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Introduction: 
 
Results of studies that are based on the 
entire population cannot be applied on 
only a particular class of the society that 
possesses specific characteristics. The 
results of such studies will be incorrect as 
a result of the negative impact of specific 
elements of society on the study group. In 
any case, putting such conditions on the 
society, the data would not follow a similar 
distribution of whole society. 
Then, we have to determine the 
distributional attributes of the truncated 
data including the probability density 
functions. Truncated distributions are 
conditional distributions obtained when 
we reduce the domain of original 
distribution to a smaller one. Truncation is 
used when there is no ability to know the 
events occurring above or below the 
studied phenomenon such as the study of 
plant growth, which cannot be studied 

before the growth of the plant over the soil, 
so that the truncated distributions have an 
important role in various fields such as 
agriculture, medicine, engineering, 
physics,...etc. But in that article we use a 
method to overcome the extreme values in 
the data by putting the right truncated 
value of our distribution equal upper 
whisker limit. 
M.M. Ali and N. Saralees [2] considered 
that the popular long-tailed distribution is 
Pareto distribution and they presented a 
truncated version to overcome its long 
tailed.  
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L. Zaninetti [10] presented a right and left
truncated gamma distribution with applica-
tion to the stars that introduces an upper and
a lower boundary to this distribution. The
parameters which characterize the truncated
gamma distribution were evaluated. A sta-
tistical test is performed on two samples of
stars. A comparison with the log-normal and
the four power law distribution is made. J.T.
Hattaway [7] studied the parameter estima-
tion and hypothesis testing for the truncated
normal distribution with applications to intro-
ductory statistics grades. S.H. Abid [1] consid-
ered a doubly-truncated Fréchet random vari-
able restricted by both a lower (c) and up-
per (d) truncation points provided with some
statistical properties and different methods to
estimate distribution parameters were evalu-
ated. M. El-Din et al. [3] derived the prob-
ability density function of mid truncated dis-
tribution and used Lindley distribution as il-
lustrative example. Finally, the pdf of sum
of mid truncated Lindley distribution is ob-
tained. Z. Behdani [2] introduced some prop-
erties and characterization of inequality mea-
sures and truncated distributions along with
relationships between truncated and original
variables in the context of reliability and eco-
nomics measures.

The probability density function (PDF) and
the cumulative distribution function (CDF)
for the Fréchet-Weibull random variable X >
0 are given by

f(x) = αkβαλαkx−1−αk exp(−βα(
λ

x
)αk),

F (x) = exp(−βα(
λ

x
)αk),

respectively, where α and k are shape param-
eters, and λ and β are scale parameters.

This paper is organized as follows. In sec-
tion 2 we introduce Right Truncated Fréchet-
Weibull Distribution represented by its PDF
and CDF along with survival function, hazard
function, reverse hazard function, The effect of
the parameters on PDF, CDF, S(x) and h(x),
and special cases of our distribution. Statis-
tical properties such as moments, coefficients
of skewness, kurtosis and variation, quantile
function, mode, moment generating function,
mean deviation about mean, several entropy

types such as Renyi, Tsallis and Shannon en-
tropies, and mathematical Lorenz and Bonfer-
roni curves are in section 3. In section 4 we
introduce order statistics, its probability and
cumulative function, and limit distribution of
its maximum. Estimation of Right Truncated
Fréchet-Weibull distribution’s parameters by
maximum likelihood method is in Section 5.
In section 6 we estimate parameters of ran-
domly generated data and then we extend the
application to real-world data.

2 Right Truncated Fréchet
-Weibull Distribution
(RTFWD)

A random variable X is said to have RT-
FWD with four parameters α, β, λ, k, where
its cumulative distribution function (CDF) for
0 < x ≤ b is defined as

F (x) =
G(x)

G(b)
= exp(−βαλαk(x−αk − b−αk)),

(1)
and its probability density function (PDF) is
given by

f(x) = αkβαλαkx−1−αk (2)

× exp(−βαλαk(x−αk − b−αk)),

where α and k are shape parameters, λ and
β are scale parameters, and G(x) is CDF of
Fréchet-Weibull distribution.

2.1 Survival function

The survival function (reliability function) of
RTFWD is given by

S(x) = 1−F (x) = 1−exp(−βαλαk(x−αk−b−αk)).
(3)

2.2 Hazard function

The hazard function of RTFWD is given by

h(x) =
f(x)

S(x)
= αkβαλαkx−1−αk (4)

× exp(−βαλαk(x−αk − b−αk))

1− exp(−βαλαk(x−αk − b−αk))
.
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2.3 Reverse hazard function

The reverse hazard function of RTFWD is
given by

r(x) =
f(x)

F (x)
= αkβαλαkx−1−αk. (5)

2.4 The effect of the parameters
on CDF, PDF, S(x) and h(x)
of RTFWD

Plots of PDF (2), CDF (1), S(x) (3) and h(x)
(4) of RTFWD are displayed in figures 1, 2,
3 and 4 for different parameter values, respec-
tively.
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Figure 1: PDF plots for RTFWD

Figure (1a) shows how PDF behave, af-
fected by the change of parameter α, where
b=1, β = 0.7 ,λ = 0.5 and k = 1.5, while fig-
ure (1b) shows the behavior of PDF by chang-
ing the parameter λ, where b=4, α = 0.5,
β = 2 and k = 1.
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Figure 2: CDF plots for RTFWD

Figure (2a) shows how CDF behave, af-
fected by the change of parameter α, where
b=10, β = 0.5, λ = 3 and k = 0.5, while fig-
ure (2b) shows the behavior of CDF by chang-
ing the parameter parameter k, where b=6,
α = 1.5, β = 1 and λ = 2.
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Figure 3: S(x) plots for RTFWD

Figure (3a) shows how S(x) behave, af-
fected by the change of parameter parameter
β, where b=6, α = 2 ,λ = 1.5 and k = 0.5,
while figure (3b) shows the behavior of S(x) by
changing the parameter k, where b=4, α = 3,
β = 0.8 and λ = 1.5.
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Figure 4: Plots of the RTFWD h(x) for some
parameter values

Figure (4a) shows how h(x) behave, affected
by the change of parameter λ, where b=0.5,
α = 0.5, β = 1 and k = 0.5, while figure (4b)
shows the behavior of h(x) by changing the
parameter α, where b=4, β = 3, λ = 1.5 and
k = 1. The behavior of h(x) can be unimodal,
decreasing or increasing depending on the val-
ues of parameters.

2.5 Special cases for RTFWD

If X is a random variable with CDF in equa-
tion (1), then we have the following special
cases:

• When λ = 1 and k = 1, then equation (1)
reduces to give Right Truncated Fréchet
Distribution with the following CDF :

F (x) = exp(−βα(x−α− b−α)), 0 < x ≤ b.

• When β = 1,α = 1 and k = 1, then equa-
tion (1) reduces to give Right Truncated
Inverse Exponential Distribution with the
following CDF:

F (x) = exp(−λ(x−1 − b−1)), 0 < x ≤ b.
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• When α = 1,λ = 1 and k = 2, then equa-
tion (1) reduces to give Right Truncated
Inverse Raylieh Distribution with the fol-
lowing CDF:

F (x) = exp(−β(x−2 − b−2)), 0 < x ≤ b.

• When λ = 1 and α = 1, then equation
(1) reduces to give Right Truncated In-
verse Weibull Distribution with the fol-
lowing CDF:

F (x) = exp(−β(x−k − b−k)), 0 < x ≤ b.

• When α = 1, then equation (1) reduces
to give Right Truncated Generalized In-
verse Weibull Distribution with the fol-
lowing CDF:

F (x) = exp(−βλk(x−k−b−k)), 0 < x ≤ b.

3 Statistical Properties

3.1 Moments

The rth moments µ′r about the origin of RT-
FWD is given by

µ′r = E(xr) = λrβ
r
k pg(r), r < αk,

where g(r) = Γ(1− r
αk , β

α(λb )αk) is up-
per incomplete gamma function and p =
exp(βαλαkb−αk). By setting r = 1, 2, 3 and
4 we obtain the first four moments about the
origin of RTFWD, respectively.
Mean and variance of RTFWD are as given
by:

µ′1 = µ = λβ
1
k pg(1),

σ2 = β2/kλ2p
(
g(2)− g(1)2p

)
,

respectively. The central moments about the
mean of RTFWD can be obtained by the fol-
lowing relations

µ1 = µ′1 − µ = 0,

µ2 = µ′2 − (µ′1)2 = β2/kλ2p
(
g(2)− g(1)2p

)
,

µ3 = µ′3 − 3µ′2µ
′
1 + 2(µ′1)3

= β3/kλ3p
(
2g(1)3p2 − 3g(2)g(1)p+ g(3)

)
,

µ4 = µ′4 − 4µ′3µ
′
1 + 6µ′2(µ′1)2 − 3(µ′1)4

= −β4/kλ4p(3g(1)4p3 − 6g(2)g(1)2p2

+ 4pg(3)g(1)− g(4)),

respectively, which will be used in section
(3.2).

3.2 Coefficients of Skewness,
Kurtosis and Variation

3.2.1 Coefficient of Skewness

The coefficient of skewness is a method to de-
termine the skewness of the distribution and it
can be obtained for RTFWD by the following
relation

β1 =
(µ3)2

(µ2)3
= −

(
2g(1)3p2 − 3g(2)g(1)p+ g(3)

)2
p (g(1)2p− g(2))

3 .

3.2.2 Coefficient of Kurtosis

Coefficient of kurtosis is a way to determine
the distribution curve whether is leptokurtic
curve or platykurtic curve relative to a nor-
mal distribution and it can be obtained for
RTFWD by the following relation

β2 =
µ4

(µ2)2

=
g(1)p

(
−3g(1)3p2 + 6g(2)g(1)p− 4g(3)

)
+ g(4)

p (g(2)− g(1)2p)
2 .

3.2.3 Coefficient of Variation

The coefficient of variation (CV) is a method
to determine the dispersion of the distribution,
it is also used to compare between distribu-
tions and it can be obtained for RTFWD by
the following relation

CV =
σ

µ
× 100 =

√
p (g(2)− g(1)2p)

g(1)p
× 100.

3.3 Quantile function

The quantile function (inverse CDF) Q(p) of
RTFWD is given by

Q(p) = inf{x ∈ R : F (x) ≥ p} (6)

= (b−αk − β−αλ−αk ln p)
−1
αk ,

where 0 < p ≤ 1. By setting p = 0.25, 0.5 and
0.75 we obtained the first, second and third
quartiles of RTFWD, respectively.
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3.4 Mode

Mode is the most happening value between
data. Consider the PDF of the RTFWD given
in (2), by taking the logarithm of this PDF, by
differentiating it with respect to x and setting
it equal to zero, we get the mode as following

x0 = λ(
αkβα

1 + αk
)

1
αk .

3.5 Moment generating function

The moment generating function of RTFWD
is given by

M(t) =

∫ b

x=0

exp(tx)f(x)dx = exp(βα(
λ

b
)αk)

×
∞∑
m=0

tm

m!
λmβ

m
k Γ(1− m

αk
, βα(

λ

b
)αk),

where Γ(1− m
αk , β

α(λb )αk) is upper incomplete
gamma function.
The characteristics function φ(t) for RTFWD
is obtained by

φ(t) = exp(βα(
λ

b
)αk)

×
∞∑
m=0

(it)m

m!
λmβ

m
k Γ(1− m

αk
, βα(

λ

b
)αk).

3.6 Mean residual life function

The mean residual life function of a continuous
random variable T and survival function S(t)
is given by

µ(t) = E(T − t|T > t) =
1

S(t)

∫ ∞
t

S(u)du.

The mean residual life function of RTFWD is
obtained by

µ(x) = b
S(b)

S(x)
− x+

β
1
k λ exp(βα(λb )αk)

S(x)

×
∫ βα(λx )

αk

βα(λb )
αk

w
−1
αk e−wdw.

3.7 Mean deviation

The mean deviation (MD) is the absolute ex-
pected deviations of data from any measures
of central tendency.

3.7.1 Mean deviation about the mean

The mean deviation about the mean of RT-
FWD is given by

MD =

∫ b

x=0

|x− µ|f(x)dx

= 2µ(F (µ)− 1) + 2β
1
k λ exp(βα(

λ

b
)αk)

×
∫ exp(βα(λµ )

αk)

exp(βα(λb )
αk)

y
−1
αk e−ydy.

Similarly, the mean deviation about the me-
dian or any result of another measure of cen-
tral tendency can be obtained by replacing µ
in previous equation by another measure of
central tendency.

3.8 Entropy

Information theory has mathematical origin in
entropy notion that is related to thermody-
namic and statistical mechanics. In 1948, the
definition of shannon entropy was introduced.
After 1948, variate extensions of the Shannon
entropy has been introduced such as Renyi en-
tropy (1961), and Tsallis entropy (1988).(for
more information see [9])

3.8.1 Renyi entropy

The continuous renyi entropy of RTFWD is
defined as

Rr(x) =
1

1− r
log

∫ b

x=0

fr(x)dx, r > 0, r 6= 1

=
1

1− r
log[(αk)r−1λ1−rβ

1
k (1−r)

× r
1
αk−

r
αk−r exp(rβα(

λ

b
)αk)

× Γ(
r

αk
+ r − 1

αk
, r exp(βα(

λ

b
)αk))],

where Γ( r
αk + r − 1

αk , r exp(βα(λb )αk)) is up-
per incomplete gamma function.

3.8.2 Tsallis entropy

The continuous tsallis entropy of RTFWD is
defined as

Tr(x) = −Rr(X)− 1 , r > 0, r 6= 1.
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3.8.3 Shannon entropy

The continuous shannon entropy of RTFWD
is defined as

SH(x) = −
∫ b

x=0

f(x) log f(x)dx,

where Shannon entropy is aspecial case of
Renyi entropy when r tends to 1.

SH(x) = lim
r→1

Rr(x) = 1 + log(
λβ

1
k

αk
)− βα(

λ

b
)αk

× (1− exp(βα(
λ

b
)αk))− (1 +

1

αk
)

× exp(βα(
λ

b
)αk)

∫ ∞
βα(λb )

αk

e−u ln(u)du.

3.9 Lorenz and Bonferroni
curves

The Lorenz curve Lp(x) was defined for a con-
tinuous random variable X (X > 0) by the
following relation

Lx(p) =
1

µ

∫ xp

x=0

xf(x)dx,

where f(x) is the corresponding PDF of X, µ
is the mean of X and xp is the quantile func-
tion such that F (xp) = p (for more details see
[5]). L(0) = 0 , L(1) = 1 and Lorenz curve is
undefined if mean equal zero.

The Lorenz curve of RTFWD is given by

Lx(p) =
1

Γ(1− 1
αk , β

α(λb )αk)

×
∫ ∞
βαλαk(b−αk−β−αλ−αk ln p)

y
−1
αk e−ydy.

Bonferroni curve is defined as (for more de-
tails see [8])

Bx(p) =
1

µF (x)

∫ xp

0

xf(x)dx =
Lx(p)

F (x)
.

4 Order statistics

4.1 Probability and cumulative
function

Let X1, X2, . . . , Xn is a random sample from
TFW distribution. Let X1:n < X2:n < . . . <

Xn:n denote the corresponding order statis-
tics. The probability density and the cumu-
lative distribution functions of the ith-order
statistic of RTFWD are given by

fi:n(x) =
n!(F (x))i−1(1− F (x))n−if(x)

(i− 1)!(n− i)!

=
n!αkβαλαkx−1−αk

(i− 1)!(n− i)!
× (exp(−βαλαk(x−αk − b−αk)))i

× (1− exp(−βαλαk(x−αk − b−αk)))n−i,

Fi:n(x) =

n∑
r=i

(nr )(F (x))r(1− F (x))n−r

=

n∑
r=i

(nr )(exp(−βαλαk(x−αk − b−αk)))r

× (1− exp(−βαλαk(x−αk − b−αk)))n−r,

respectively, by setting i =1 we obtain the dis-
tribution of minimum order statistics and by
setting i = n we obtain the distribution of
maximum order statistics of RTFWD.

4.2 Limiting distribution for
maximum order statistics

Suppose that Zn = Xn:n =
max(X1, X2, ..., Xn) from RTFWD and
the limiting distribution of Zn can be
obtained by the theorem (2.1.2) in [6]

lim
x→+∞

1− F (b− 1
tx )

1− F (b− 1
t )

= x−1,

lim
n→+∞

P (Zn < an+bnx) =

{
1 if x > 0

exp(x) if x < 0
,

and the normalizing constants are an = b and

bn = b− (b−αk − β−αλ−αk ln(1− 1

n
))

−1
αk .

5 Parameters estimation

For estimating the parameters of RTFWD we
use maximum likelihood estimation. Let X =
(x1, x2, ..., xn) be independent random sample
having probability density function (2), then
the likelihood function is given by
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L(x) = αnknβnαλnαk exp(nβα(
λ

b
)αk)

× exp(−βαλαk
n∑
i=1

x−αki )

n∏
i=1

x−1−αki ,

by taking logarithm, we find the log-likelihood
function as

logL(x) = n[logα+ log k + α log β + αk log λ

+ (
βλk

bk
)α]− βαλαk

n∑
i=1

x−αki

− (1 + αk)

n∑
i=1

log xi, (7)

From equation (7), we get

∂ logL(x)

∂α
= n[

1

α
+ log βλk + (

βλk

bk
)α log

βλk

bk
]

− k

n∑
i=1

log xi − βα log β

n∑
i=1

(
λ

xi
)αk

− kβα
n∑
i=1

(
λ

xi
)αk log

λ

xi
,

∂ logL(x)

∂β
=

nα

β
− αβα−1λαk

× [

n∑
i=1

x−αki − nb−αk],

∂ logL(x)

∂λ
=

nαk

λ
− αkβαλαk−1

× [

n∑
i=1

x−αki − nb−αk],

∂ logL(x)

∂k
=

n

k
+ nα log λ− αβα

n∑
i=1

(
λ

xi
)αk

× log
λ

xi
− α

n∑
i=1

log xi

+ nαβα(
λ

b
)αk log

λ

b
.

We can obtain the estimates of unknown
parameters by setting the last four equations
equal zero, but solving these equations simul-
taneously to get the unknown parameters α̂,
β̂, λ̂ and k̂ in explicit form is mathematically
complicated, so these estimates will be ob-
tained numerically.

The system of equations ∂ logL(x)
∂θj

= 0, j =

1, . . . , k for parameters vector θ has a unique
root θ̂ ∈ (−∞,∞) if and only if J(−∞) > 0

and J(∞) < 0, where J(θ) = ∂ logL(x)
∂θ . If

logL(x) has multiple local maxima, the high-
est solution is obtained. For more informa-
tion, see [4].

6 Application

6.1 Randomly generated data

A number of thousand random samples were
generated for each sample size n = 50, 250
and 400 by using (7) as X = (b−αk −
β−αλ−αk ln p)

−1
αk with parameters α = 1.5,

β = 0.5, λ = 0.8 and k = 1, and the trun-
cation value b = 5, where u is uniformly dis-
tributed. Table 1 shows the estimates, biases
and mean squared errors (MSEs) of the pa-
rameters for each sample size. It is easy to
notice that estimates are close to their actual
values with small enough MSE.

Table 1: Estimates, biases and mean squared
errors of α̂, β̂, λ̂ and k̂

n Estimates Bias MSE

50

α̂ = 1.894406 0.3944057 0.1555559

β̂ = 0.5061023 0.006102276 3.723777× 10−5

λ̂ = 0.9238914 0.1238914 0.01534907

k̂ = 0.8823007 −0.1176993 0.01385312

250

α̂ = 1.690622 0.1906224 0.03633689

β̂ = 0.4990658 −0.0009342476 8.728186× 10−7

λ̂ = 0.8803825 0.08038254 0.006461352

k̂ = 0.9152741 −0.08472593 0.007178483

400

α̂ = 1.654117 0.1541169 0.02375203

β̂ = 0.5013534 0.001353353 1.831566× 10−6

λ̂ = 0.863617 0.06361704 0.004047128

k̂ = 0.9250993 −0.07490072 0.005610118

6.2 Real-world data

In this sub section we fitted the RTFWD to
some datasets using maximum likelihood esti-
mation and compared the proposed RTFWD
with right truncated generalized new extended
Weibull
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distribution (RTGNEXWD), right trun-
cated Lindley Weibull distribution (RTLWD)
and right truncated half logistic generalized
Weibull distribution(RTHLGWD). Their den-
sity functions (for 0 < x ≤ b) are given by

f(x) = exp(βxa − σ

x2
)

×
(2θx+ (aβxa−1 + 2σ

x3 ) exp(βxa − σ
x2 ))

1− exp(−θb2 − exp(βba − σ
b2 ))

,

f(x) =
βθ2(αβxβ−1 + α2βx2β−1) exp(−θ(αx)β)

(θ + 1)[1− exp(−θ(αb)β)(1 + θ
θ+1 (αb)β)]

,

f(x) =
(1 + γxη)w−1 exp(1− (1 + γxη)w)

(1− exp(1− (1 + γbη)w))

× (1 + exp(1− (1 + γbη)w))2wηγxη−1

(1 + exp(1− (1 + γxη)w))2
,

respectively. In order to compare the distribu-
tions we calculated the Akaike’s information
criterion(AIC), the Bayesian information cri-
terion(BIC), Hannan Quinn information crite-
rion(HQIC), Kolmogorov Smirnov (K-S) test,
Anderson and Darling (A2

n) test and Cramér-
Von Mises (W 2) test. The model with min-
imum of these statistics values is chosen as
the best model to fit the data. The parame-
ters are estimated by using the maximization
of the log-likelihood function and the calcula-
tions are performed by using Wolfram Math-
ematica software.

6.2.1 Earth quakes dataset

We will use the dataset earth quakes issued
from the datasets R library. This locates
the earthquakes off Fiji islands. It gives
the locations of 1000 seismic events. The
events occurred in a cube near Fiji islands
since 1964.The dataset contains 1000 observa-
tions of 5 variables: the latitude (lat), longi-
tude (long), Depth in km (depth), magnitude
(mag) and the numeric number of stations re-
porting (stations). Our study will be on mag-
nitude variable and we will take the trunca-
tion value of upper whisker limit equals 5.8.
The earth quakes dataset is one of the Har-
vard PRIM-H project datasets. They in turn
obtained it from Dr. John Wood house, Dept.
of Geophysics, Harvard University.

Table 2 gives the descriptive statistics and
table 3 presents the maximum likelihood es-
timates of the parameters together with the
log-likelihood function, AIC, BIC, HQIC, K-
S, A2

n and W 2 values for earth quakes dataset
after truncation it.

6.2.2 Life time dataset

This life time dataset was introduced by Gross
and Clark (1975) and it is related to re-
lief times (in minutes) of patients receiving
an analgesic. It has been used recently by
Shanker, Fesshaye and Selvaraj (2015) to show
the flexibility of Exponential distribution and
Lindley distribution. We will take the upper
whisker limit value as our truncation value
which equals 3.075 and the dataset consists
of twenty observations
1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1,
1.8, 1.5, 1.2, 1.4, 3, 1.7, 2.3, 1.6, 2.

Table 4 gives the descriptive statistics and
table 5 presents the maximum likelihood es-
timates of the parameters together with the
log-likelihood function, AIC, BIC, HQIC, K-
S,A2

n andW 2 values for Life time dataset after
truncation it.

From tables (3) and (5), we conclude that
the RTFWD behaves best comparable to RT-
GNEXWD, RTLWD and RTHLGWD distri-
butions for each dataset.

RTFWD
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RTHLGWD

RTLWD
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Figure 5: Histogram of datasets and the fitted
PDFs

Figure 5 illustrate the histograms and the
fitted PDFs of the RTFWD, RTHLGWD, RT-
GNEXWD and RTLWD, so we conclude that
RTFWD behaves best comparable to these
distributions.
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Table 2: Descriptive statistics for earth quakes dataset

Min Max Mean Variance First Quantile Median Third Quantile Skewness Kurtosis
4 5.7 4.61037 0.148814 4.3 4.6 4.8 0.591089 2.84355

Table 3: Estimates, Log L, AIC, BIC, HQIC, K-S, A2
n and W 2 for earth quakes dataset

Distribution estimates Log L AIC BIC HQIC K-S A2
n W 2

RTFWD

α̂ = 3.68208 −404.893 817.787 837.39 825.24 0.0693389 4.02639 0.648837

β̂ = 0.423645

λ̂ = 5.64188

k̂ = 3.57437

RTGNEXWD

θ̂ = 2.8227× 10−11 −487.744 983.488 1003.09 990.941 0.111764 13.5827 2.08281
â = 2.00433× 10−8

β̂ = 5.96223
σ̂ = 135.117

RTLWD
β̂ = 8.26957 −519.338 1044.68 1059.38 1050.27 0.126278 18.1354 2.85439

θ̂ = 0.00721454
α̂ = 0.416805

RTHLGWD
ŵ = 1.00919 −697.217 1400.43 1415.14 1406.02 0.249884 72.9933 12.8594
η̂ = 6.51014
γ̂ = 0.0000603738

Table 4: Descriptive statistics for second dataset

Min Max Mean Variance Frist Quantile Median Third Quantile Skewness Kurtosis
1.1 3 1.78421 0.240292 1.425 1.7 1.975 0.970091 3.48809

Table 5: Estimates, Log L, AIC, BIC, HQIC, K-S, A2
n and W 2 for life time dataset

Distribution estimates Log L AIC BIC HQIC K-S A2
n W 2

RTFWD

α̂ = 2.4097 −10.2205 28.4411 32.2188 29.0804 0.100217 0.20301 0.0295843

β̂ = 1.60384

λ̂ = 1.17574

k̂ = 1.59607

RTGNEXWD

θ̂ = 7.39557× 10−32 −10.3967 28.7933 32.5711 29.4327 0.10742 0.21 0.0299707
â = 8.39408× 10−30

β̂ = 1.67905
σ̂ = 6.25486

RTLWD
β̂ = 2.71141 −13.6827 33.3654 36.1987 33.8449 0.162044 0.534928 0.0775681

θ̂ = 0.0168369
α̂ = 3.06336

RTHLGWD
ŵ = 0.0264508 −11.7552 29.5103 32.3436 29.9898 0.128759 0.352723 0.049215
η̂ = 64.3902
γ̂ = 0.00540456
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Figure 6: Empirical CDF of datasets and the
fitted CDF of RTFWD

Figure 6 shows that our choice for real-world
datasets is suitable for RTFWD.
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7 Conclusion

This paper introduced a new truncated distri-
bution called RTFWD. Statistical properties
of the distribution are studied such as mo-
ments, mode, Quantile function,. . . etc. We
also obtained the density function of its or-
der statistics. We calculated the maximum
likelihood estimators of the distribution pa-
rameters numerically using randomly gener-
ated and real-world datasets. The applica-
tions to real datasets showed the optimality
of our distribution for being better than other
compared distributions.
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