lies below the lower branch of the curve P, = 0. The
other stable region S, lies between the linear curve and the upper branch
of the curve P, = 0, for small values of k. The instability region has a

larger range for larger values of the magnetic field.

Figure 3c represents the system considered in figure 3b but with by =
0.lcm (i.e. hy = hy). We observe that there are two branches of the curve
P, = 0 and only one branch of the curve @, = 0. The curve @, = 0 lies
above the linear curve and below the upper branch of the curve P, = 0.
The lower branch of P. = 0 lies below the linear curve and makes one stable
region S;. This region lies below the curve P, = 0. Comparing this graph
with that of figure 3b, we see that the stable region S is increased while
the unstable region U, is decreased. Also, the stable region S disappears.

Thus, the system has a stabilizing effect as the thickness of the lower fluid
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decreases.

Figure 3d represents the same system but with h; = 0.0lcm. In this
figure, we observe that the curve @, = 0 has one branch which lies above
the linear curve and produces an unstable region U;, while the curve . = 0
does not appear. The new unstable region lies above the curve @, = 0
This region increases with the increase of k while the new stable region 5,
which is lying below the linear curve, decreases as k increases.

From these graphs we sce that the system is destabilizing for larger
values of both H2 and &, and stabilizing for smaller values of both HZ and
k. 7. CONCLUSION

The nonlinear instability of two finite- thickness superposed incompress-
ible magnetic fluids in porous media under an applied horizontal magnetic
ficld is investigated. The system is governed by the continuity equation,
the Darcy’'s law and the Maxwell's equations (without free currents) in
each fluid. Darcy's law (2.2) describes the weakly nonlinear evolution of
the viscous fingering patterns obtained in a Hele- Shaw cell. This study,
describes the Rayleigh- Taylor instability, with a low viscosity fluid push-
ing a wore viscous one in a Hele- Shaw cell [27]. In a viscous potential flow
(viscous potential flow [25] arises from the kinematic assumption that the
curl of the fluid velocity vanishes identically in some region of space) the
fluid velocity is given by the gradient of a velocity potential [27,28]. The
effects of surface tension and weak viscosity are considered. The approxi-
mate picture is rigorously justified for the case of two fluids for which the
difference in viscosity is very small. Therefore, the only place where the
viscosity enters is in the normal component of the stress tensor. While the
continuity of the tangential stress tensor across the interface is identically
zero because of the continuity of the magnetic inductions and ficlds [29,30].
By using the method of multiple scaling we, obtain a dispersion relation in
the linear appreximation and a Ginzburg-Landau equation in the nonlinear

approximation.
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In the linear approximation, we have found that the magnetic field has
a stabilizing effect, while both the viscosity and the Darcy's coefficients
have a destabilizing effect.

In the nonlinear approximation, we have obtained the nonlinear diffusion
equation when the linearized magnetic field is assumed to be nearly equal
to the critical magnetic field. Further more, in section 6, it is shown that
a nonlinear Schrodinger equation 1s obtained in the absence of both the

viscosity and the Darcy’s coeflicients.

From the numerical discussion it 1s ovident that, besides the cffect of
the variation of the thickness of the two magnetic fluids, the viscosity and
the Darcy's cocfficients play an important role in the nonlinear stability

criterion of the problem.
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CAPTION OF FIGURES

Figure 1. Stability diagram in the log H} — k plane for a system
having p = 0.0012g/cm?, p, = 0.9856g/cm®, i, = 1.007, fis = 5.0,
o = 0.06dyn/cm. g = 98lem/s?, pu, = 0.078, py = 0.073, m = 1.9812,
n2 = 0.914, and w = 0, according to equation(4.15) .

(a) refers to hy. hy — oo, (b) to hy = 1.0cm, ho = 0.1cm,

(c) to hy = hy = 0.1cm, and (d) to hy = 0.01lem, h> = 0.1cm.

The dotted-line represents the linear cufvc while the broken-line repre-
sents the second-harmonic resonance curve. The symbols S and U denote
stable and unstable regions, respectively, in the linear problem. Shaded
regions are newly formed regions due to the nonlinear cffects :5; is stable
and U; is instable regions.

Pigure 2. Stability diagram for the same system considered in figure 1
but with 7, = 0, 1, = 0.

The symbols are the samne as in figure 1.

Figure 3. Stability diagram in the log H2 — k plane for a svstem having
P = 0.00036522¢/cm®, py = 0.596g/cm®, fiy = 1.007, ji, = 1.7,

o = 0.06dyn/cm and g = 98lem/s?, according to equation(6.1).

(a) refers to hy, hy — o0, (b) to hy = 1.0cm, hy = 0.1cm,
(c) to hy = hy = 0.1cm, and (d) to hy = 0.0lcm, hy = 0.1cm.

The symbols are the same as in figure 1.
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Figure 2
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