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Abstract:

In this paper, we defined the associated graph constructed to a
cellular folding defined on regular CW-complexes. These
graphs declare the effect of a cellular folding on the complex.

Besides we studied the properties of this graph and we proved
that it is connected and vertex transitive if the cellular folding is
neat.

Finally, by using chain maps and homology groups we
obtained the necessary and sufficient conditions for a cellular
map to be cellular folding and neat cellular folding respectively.
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and E.El-Kholy [2]. The 1-Introduction:

notion of cellular foldings is The study of foldings of a
invented by E.El-Kholy and manifold into anther manifold
H.A.AL-Khurassani [1]. began with S.A. Robertson's
Different types of foldings work on isometric folding of
are introduced by E.EL- Riemannian manifolds [10].
Kholy and others [3, 4, 2]. After several attempts of

(a) A cell decomposition of a generalizing the notion of
topological space X is a 1sometric foldings, regular

foldings were first studies by
S.A. Robertson, H.R. Forran



1s closed in X for each
eed ,[8].

A CW-complex is said to
be regular if all its attaching

maps are homemorphisms.
If each closed n-cell 1s

homeomorphic to a closed
Euclidean n-cell [8]. A
topological

space that admits the

structure of a regular CW-
complex is

termed a regular CW-
space.

(b) Let K and L be cellular
complexes and f:|K|—>|L| a
continuous map. Then
f:K — L is a cellular map if

(1) for each cell
ceK,f(o)isacellin L,

(i1) dim(f (o)) <dim(o),
[7].
(¢) Let K and L be regular
CW-complexes of the same

dimension and K be
equipped with finite cellular
subdivision

such that each closed n-
cell is homeomorphic to a
closed

Euclidean n-cell. A
cellularmap f:K > Lis a
cellular folding

decomposition of X into
disjoint open cells such that
for

cach cell e of the
decomposition, the boundary
de=¢e—els

a union of lower
dimensional cells of the
decomposition. The

set of cells of a cell
decomposition of a
topological space is

called cell complex, [9].

A pair (X,¢) consisting
of a Hausdorff space X and
a cell-

decomposition ¢ of X is
called a CW-complex if the

following three axioms
are satisfied:

1- (Characteristic Maps):
For each n-cell e € ¢ there is
a

continuous map
®,:D, - X restricting to a
homeomorphism

@ :int(D,) —>e and

e

in(D,)
taking S""into X" .

2-(Closure Finiteness): For
any cell e € ¢ the closure e

intersects only a finite

number of other cells in ¢ .

3-(Weak Topology): A
subset 4 < X is closed iff
ANe



This set associates a cell
decomposition Cr of M. If M
is a

surface, then the edges
and vertices of Cr form a
graph I,

embedded in M, [6].

(e) Let f:|K|—>|L| bea
continuous function. If, for
each

k-chain Cin K, f(C)isa
k-chain in L and if the
diagram

C(K)—L— C (L)

0 G\L
C, (K)—L—C, (L)

commutes, then
f:K — Lis achain
function from K to L,

[7].
(f) The set S, of all
permutations on » objects
forms a group of

order n!, called the
symmetric group of degree
n , the law of

composition being that for
maps of the objects onto

themselves. A group of
permutations is said to be
transitive

if, given any pair of letters
a, b (which need not be
distinct),

iff : (1) for each i-cell
oc'eK, f(c')is an i-cell in
L,ie., [
maps i-cells to i-

cells,

(ii) if o contains n
vertices, then f (o) must
contains #

distinct vertices.

In the case of directed
complexes it is also required
that f

maps directed i-cells of
K to i-cells of L but of the
sam

direction, [5].

A cellular folding
f:K — Lisneatif L" — L""
consists of a

single n-cell, interior L.
The set of all cellular
foldings of K

into L is denoted by C(K,
L) and the set of all neat
foldings

of K into L by MK, L).
(dIffeC(K,L),then
x € K 1s said to be a
singularity of

f iff f is not a local
homeomorphism at x. The
set of all

singularities of f
corresponds to the "folds" of
the map.



can join v to v’ by an arc e
in R’ that runs from v
through o and o’ to v’
crossing F transversely at a
single point. The
correspondence o>, E e
is trivially a graph
isomorphism from G, to G, .

It should be noted that the
graph G, has no multiple

edges, no loops and generally
disconnected.

In this paper by a a complex
we mean a regular CW-
complex.

Examples(2-1):

(a) Let K be a complex with
the cellular subdivisions
given in

Fig.(1-a). Let f:K—K be
a cellular folding defined by f
(v2,

Vs, Vg, V1) = (v4, V7, V10,
vi3), f (€1, €s, €6, €9, €11, €14,
€16, €19,

€21) = (€3, €s, €3, €10, €13,
€15, €18, €20, €23) and f(o,)=0,,
,i=1,

3,5, 7,9, where the
omitted 0, 1, 2-cells through
this paper

will be mapped to
themselves. The graph G, in

this case has
ten vertices and five
edges as shown in Fig.(1-b).

there exists at least one
permutation in the group
which

transforms a into b, [11].
Otherwise the group is called
n

transitive. And is said to
be 1-transitive if for any pair
of

letters a, b, there exists a
unique element x of the
group such

that a*x=5b.
2-The associated graph:

Let f:K - Lbea
cellular folding. By using the
cell subdivision C, of K we

can define the associated
graph G, constructed from

the n-cells of K and the
cellular folding f'as follows:
The vertices of G, are just

the n-cells of K and if o and
o " are distinct n-cells of K
such that /(o) = f(c'), then
there exists an edge E with
end points o and o'. We
then say that E is an edge in
G, with end points o,0".
The graph G, can be

realized as a graph G,

embedded in R’ as follows.
For each n-cells o, o’
choose any points v € o,
vieo' . If o and o' are end
points of an edge E, then we



a cellular subdivision
consists of eight 0-cells,
sixteen 1-cells

and eight 2-cells, see
Fig.(3). Let f:K—>K be a
cellular

folding defined by: f(vs,
Ve, V7, Vg) = (V1, V3, V3, V3),

1 €5,€5,€5,€)1,€),,€85,8,) = (ey,€,,€5,€,

€5,€;,€,€,,€,€5,€,) and

f(Gl,O'Z,GpO]‘,GS,Gg) 2(06,0'6,0'7,07,0'6,07).

This can be done by the
composition of the following
two

cellular foldings: f(vs, vg)
= (v1, v3),
filee,e5.6.€,,65,6,) =

(e;,€,,€,,€4,€,,€5,¢,)and

fi(e1,02,03,04) = (05,06,07,08).

Sresv:)=(vs3,3),
J2(e3,e4.e5,e12) = (e9,e9,e15,¢16)
and
fz(o-sao-g) = (0-630-7)'
The graph G, in this case has
eight vertices and twelve
edges
see Fig.(3-b).

) Yoy 1 3 u uz u9
€13
v
10 ?
€18
U

F(K)=L

Fig.(1)

b) Consider the complex K
(shown in Fig.(2), which

consists of one 2-cell,
seven 1-cells and seven 0-
cells. Let

f:K—K be a cellular
folding defined as follow: f
(vs, Ve, v7)

= (Vz, V3, Vz), f(ei) = €2,
i=5,6,7and f(o)=o0.
The graph

G, 1n this case consists of
a vertex only with no edges.

. €; .

$1 12

e o e
F = ,
» [ ]

e_: ‘ E’r
(@) fK)=L (b)
Fig.(2)

(¢) Let K be a complex such
that |K|is a cylindrical surface

with



S (es, e4) = (e, €1) and f(
0,,0,)=(o0,,0;) . The graph

G,

in this case has four
vertices and two edges, see
Fig.(4-b).

Fig.(4)

3-Properties of the
associated graph:

Some of the properties of
the associated graph can be
characterized by the
following theorems:
Theorem (3-1):

Let K and L be complexes
of the same dimension 7,
feC(K,L). The associated
graph G, 1s disconnected

unless 7 1s a neat cellular
folding.
Proof:

Let o, and o, be distinct

n-cells of K, and let o, ~
o, means f(o,)= f(o,). It
is clear that the relation ~ is
an equivalence relation.
Hence the quotient set X"/~

—{[c],0 € K" }isa
partition on K, where [o] is

the equivalence class of any
n-cell o . It follows that G,

has more than one

1 ug

(a) SK)=L (b)

(d) Consider a complex K
such that |K] is a tours with
four 0-

cells, eight 1-cells and
four 2-cells, see Fig.(4-a).
Letf:K—>K

be a cellular folding given
by: f(vi)= w,i=1,2,3,4,



vertices in the component,
then any permutation of the
set V(G})is an
automorphism of G . Thus

the set of all permutations
(automorphisms) form a
group which is the
symmetric group S, acting on
the set 7 (G}). The orbit of
any o € V(G )under S; is
the whole set V(G}), i.e.,
V(G) has a single orbit and
hence the automorphism
group S, is transitive on
V(G!).
Results(3-3):

Let f:K—L be a neat
cellular folding:
1) The symmetric group S,
r= ‘K “lacts 1-transitively on
the

graph Gr.

2) Gy 1s vertex transitive.
3) From the above results we

conclude that the graph Gy of
a

neat cellular folding is a
complete graph.
Example (3-4):

Consider the complex K
shown in Fig.(5-a), which
consists of four 2-cells, eight
1-cells and five O-cells. Let
f:K—K be a cellular
folding defined as follows: f

component otherwise all the
n-cells of Kk will be mapped
to the same n-cell of L which
in fact is the case of cellular
neat folding. In the last case
there will be a unique
equivalence class[o] and
hence the graphG, 1s
connected.

It follows from the above
theorem that the components
of the graph G, is equal to

the number of the
equivalence classes
generated by the relation ~.
Theorem (3-2):

Let K and L be complexes
of the same dimension 7,
feC(K,L) acellular
folding. Then each
component of G, is

vertex transitive on itself.
Proof:

From Theorem(3.1) the
equivalence relation defined
on the n-cells K”of K
defines a partition
{[o],0e K™} on K", where
each equivalence class
represents a component of
G, . Now, consider one of

these components G, with
say r vertices, 1.€.,
7(G})| = r. Each vertex of

G} is adjacent to the other



o € K we can define a
homomorphism
f, :C (K)— C,(L)by:

fo
_ {f(a),

¢ , ifdim(f(0)) < &

And since cellular foldings
map p-cells to p-cells [5],
f,(c,)1sap-cell in L for all

A . Thus for a p-chain
C=ao0{ +a,07 +...

+a,0l € C,(K), where
a,’se Zand o, s are p-
cellsin M,

alfp(o-lp)"'azfp(o-zp)"'---

f,(C)=f,(ao! +a,0] +..+a,0;)=

+ akfp(a,f) S CP(L).

Now, since the closures of
both o/ and f(o!) have
the same number of distinct
vertices, then
f, 0d,=23of ,, where
0,:C,(K)—>C, (K)and
0,:C,(L)—> C, (L)arethe
boundary operators, that is to

say the following diagram
commutes

C,(K)—Lt— C (L)

a} 9,
C, (K)y—l=>cCY (L)

P _1 —1

(va,vs) = (v3, 2), f(eq, es, €5,
e7, es) = (e3, ey, ez, ez, e2) and
f(o,)=0,,i=123.4. The

graph G, in this case is

if f(o) is a p — ceboinplete, see Fig(5-b).

4

v, & - G v

S(K)=L (5)
Fig.(5)
(4) Chain maps and
cellular folding:

The following theorem
gives the necessary and
sufficient condition for a
cellular map to be a cellular
folding.

Theorem(4-1):

Let K and L be complexes
of the same dimension » and
f:K—L be a cellular map
such that f(K)=L # K.
Then 1
is a cellular folding if and
only if the map
f,:C,(K)— C,(L),between
chain complexes
(C,(M),8,), (C,(N),d,)is
a chain map.

Proof:

Let| f:K—L be a cellular
foldireg, then 1t 1s a cellular
map and for each p-cell




fle) =el,i

=1,11,21, ..., f(e;) = el i

=2,12,22, ..., f(e;)
=e!,i=3,813,..,f(e)
=eli=4,914,..,f(e)
= eé,i =

5,10,15, ..., f(e;) = e, i
=6,16,26, ..., f(e),= €0
=717,

27,...and f(g;) =l
_ 01/ ,if 1is odd,
02/ ,If 11is even
is a cellular folding.
€8 v o ML S i gy
oy & o5 (% G %1 &
€ w 14 Vi ____ iy éé ¥
el T ey o 1 &
€1 Y% e;[. \!;2 »X f > / e/R ‘;6
V3
SK=L
Fig.(6)
(b) Consider a complex K

such that |[K |= S?, with
cellular subdivision

consisting of two 0-cells,
four 1-cells and four 2-cells.

Let f:K — K be a cellular
map defined by: f(e,,e,) =

(e,e;) and f(o,) =0,
i=1,.,4.

This map is a cellular folding
with image consisting of two

(X o))

and hence f, is a chain map.
Conversely, suppose f is not
a cellular folding then there
exists a j-cell o in K such
that /(o) 1s an m-cell in L,
where j # m . Since f, is a
homomorphism from the p-
chain of K to the p”-chain of
L, then

n—1 ()
+An) = 2 Aifj (0! )+ A f(0),

i=1

but f (o) is not a j-cell, then
f; cannot be a j-chain map
and hence our assumption is
false, and we have the result.
Examples (4-2):

(a) Let K be a complex such
that|K |is the infinite strip
{(x,y):0< x < o0,

0 < y <1} equipped with an
infinite number of 2-cells
such that the closure of each
2-cell consists of four 0-cells
and four 1-cells, Ps4. Let L be
a complex with six 0-cells,
seven 1-cells and two 2-cells,
see Fig.(6). The cellular map
/K — L defined by:

f(v;) = Vi/ where
i=1,2,.,6,
f(v))=v], where

j=12,.,6 and (i— j)isa

multiple of 6,



1-cells and four 2-cells, see 0-cells, two 1-cells and a
Fig.(9). single 2-cell, see Fig.(7).
Let f: K — K be a cellular
map defined by f(v,) =v,,
i=1,.,4, f(e,e)=1_(¢,e,)
and f(o,)=0,,i=1,., 4.
This map is not a cellular
folding since &, and f(o,)
do not contain the same
number of vertices. S(K)=L

Fig.(7)
(c) Consider a complex K

such that |K |is a tours with

cellular subdivision
consisting of three 0-cells,

gL six 1-cells and three 2-cells.
Fig,-(g) Any cellularmap / : K —» K
Result (4-3): which has two vertices in the
Letf:K > L,bea image is not a cellular
cellular folding. Then the folding since f, in this case
induced homomorphism is not a chain map, see
£, H,(K)— H (L) will maps Fig.(8).

the generators of H ,(K) to

either the generators of L or
to zeros. This follows
directly from the fact that the
chain map f,:C,(K)—>C,(L)
defines a homomorphism
that has this property [5]. Fig.(8)
(3)Homology groups and (d) Consider a complex K

neat cellular foldings: h ) _
. that |K |= S°, with
The following theorem such that |K | Wi

gives the necessary and
sufficient condition for a

cellular subdivision
consisting of four 0-cells, six

10



The exactness of this
sequence implies that
H,(K)=ker f..

Conversely, suppose f is a
chain map between chain
complexes and
H,(K)=ker f. but f 1is not
neat, then L' - L""'consists of
more than one n-cell. Thus
Hy(L)y=Z',H (L) =0,for
p=L12,.,n

and
H,(K)=H,(L)® ker f. =
ker f. for p =0, and hence
the assumption is false and f
is neat.
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