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Abstract: In this paper, a new method for solving multiobjective linear fractional programming problems with rough 
coefficient (MORLFP) is proposed. The MORLFP problem is considered by incorporating rough intervals in the 
coefficients of the objective functions. It is provided that a MORLFP problem is converted to an optimization problem 
with rough interval valued objective functions which it their bounds are four multiobjective linear fractional functions. 
The rough efficient solutions are characterized by using a new proposed algorithm. A numerical example is given for the 
sake of illustration 
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1. Introduction 

Fractional programming concerns with the 

optimization problems of one or several ratio 

functions subject to some constraints. Decision 

makers sometimes, may face up with the decision to 

optimize actual cost/standard cost, output/employee, 

etc with respect to some constraints. In management 

problems, both the ratio functions profit, cost and 

quality to be optimization are conflicting in nature. 

Such types of problems are inherently multiobjective 

fractional programming problems.  

Pawlak [11] defined rough set theory as a new 

mathematical approach to imperfect knowledge. 

Kryskiewice [8] uses rough set theory to incomplete 

has found many interesting applications. the rough 

set approach seems to be of fundamental importance 

to cognitive sciences, especially in the areas of 

machine learning, decision analysis, and expert 

systems Pal [13]. Rough set theory, introduced by 

Pawlak [12], expresses vagueness, not by means of 

membership, but employing a boundary region of a 

set. The theory of rough set deals with the 

approximation of an arbitrary subset of a universe by  

 

two definable or observable subsets called lower and 

upper approximations. Tsumoto [19] used the 

concept of lower and upper approximation in rough 

sets theory, knowledge hidden in information 

systems may be unraveled and expressed in the form 

of decision rules. The concept of rough interval will 

be introduced by Lu and Huang [9] to represent dual 

uncertain information of many parameters.The 

associated solution method will be presented to 

solve rough interval fuzzy linear programming 

problems. 

Chakraborty and Gupta [3] a different methodology 

had been proposed for solving multiobjective linear 

fractional programming (MOLFP) problems always 
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yielding an efficient solution and reduces the 

complexity in solving the (MOLFP) problems.. 

Tantawy [18] proposes a new method for solving 

linear fractional programming problems. Effati and 

Pakdaman [5] introduce an interval valued linear 

fractional programming (IVLFP) problem. They 

convert an IVLFP to an optimization problem with 

interval valued objective function which its bounds 

are linear fraction function. Sulaiman and Abulrahim 

[14] use transformation technique for solving 

multiobjective linear fractional programming 

problems to single objective linear fractional 

programming problem through a new method using 

mean and median and then solve the problem by 

modified simplex method. Guzel [6] proposes a new 

solution to the multiobjective linear fractional 

programming (MOLFP) problem. Thus MOLFP 

problem is reduced to linear programming problem. 

Sulaiman and  Abulrahim [17] uses a new 

transformation technique for solving multiobjective 

linear fractional programming problems to single 

objective linear fractional programming problem 

through a new method using arithmetic average and 

new arithmetic average technique and then solve the 

problem by modified simplex method. 

This paper deals with a new method for solving 

MORLFP problem. The MORLFP problem is 

considered by incorporating rough intervals into 

coefficient of the objective functions of the problem. 

The MORLFP problems are converted to four 

optimization problems. An algorithm is proposed for 

characterizing the solutions concept of the MORLFP 

problems. A numerical example is given for the sake 

of illustration.  

2. Preliminaries 

  2.1 Linear fractional programming problem: 

The general linear fractional programming (LFP) 

problems are defined as follows: 

                          Max     
୒(୶)

ୈ(୶)
     

Subject to: 

 𝑥 ∈ 𝑋 =  {𝑥 ∈ ℛ௡ ∶   𝐴𝑥 ≤ 𝑏 ,   𝑥 ≥ 0 },    

      𝑐் , 𝑑் ∈ ℛ௡ 𝛼,   𝛽 ∈  ℛ , 𝑏 ∈  ℛ௠ , 𝐴 ∈ ℛ௠×௡ 

Where 𝑁(𝑥) = 𝑐்𝑥 + 𝛼  , 𝐷(𝑥) = 𝑑்𝑥 + 𝛽   are 

real valued and continuous functions on  

𝑋 𝑎𝑛𝑑    𝑑்𝑥 + 𝛽 ≠ 0                          

Theorem 1. [6]  𝑧∗ =
ே(௫∗)

஽(௫∗)
= 𝑀𝑎𝑥  

ே(௫)

஽(௫)
      if and 

only if          

      𝐹(𝑧∗, 𝑥∗) = 𝑀𝑎𝑥{𝑁(𝑥) − 𝑧∗𝐷(𝑥) , 𝑥 ∈ 𝑋 }  = 0 . 

2.2 Multi objective linear fractional 

programming problem 

The general multi objective linear fractional 

programming (MOLFP) problems written as:  

𝑀𝑎𝑥  𝑧(𝑥) = {𝑧ଵ(𝑥), 𝑧ଶ(𝑥), … . . 𝑧௞(𝑥)}   

Subject to:  

𝑥 ∈ 𝑋 =  {𝑥 ∈ ℛ௡ ∶   𝐴𝑥 ≤ 𝑏 ,      𝑥 ≥ 0 },             

  where  𝑧௜(𝑥) =
௖೔௫ାఈ೔

ௗ೔௫ାఉ೔
=

ே೔(௫)

஽೔(௫)
 , 

    𝑐௜ , 𝑑௜ ∈ ℛ௡ , 𝛼௜  , 𝛽௜ ∈ ℛ   𝐷௜(𝑥) > 0,  

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,2, … , 𝑘.  

Definition 1.    𝑥∗ ∈ ℛ௡  is an efficient solution for 

MOLFP problems if there is no    𝑥 ∈ ℛ௡ such that   

ே೔(௫)

஽೔(௫)
≥

ே೔(௫∗)

஽೔(௫∗)
, 𝑖 = 1,2, …k   and                                                                

   ே೔(௫)

஽೔(௫)
>

ே೔(௫∗)

஽೔(௫∗)
 ,  for at least one 𝑖 . 

Theorem 2.   If 𝑥෤ is an optimal solution of 

        𝑀𝑎𝑥൛∑ 𝑤௜(𝑁௜(𝑥) − (𝑧௜)
∗൫𝐷௜(𝑥 )൯),௞

௜ୀଵ  𝑥 ∈ 𝑋 ൟ                        

 where is (𝑧௜)
∗ =

ே೔(௫∗)

஽೔(௫∗)
= 𝑀𝑎𝑥  

ே೔(௫)

஽೔(௫)
  for all  𝑖 =

1,2, … 𝑘 ,   

 𝑤௜ ∈ 𝑊 = ൛𝑤௜ ∈ ℛ௡: 𝑤௜ ≥ 0 , ∑ 𝑤௜ = 1௞
௜ୀଵ ൟ 

 then 𝑥෤ is an efficient solution of MOLFP problems. 

The proof of this theorem is much similar to the 

proof given by Guzel in [6]. 

2.3   Rough interval linear fractional 

programming  

  Definition 2. Suppose  𝐼 is the set of all compact 

intervals in the set of all real numbers  ℛ  . If  𝐴 ∈ 𝐼  

then we write 𝐴 = [𝑎௅  , 𝑎௎]with 𝑎௅ ≤ 𝑎௎ and the    

following holds:  [5]  

i. 𝐴 ≥ 0   iff 𝑥௜ ≥ 0   for all 𝑥௜ ∈ 𝐴 . 
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ii. 𝐴 ≤ 0   iff 𝑥௜ ≤ 0    for all 𝑥௜ ∈ 𝐴 . 

Definition 3.  Let  𝑋  be denote a compact set of real 

numbers. A rough interval Χோ is defined as: 

  Χோ = [ 𝑋(௅஺ூ): 𝑋(௎஺ூ)] where  𝑋(௅஺ூ)𝑎𝑛𝑑 𝑋(௎஺ூ) are 

compact intervals denoted by lower and upper 

approximation intervals 

 of   Χோ   with  𝑋(௅஺ூ) ⊆ 𝑋(௎஺ூ). 

 

Definition 4.   For the rough interval Χோ  the 

following holds:  

i. Χோ ≽ 0 ,  iff     𝑋(௅஺ூ) ≥ 0    and     𝑋(௎஺ூ) ≥ 0   

ii. Χோ ≼ 0  ,   iff    𝑋(௅஺ூ) ≤ 0    and    𝑋(௎஺ூ) ≤ 0 .  

In this paper we denote by   𝐼ோ  is the set of all rough 

intervals in ℛ . Suppose 𝐴ோ   , 𝐵ோ  ∈ 𝐼ோ  we can write 

𝐴ோ = ൣ𝐴(௅஺ூ)  ∶  𝐴(௎஺ூ) ൧ and also                            

   𝐵ோ = [ 𝐵(௅஺ூ)    ∶   𝐵(௎஺ூ) ]  where 

𝐴(௅஺ூ) = [𝑎ି௅  , 𝑎ା௅],    𝐵(௅஺ூ)  [𝑏ି௅ ,    𝑏ା௅]                                       

𝑎ି௅ , 𝑎ା௅, 𝑏ି௅ , and   𝑏ା௅ ∈ ℛ. 

 Similarly we can defined  𝐴(௎஺ூ) , 𝐵( ௎஺ூ). 

Definition 5.  [9]  For two rough intervals  𝐴ோ ,  𝐵ோ    

when  𝐴ோ ≽ 0  𝑎𝑛𝑑   𝐵ோ ≽ 0             we can define 

the following operations on rough intervals as 

follows:  

1) 𝐴ோ  + 𝐵ோ =  [ ൣ𝐴(௅஺ூ + 𝐵(௅஺ூ)൧ ∶ ൣ𝐴(௎஺ூ) + 𝐵(௎஺ூ)൧ ] 

     Such that:          

 ൣ𝐴(௅஺ூ) + 𝐵(௅஺ூ)൧ = [𝑎ି௅ +   𝑏ି௅ , 𝑎ା௅ +   𝑏ା௅] and 

   ൣ𝐴(௎஺ூ) + 𝐵(௎஺ூ)൧   = [𝑎ି௎ +   𝑏ି௎ , 𝑎ା௎ +   𝑏ା௎] . 

2) 𝐴ோ − 𝐵ோ =   [ ൣ𝐴(௅஺ூ − 𝐵(௅஺ூ)൧ ∶ ൣ𝐴(௎஺ூ) − 𝐵(௎஺ூ)൧  

      Such that: 

 ൣ𝐴(௅஺ூ) − 𝐵(௅஺ூ)൧ = [𝑎ି௅ −   𝑏ା௅ ,   𝑎ା௅ −  𝑏ି௅] and                                                                                                                                  

ൣ𝐴(௎஺ூ) − 𝐵(௎஺ூ)൧ = [𝑎ି௎ −   𝑏ା௎  ,    𝑎ା௎ −   𝑏ି௎] . 

3) 𝐴ோ × 𝐵ோ =  [ ൣ𝐴(௅஺ூ) × 𝐵(௅஺ூ)൧ ∶ ൣ𝐴(௎஺ூ) × 𝐵(௎஺ூ)൧ ] 

    Such that: 

  ൣ𝐴(௅஺ூ) × 𝐵(௅஺ூ)൧ = [𝑎ି௅ ×  𝑏ି௅ , 𝑎ା௅ ×  𝑏ା௅] and                                                                                                                          

    ൣ𝐴(௎஺ூ) × 𝐵(௎஺ூ)൧ = [𝑎ି௎ ×   𝑏ି௎ ,   𝑎ା௎ ×   𝑏ା௎] . 

4) 𝐴ோ ∕ 𝐵ோ =  [ ൣ𝐴(௅஺ூ) ∕ 𝐵(௅஺ூ)൧ ∶ ൣ𝐴(௎஺ூ) ∕ 𝐵(௎஺ூ)൧ ] 

       Such that: 

  ൣ𝐴(௅஺ூ) ∕ 𝐵(௅஺ூ)൧ = [𝑎ି௅ ∕   𝑏ା௅ ,   𝑎ା௅ ∕   𝑏ି௅]  and                                                                                                                          

    ൣ𝐴(௎஺ூ) ∕ 𝐵(௎஺ூ)൧ = [𝑎ି௎ ∕   𝑏ା௎  ,    𝑎ା௎ ∕   𝑏ି௎] .  

Definition 6.[5] Let  𝐼  be the set of all closed and 

bounded intervals in ℛ .                           

  A function 𝑓: ℛ௡ → 𝐼 is called an interval valued 

function with    𝑓(𝑥) = [𝑓௅(𝑥) , 𝑓௎(𝑥)  ] where for 

every 𝑥 ∈ ℛ௡  ,  𝑓௅(𝑥),   𝑓௎(𝑥)  are real valued 

function ,with  𝑓௅(𝑥) ⋞  𝑓௎(𝑥) . 

Definition 7.  A function   𝑓: ℛ௡   → 𝐼ோ is called a 

rough interval function with 

 𝑓ோ(𝑥) = ൣ𝑓(௅஺ூ)(𝑥) ∶  𝑓(௎஺ூ)(𝑥)൧ where for every 

𝑥 ∈ ℛ௡  ,   𝑓(௅஺ூ)(𝑥),   𝑓(௎஺ூ)(𝑥)  are lower and upper 

approximation interval valued functions, with                             

𝑓(௅஺ூ)(𝑥)  ⋞  𝑓(௎஺ூ)(𝑥)   

Proposition: [10] Let  𝑓 be a rough interval function 

defined on 𝑋 ⊂ ℛ௡ and 𝑥଴ ∈ 𝑋 . Then 𝑓 is 

continuous at 𝑥଴ if and only if 𝑓(௅஺ூ)(𝑥) and 

𝑓(௎஺ூ)(𝑥) are continuous at 𝑥଴  . 

3. Problem Formulation  

The multiobjective linear fractional programming 

problems with rough coefficient (MORLFP) are 

defined as follows 

 𝑀𝑎𝑥 ቊ𝑍௜
ோ(𝑥) =

𝑁௜
ோ(𝑥)

𝐷௜
ோ(𝑥)

=
𝑐௜

ோ𝑥 + 𝛼௜
ோ

𝑑௜
ோ𝑥 + 𝛽௜

ோ     𝑖 = 1,2, … 𝑘 ቋ                   

        Subject to: 

    𝑥 ∈ 𝑋 = {𝑥 ∈ ℛ௡:  𝐴𝑥 ≤ 𝑏,   𝑥 ≥ 𝑜 }.    (1)  

     where  𝑐௜
ோ ,  𝑑௜

ோ ,  𝛼௜
ோ  and   𝛽௜

ோ  ∈ 𝐼ோ  , 𝐴 is an  𝑚 ×

𝑛 constraint matrix,  𝑏 ∈ ℛ௠ , 𝑘 ≥ 2 . 

 We can rewrite problem  (1) as follows: 

  𝑀𝑎𝑥 ൜𝑍௜
ோ(𝑥) =

[௖೔
ಽಲ಺௫ାఈ೔

ಽಲ಺ :  ௖೔
ೆಲ಺௫ାఈ೔

ೆಲ಺  ]

[ௗ೔
ಽಲ಺௫ାఉ೔

ಽಲ಺ :  ௗ೔
ೆಲ಺௫ାఉ೔

ೆಲ಺ ] 
   𝑖 = 1,2 … , 𝑘ൠ               

      Subject to: 

  𝑥 ∈ 𝑋 = {𝑥 ∈ ℛ௡:  𝐴𝑥 ≤ 𝑏,   𝑥 ≥ 𝑜 }.     (2)    
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The objective function in (2) is a quotient of two 

rough interval functions. Using the definition of 

operations on a rough intervals  we have    

   𝑍௜
ோ(𝑥) = [ 

௖೔
ಽಲ಺௫ାఈ೔

ಽಲ಺ 

ௗ೔
ಽಲ಺௫ାఉ೔

ಽಲ಺ ∶  
௖೔

ೆಲ಺௫ାఈ೔
ೆಲ಺ 

ௗ೔
ೆಲ಺௫ାఉ೔

ೆಲ಺    𝑖 = 1,2 … 𝑘    (3)                                      

Now equations (3) can be written into the form: 

    𝑍௜
ோ(𝑥) = [     𝑧௜

௅஺ூ(𝑥) ∶   𝑧௜
௎஺ூ(𝑥) ] Where 

   𝑧௜
௅஺ூ(𝑥) ,   𝑧௜

௎஺ூ(𝑥) lower and upper multiobjective 

approximation interval valued linear are fractional 

functions       defined as:    

     𝑧௜
௅஺ூ(𝑥) =   

[௖೔
షಽ௫ାఈ೔

షಽ ,  ௖೔
శಽ௫ାఈ೔

శಽ ]

[ௗ೔
షಽ௫ାఉ೔

షಽ  ,   ௗ೔
శಽ௫ାఉ೔

శಽ ] 
   

 and    𝑧௜
௎஺ூ(𝑥) =   

[௖೔
షೆ௫ାఈ೔

షೆ ,  ௖೔
శೆ௫ାఈ೔

శೆ ]

[ௗ೔
షೆ௫ାఉ೔

షೆ  ,   ௗ೔
శೆ௫ାఉ೔

శೆ ] 
,   

 for all     𝑖 = 1,2 … , 𝑘     

Using the theorem (2-1) in [5] we can write equation (3) 

as the following: 

  𝑍௜
ோ(𝑥) = ቂ ൣ  𝑧௜

ି௅(𝑥)  ,   𝑧௜
ା௅(𝑥)൧ ∶ ൣ  𝑧௜

ି௎(𝑥), 𝑧௜
ା௎(𝑥)൧ቃ,     (4)           

where    𝑧௜
ି௅(𝑥)  ,      𝑧௜

ା௅(𝑥)   , 𝑧௜
ି௎(𝑥) and 

  𝑧௜
ା௎(𝑥),   for all     𝑖 = 1,2 … . , 𝑘                   

  are multiobjective linear fractional functions 

defined as: 

   𝑧௜
ି௅(𝑥) =  

௖೔
షಽ௫ାఈ೔

షಽ 

ௗ೔
శಽ௫ାఉ೔

శಽ      ,      𝑧௜
ା௅(𝑥) =  

௖೔
శಽ௫ାఈ೔

శಽ 

ௗ೔
షಽ௫ାఉ೔

షಽ  , 

   𝑧௜
ି௎(𝑥) =  

௖೔
షೆ௫ାఈ೔

షೆ 

ௗ೔
శೆ௫ାఉ೔

శೆ    and    𝑧௜
ା௎(𝑥) =  

௖೔
శೆ௫ାఈ೔

శೆ 

ௗ೔
షೆ௫ାఉ೔

షೆ   

                         For all     𝑖 = 1,2 … . , 𝑘.   

Now the problem (1) can be converted into 

multiobjective rough interval linear fractional 

programming (MORLFP) problems as follows: 

𝑀𝑎𝑥 ൛𝑍𝑖
𝑅(𝑥) = [ [  𝑧𝑖

−𝐿(𝑥),  𝑧𝑖
+𝐿(𝑥)] ∶ ൣ  𝑧𝑖

−𝑈(𝑥), 𝑧
𝑖

+𝑈(𝑥)൧]  ൟ,                          

     Subject to: 

    𝑥 ∈ 𝑋 = {𝑥 ∈ ℛ௡:  𝐴𝑥 ≤ 𝑏,   𝑥 ≥ 𝑜 }.   (5) 

                         For all   𝑖 = 1,2 … . , 𝑘     

By using the arithmetic operations and partial 

ordering relations, we decompose the MORLFP 

problem (5) can be the following four sub problems 

defines as:  

Pଵ    ∶   

   𝑀𝑎𝑥   𝑧௜
ା௎(𝑥) =

  ே೔
శೆ(௫)

  ஽೔
శೆ(௫)

=
௖೔

శೆ௫ାఈ೔
శೆ 

ௗ೔
షೆ௫ାఉ೔

షೆ, 𝑖 = 1,2 … , 𝑘      

       Subject to: 

    𝑥 ∈ 𝑋 = {𝑥 ∈ ℛ௡:  𝐴𝑥 ≤ 𝑏,   𝑥 ≥ 𝑜 }         

Pଶ      ∶  

   𝑀𝑎𝑥   𝑧௜
ି௎(𝑥) =

  ே೔
షೆ(௫)

  ஽೔
షೆ(௫)

=
௖೔

షೆ௫ାఈ೔
షೆ 

ௗ೔
శೆ௫ାఉ೔

శೆ, 𝑖 = 1,2 … , 𝑘   

           Subject to:  

   𝑥 ∈ 𝑋 = {𝑥 ∈ ℛ௡:  𝐴𝑥 ≤ 𝑏,   𝑥 ≥ 𝑜 } 

                 𝑧௜
ି௎(𝑥)𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓  𝑧௜

ା௎(𝑥) 

Pଷ         : 

    𝑀𝑎𝑥   𝑧௜
ା௅(𝑥) =

  ே೔
శಽ(௫)

  ஽೔
శಽ(௫)

=
௖೔

శಽ௫ାఈ೔
శಽ 

ௗ೔
షಽ௫ାఉ೔

షಽ  𝑖 = 1,2 … . , 𝑘   

          Subject to:  
 𝑥 ∈ 𝑋 = {𝑥 ∈ ℛ௡:  𝐴𝑥 ≤ 𝑏,   𝑥 ≥ 𝑜 }                 

𝑚𝑎𝑥 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓  𝑧௜
ି௎(𝑥) ≤   𝑧௜

ା௅(𝑥)

≤  𝑀𝑎𝑥 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓  𝑧௜
ା௎(𝑥) 

Pସ       ∶          

  𝑀𝑎𝑥   𝑧௜
ି௅(𝑥) =

  ே೔
షಽ(௫)

  ஽೔
షಽ(௫)

=
௖೔

షಽ௫ାఈ೔
షಽ 

ௗ೔
శಽ௫ାఉ೔

శಽ , 𝑖 = 1,2 … . , 𝑘   

                          Subject to: 
   𝑥 ∈ 𝑋 = {𝑥 ∈ ℛ௡:  𝐴𝑥 ≤ 𝑏,   𝑥 ≥ 𝑜 }                 
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓  𝑧௜

ି௎(𝑥) ≤   𝑧௜
ି௅(𝑥)

≤  𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓  𝑧௜
ା௅(𝑥) 

Now using Theorem (2) for socialization 

problems 𝑃ଵ,  𝑃ଶ,  𝑃ଷand  𝑃ସ which are MOLFP 

problems to the equivalent form which are linear 

programming (LP) problems (  𝑃ଵ
ᇱ, 𝑃ଶ

ᇱ , 𝑃ଷ
ᇱ   and  𝑃ସ

ᇱ ) 

as follows: 

𝐏𝟏
ᇱ ∶ 

൛∑  ω୧ (N୧
ା୙(x) − (Z୧

ା୙)∗D୧
ା୙(x)୩

୧ୀଵ  ), i = 1,2, … k   ൟ  
            Subject to:  

 𝑥 ∈ 𝑋 = {𝑥 ∈ ℛ௡:  𝐴𝑥 ≤ 𝑏,   𝑥 ≥ 𝑜 }         

  𝐏𝟐
ᇱ ∶      

  𝑀𝑎𝑥 ൛∑ 𝜔௜ (𝑁௜
ି௎(𝑥) − (𝑍௜

ି௎)∗𝐷௜
ି௎(𝑥)௞

௜ୀଵ  ), 𝑖 = 1,2, … , 𝑘  ൟ 
  Subject to: 
   𝑥 ∈ 𝑋 = {𝑥 ∈ ℛ௡:   𝐴𝑥 ≤ 𝑏,   𝑥 ≥ 𝑜 }                                                  
  𝑧௜

ି௎(𝑥) ≤ 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓  𝑧௜
ା௎(𝑥) 

     𝐏𝟑  
ᇱ  :       

     

 𝑀𝑎𝑥 ൝෍  𝜔௜(𝑁௜
ା௅(𝑥) − (𝑍௜

ା௅)∗𝐷௜
ା௅(𝑥)

௞

௜ୀଵ

 ) , 𝑖 = 1,2, … , 𝑘 ൡ 

         Subject to:  
   𝑥 ∈ 𝑋 = {𝑥 ∈ ℛ௡:  𝐴𝑥 ≤ 𝑏,   𝑥 ≥ 𝑜}              
maximum value of  z୧

ି୙(x) ≤   z୧
ା୐(x)  ≤

                            Maximize value of  z୧
ା୙(x) 

 

 𝐏𝟒
ᇱ ∶           

 Max ൛∑ ω୧ (N୧
ି୐(x) − (Z୧

ି୐)∗D୧
ି୐(x)୩

୧ୀଵ  ) , i = 1,2, … , k  ൟ      
Subject to:   
  𝑥 ∈ 𝑋 = {𝑥 ∈ ℛ௡:  𝐴𝑥 ≤ 𝑏,   𝑥 ≥ 𝑜                
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𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓  𝑧௜
ି௎(𝑥) ≤   𝑧௜

ି௅(𝑥)

≤  𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓  𝑧௜
ା௅(𝑥) 

                                                         
 Where  𝜔 ∈ W = ൛𝜔௜: ∑ 𝜔௜

௞
௜ୀଵ = 1, 𝜔௜ ≥ 0 , 𝑖 = 1,2, … , 𝑘 ൟ    

    Theorem 3.[4]  If 𝑥∗ ∈ ℛ௡  is an optimal solution 
for LP problems   𝑃௜

ᇱ, 𝑖 = 1,2,3,4   then  𝑥∗ ∈ ℛ௡   is 
an efficient solution of the corresponding        
MOLFP problems  𝑃௜   , 𝑖 = 1,2,3,4  . 
Definition 8.  𝑥∗ ∈ ℛ௡ is a rough efficient solution of 
MORLFP problem (1) if there is no 𝑥 ∈ ℛ௡ such that 
ே೔

ೃ(௫)

஽೔
ೃ(௫)

≽
ே೔

ೃ(௫∗)

஽೔
ೃ(௫∗)

 , 𝑖 = 1,2, … , 𝑘 and 
ே೔

ೃ(௫)

஽೔
ೃ(௫)

≻
ே೔

ೃ(௫∗)

஽೔
ೃ(௫∗)

  for 

at least one 𝑖 
Theorem 4. If  𝑥∗ ∈ ℛ௡ is an efficient solution of the 
problems 𝑃௜   , 𝑖 = 1,2,3,4   then 𝑥∗ ∈ ℛ௡ is a rough 
efficient solution of problem (1).                                           

4.  Algorithm solution for MORLFP problem :     

We construct the algorithm for solving a MORLFP 
problem as follows:  

Step1.  Convert the problem to the form of 
MORLFP problem (5).  

Step2. Transfer the problem (5) to four problems 
on forms 𝑃ଵ,  𝑃ଶ,  𝑃ଷand  𝑃 ସ which are  MOLFP 
problems.   

Step3.  Find the maximum value of each objective 
function of  𝑃ଵ, 𝑃ଶ  , 𝑃ଷ  and 𝑃ସ as: 

   (𝑧௜)
∗ =

ே೔(௫∗)

஽೔(௫∗)
=  Maxถ

୶∈ଡ଼

   
ே೔(௫)

஽೔(௫)
 

Step4.   Use the weighting method to convert each 
problems 𝑃ଵ,  𝑃ଶ,  𝑃ଷ and  𝑃ସ   to single objective in 
the form 𝑃ଵ

ᇱ, 𝑃ଶ
ᇱ , 𝑃ଷ

ᇱ and 𝑃ସ
ᇱ  respectively.    

Step5.  Find the optimal solution of each linear 
programming LP problem 𝑃ଵ

ᇱ, 𝑃ଶ
ᇱ, 𝑃ଷ

ᇱ and 𝑃ସ
ᇱ.  

Step6.  Using the results of step5, obtain a rough 
efficient solution to the given MORLFP problem 
by the Theorem 3 and Theorem 4.  with objective 
value:   

Z୧
ୖ (x∗)  = [ [Z୧

ି୐(x∗), Z୧
ା୐(x∗)] ∶ [Z୧

ି୙(x∗) , Z୧
ା୙(x∗)]  ]  

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,2 … , 𝑘  

The algorithm is illustrated with the following 
example. 

5. Numerical example:  

 Consider the following MORLFP problem: 

Max Zଵ(x) =
ൣ[ଵ.ହ ,   ଶ.ହ]: [ଵ ,ଷ ]൧௫భ శൣ[ଶ.ହ ,   ଷ.ହ] ∶ [ଶ ,   ସ]൧௫మ 

ൣ[ଵ ,   ଶ] ∶ [଴.ହ ,   ଷ ]൧௫భ ାൣ[ଶ ,   ଷ ] ∶[ଵ ,    ହ]൧௫మ  ାൣ[ଶ ,   ହ ] ∶ [ଵ ,   ଻ ]൧
  ,  

 Zଶ(x) =
ൣ[ଶ ,   ସ ]: [ଵ ,ହ ]൧୶భ శൣ ଷ ,    ହ ] ∶ [ଶ ,   ଺]൧୶మ 

ൣ[ଷ ,   ହ] ∶ [ଵ ,   ଻ ]൧୶భ ାൣ[ଶ ,ହ ] ∶[ଵ ,   ଺]൧୶మ  ାൣ[ଶ ,   ଷ ] ∶ [ଵ ,   ସ ]൧
  

       Subject to:    
𝑥ଵ + 𝑥ଶ ≤ 5,       3𝑥ଵ + 𝑥ଶ ≤ 10 

2𝑥ଵ + 𝑥ଶ ≤ 7,       𝑥ଵ ≤ 3 ,    𝑥ଵ, 𝑥ଶ ≥ 0 
 

  Now the decomposition problem of the given 
MORLFP problem as in the following form: 

𝑀𝑎𝑥 ቄ  𝑧ଵ
ା௎(𝑥) =

ଷ௫భାସ௫మ

଴.ହ௫భା௫మାଵ 
,  𝑧ଶ

ା௎(𝑥) =
ହ௫భା଺௫మ

௫భା௫మାଵ  
  ቅ  

𝑀𝑎𝑥 ቄ  𝑧ଵ
ି௎(𝑥) =

௫భାଶ௫మ

ଷ௫భାହ௫మା଻ 
,  𝑧ଶ

ି௎(𝑥) =
௫భାଶ௫మ

଻௫భା଺௫మାସ  
  ቅ  

   𝑀𝑎𝑥 ቄ  𝑧ଵ
ା௅(𝑥) =

ଶ.ହ௫భାଷ.ହ௫మ

௫భାଶ௫మାଶ 
,  𝑧ଶ

ା௅(𝑥) =
ସ௫భାହ௫మ

ଷ௫భାଶ௫మାଶ  
  ቅ  

𝑀𝑎𝑥 ቄ  𝑧ଵ
ି௅(𝑥) =

ଵ.ହ௫భାଶ.ହ௫మ

ଶ௫భାଷ௫మାହ 
  ,   𝑧ଶ

ି௅(𝑥) =
ଶ௫భାଷ௫మ

ହ௫భାହ௫మାଷ  
ቅ  

Subject to :        
𝑥ଵ + 𝑥ଶ ≤ 5,       3𝑥ଵ + 𝑥ଶ ≤ 10 

2𝑥ଵ + 𝑥ଶ ≤ 7,       𝑥ଵ ≤ 3 ,    𝑥ଵ, 𝑥ଶ ≥ 0 
Now construct the four problems and solving as 
follows : 

𝐏𝟏:    
    𝑀𝑎 ቄ  𝑧ଵ

ା௎(𝑥) =
ଷ௫భାସ௫మ

଴.ହ௫భା௫మାଵ 
  ,   𝑧ଶ

ା௎(𝑥) =
ହ௫భା଺௫మ

௫భା௫మାଵ  
ቅ  

            Subject to:         
                         𝑥ଵ + 𝑥ଶ ≤ 5,       3𝑥ଵ + 𝑥ଶ ≤ 10  
       2𝑥ଵ + 𝑥ଶ ≤ 7,       𝑥ଵ ≤ 3 ,    𝑥ଵ, 𝑥ଶ ≥ 0 
                                        
It is observed that        0 ≤  𝑧ଵ

ା௎ ≤ 3.71       and   
       0 ≤  𝑧ଶ

ା௎ ≤ 5       . 
This MOLFP problem is equivalent to the following 
LP problem can be written as: 
  

𝑷𝟏
ᇱ : 

   𝑀𝑎𝑥  ൛𝜔ଵ൫3𝑥ଵ + 4𝑥ଶ − 3.71(0.5𝑥ଵ + 𝑥ଶ + 1)൯ +

                                      𝜔ଶ( 5𝑥ଵ + 6𝑥ଶ − 5( 𝑥ଵ + 𝑥ଶ + 1))ൟ  
               Subject to :        

      𝑥ଵ + 𝑥ଶ ≤ 5,       3𝑥ଵ + 𝑥ଶ ≤ 10 
2𝑥ଵ + 𝑥ଶ ≤ 7,       𝑥ଵ ≤ 3 ,    𝑥ଵ, 𝑥ଶ ≥ 0 

For 𝜔ଵ = 𝜔ଶ = 0.5 
The optimal solution of the LP problem 𝑃ଵ 

ᇱ is 
obtained as:  𝑥ଵ

∗ = 0  , 𝑥ଶ
∗  = 5  

The efficient  solution  of MOLFP problem 𝑃ଵ are:  
𝑥ଵ

∗  = 0 ,   𝑥ଶ
∗  = 5  with objective value 

.   𝑧ଵ
ା௎ = 3.33,   𝑧ଶ

ା௎ = 5 . 
𝑷𝟐:   
     𝑀𝑎𝑥 ቄ  𝑧ଵ

ି௎(𝑥) =
௫భାଶ௫మ

ଷ௫భାହ௫మା଻ 
  ,   𝑧ଶ

ି௎(𝑥) =
௫భାଶ௫మ

଻௫భା଺௫మାସ 
ቅ 

Subject to: 

   
௫భାଶ௫మ

ଷ௫భାହ௫మା଻ 
≤ 3.33 ,       

௫భାଶ௫మ

଻௫భା଺௫మାସ 
≤ 5 , 

𝑥ଵ + 𝑥ଶ ≤ 5,       3𝑥ଵ + 𝑥ଶ ≤ 10 
2𝑥ଵ + 𝑥ଶ ≤ 7,       𝑥ଵ ≤ 3 ,    𝑥ଵ, 𝑥ଶ ≥ 0 

 
It is observed that        0 ≤  𝑧ଵ

ି௎ ≤ 0.31      and   
       0 ≤  𝑧ଶ

ି௎ ≤ 0.29 .       
This MOLFP problem is equivalent to the 

following LP problem can be written as: 
 𝑷𝟐 

ᇱ : 
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  𝑀𝑎𝑥 ൛𝜔ଵ൫𝑥ଵ + 2𝑥ଶ − 0.31(3𝑥ଵ + 5𝑥ଶ + 7)൯   +

 𝜔ଶ ( 𝑥ଵ + 2𝑥ଶ − 0.29(7 𝑥ଵ + 6𝑥ଶ + 4))ൟ  

            Subject to:  
௫భାଶ௫మ

ଷ௫భାହ௫మା଻ 
≤

3.33 ,      
௫భାଶ௫మ

଻௫భା଺௫మାସ 
≤ 5 

𝑥ଵ + 𝑥ଶ ≤ 5,       3𝑥ଵ + 𝑥ଶ ≤ 10 
2𝑥ଵ + 𝑥ଶ ≤ 7,       𝑥ଵ ≤ 3 ,    𝑥ଵ, 𝑥ଶ ≥ 0 

For 𝜔ଵ = 𝜔ଶ = 0.5 
The optimal solution of the LP problem 𝑃ଶ 

ᇱ   is 
obtained as: 𝑥ଵ

∗ = 0  , 𝑥ଶ
∗  = 5 

The efficient solution of MOLFP problem 𝑃ଶ 
are: 

 𝑥ଵ
∗ = 0  , 𝑥ଶ

∗  = 5  with the objective value 
   𝑧ଵ

ି௎ = 0.31 ,   𝑧ଶ
ି௎ = 0.29   . 

𝑷𝟑 :   
𝑀𝑎𝑥 ቄ 𝑧ଵ

ା௅(𝑥) =
ଶ.ହ௫భାଷ.ହ௫మ

௫భାଶ௫మାଶ 
,  𝑧ଶ

ା௅(𝑥) =
ସ௫భାହ௫మ

ଷ௫భାଶ௫మାଶ 
ቅ     

Subject to :  

0.31 ≤
2.5𝑥ଵ + 3.5𝑥ଶ

𝑥ଵ + 2𝑥ଶ + 2 
≤  3.33 , 

0.29 ≤  
ସ௫భାହ௫మ

ଷ௫భାଶ௫మାଶ 
≤ 5 , 

      𝑥ଵ + 𝑥ଶ ≤ 5 ,   3𝑥ଵ + 𝑥ଶ ≤ 10 , 
2𝑥ଵ + 𝑥ଶ ≤ 7,     𝑥ଵ ≤ 3 ,    𝑥ଵ , 𝑥ଶ ≥ 0 

It is observed that        0 ≤  𝑧ଵ
ା௅ ≤ 1.57      and   

       0 ≤  𝑧ଶ
ା௅ ≤ 2.08       . 

 
This MOLFP problem is equivalent to the 

following LP problem can be written as: 
  𝑷 𝟑

ᇱ  :  
     𝑀𝑎𝑥 ൛𝜔ଵ൫2.5 𝑥ଵ + 3.5𝑥ଶ − 1.57(𝑥ଵ + 2𝑥ଶ + 2)൯  +

                            𝜔ଶ ( 4𝑥ଵ + 5𝑥ଶ − 2.08(3 𝑥ଵ + 2𝑥ଶ + 2))ൟ, 
Subject to : 

0.31 ≤
ଶ.ହ௫భାଷ.ହ௫మ

௫భାଶ௫మାଶ 
≤  3.33 ,  

0.29 ≤  
ସ௫భାହ௫మ

ଷ௫భାଶ௫మାଶ 
≤ 5     , 

      𝑥ଵ + 𝑥ଶ ≤ 5 ,    3𝑥ଵ + 𝑥ଶ ≤ 10 , 
2𝑥ଵ + 𝑥ଶ ≤ 7,     𝑥ଵ ≤ 3 ,          𝑥ଵ , 𝑥ଶ ≥ 0  . 

For 𝜔ଵ = 𝜔ଶ = 0.5  
The optimal solution of the LP problem 𝑃ଷ 

ᇱ  is 
obtained as:  𝑥ଵ

∗ = 0  , 𝑥ଶ
∗  = 5 

The efficient solution of MOLFP problem 𝑃ଷ are                                                     
𝑥ଵ

∗ = 0  , 𝑥ଶ
∗  = 5,   with objective 

value  𝑧ଵ
ା௅ = 1.46  ,   𝑧ଶ

ା௅ = 2.08 
𝐏𝟒 ∶   

  𝑀𝑎𝑥 ቄ  𝑧ଵ
ି௅(𝑥) =

ଵ.ହ௫భାଶ.ହ௫మ

ଶ௫భାଷ௫మାହ 
  ,   𝑧ଶ

ି௅(𝑥) =
ଶ௫భାଷ௫మ

ହ௫భାହ௫మାଷ 
ቅ 

Subject to : 

0.31 ≤
ଵ.ହ௫భାଶ.ହ௫మ

ଶ௫భାଷ௫మାହ 
  ≤  1.46 ,  

0.29 ≤  
ଶ௫భାଷ௫మ

ହ௫భାହ௫మାଷ 
≤ 2.08 , 

   𝑥ଵ + 𝑥ଶ ≤ 5    3𝑥ଵ + 𝑥ଶ ≤ 10 ,    
. 2𝑥ଵ + 𝑥ଶ ≤ 7,     𝑥ଵ ≤ 3 ,     𝑥ଵ , 𝑥ଶ ≥ 0 

It is observed that        0 ≤  𝑧ଵ
ି௅ ≤ 0.625      and   

       0 ≤  𝑧ଶ
ି௅ ≤ 0.54       . 

This MOLFP problem is equivalent to the 
following LP problem can be written as:  

   𝑷 𝟒
ᇱ :       

    𝑀𝑎𝑥 ൛𝜔ଵ൫1.5 𝑥ଵ + 2.5𝑥ଶ − 0.625(2𝑥ଵ + 3𝑥ଶ + 5)൯ +

        𝜔ଶ( 2𝑥ଵ + 3𝑥ଶ − 0.54(5 𝑥ଵ + 5𝑥ଶ + 3))ൟ 
Subject to :    

0.31 ≤
ଵ.ହ௫భାଶ.ହ௫మ

ଶ௫భାଷ௫మାହ 
  ≤  1.46 ,  

0.29 ≤  
ଶ௫భାଷ௫మ

ହ௫భାହ௫మାଷ 
≤ 2.08  , 

      𝑥ଵ + 𝑥ଶ ≤ 5 ,   3𝑥ଵ + 𝑥ଶ ≤ 10 , 
2𝑥ଵ + 𝑥ଶ ≤ 7,     𝑥ଵ ≤ 3 ,    𝑥ଵ , 𝑥ଶ ≥ 0 

For 𝜔ଵ = 𝜔ଶ = 0.5  
The optimal solution of the LP problem 𝑃ସ 

ᇱ   is 
obtained as: 𝑥ଵ

∗ = 0  , 𝑥ଶ
∗  = 5 

The efficient solution of MOLFP problem 𝑃ସare:                                                      
𝑥ଵ

∗ = 0  , 𝑥ଶ
∗  = 5,  with objective 

value   𝑧ଵ
ି௅ = 0.625  ,   𝑧ଶ

ି௅ = 0.54 . 
The rough efficient solution of original 

MORLFP problem is 𝑥ଵ
∗ = 0  , 𝑥ଶ

∗ = 5   
with the rough objective value   

 zଵ
ୖ = ൣ[0.625 ,   1.46]  ∶   [0.31 ,   3.33]൧ ,   

  zଶ
ୖ =  ൣ[0.54 ,   2.08]  ∶   [0.29 ,   5]൧ . 

6. Conclusion 
A new approach is proposed for solving 
multiobjective linear fractional programming 
problems with rough coefficients (MORLFP) 
problem. For treating the problems use the method 
of Effati and Pakdaman to convert the MORLFP 
problem into four multi objective linear fractional 
programming MOLFP problems. By the method of  
Dinkelbach, the MOLFP problems is convert to 
linear programming LP problems .  An algorithm is 
established for characterizing the solutions concept 
of MORLFP problems .   
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  الملخص العربي :

في هذه الورقة تناولنا طريقة جديده لحل المشاكل الامثليه الخطيه الكسريه متعددة 
تتلخص    Rough intervals الاهداف حيث تكون معاملات دوال  الهدف 

الطريقة في تحويل المشكلة الامثلية المعطاه الي اربعة مشاكل امثليه خطيه كسرية 
 .متعدده الاهداف في صوره ابسط حيث تكون معاملات دوال الهدف اعداد حقيقيه 
استعرضنا بعض التعريفات والنظريات واقترحنا خوارزمية لايجاد الحل الامثل 

 .للمشكله واعطينا مثال عددي من اجل التوضيح
  

 

 

 

 

 

 

 

 

 

 

 


