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Abstract

Totally equistable, totally ¢o - equistable, practically — equistable practically ¢ , — equistable of

system of differential equations are studied, Cone valued perturbing Liapunov functions method and
comparison methods are our technique , Some results of these properties are given.
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¢, -

equistable- Cone valued perturbing Liapunov functions method.

1. Introduction

Consider the non linear system of ordinary
differential equations
x' =f(t,x), x(tp) = xp (1.1)
and the perturbed system
x' = f(tx) + R(t,x), x(tg) =x9. (1.2

Let R be Euclidean n —dimensional real space
with any convenient norm ll-II'| and scalar product
Co-) = UM et for some P = 0

S, = fx € RY, [Ix]l < p}.
where
f,R € €[] x 8,,R"],] = [0,0) and €[] x S,,R"]
denotes the space of continuous
mappings J % Sp inte R

Consider the scalar differential equations with
an initial condition

u =g, (tw u(ty) =uy,
(1.3)

w' =g,(tw) w(ty) = @y
(1.4)

and the perturbing equations
u' =gy(tu) + ¢
w' =gy(tw)+ @,
(1.6)
where 81.22€C[Xx RR] @9, €C[LR]
respectively.
The following definitions [1] will be needed in
the sequal .

u(ty) = ug (1.5)
w(ty) = g

Definition 1.1

A proper subset K of R™ s called a cone if
MK k=0 ([E+Kckik=K(v) K'=0, @)K (-K)=[0).
where K and K° denotes the closure and interior of
K respectively and K denote the boundary of K-

Definition 1.2

The set K" ={¢ €R*,(¢,x) =0,x €K} jg
called the adjoint cone if it satisfies the properties
of the definition 3.1.

x € JKif (¢,x) = 0 for some d € K K, =

@.

Definition 1.3

A function &D—-K.DcR"™ s called
guasimonotone relative to the cone
Kifx,y € D,y —x € dKthen there exists ¢, € K such that
[($o.y —x) = 0 and (¢g. g(y) — g(x)) = 0.

Definition 1.4

A function a(-) is said to belong to the class
¥ if
a€[R,RY] ,a(0) =0anda(r) isstrictly monotone increasing inr .

2. Totally equistable

In this section we discuss the concept of totally
equistable of the zero solution of (1.1)  using
perturbing  Liapuniv  functions method and
Comparison principle method.

We define for
V € €[] x 8,,R"], the function D*V(t,x)by

1

h(V(t+hx+h(f(tx) +R(EX) - V(Ex).] :

The following definition [2-10] will be needed
in the sequal.

sup

Definition 2.1

The zero solution of the system (1.1) is said to
be T1 — totally equistable (stable with respect to
permanent  perturbations) , if for every
€ > 0,t; €] there exist two positive numbers
81 =254(€) > 0and 6; = 5;(€) > 0 gych that for
every solution of perturbed equation (1.2), the
inequality

I (t ty xg)ll << e fort =t
holds ,provided that
IR(t ) < 65

[0 |[<61 gnd

Definition 2.2
The zero solution of the equation (1.3) is said to

be T1 — totally equistable (stable with respect to
permanent  perturbations) , if for every

€> 0,8 €] | there exist two positive numbers

Benha Jo Benha Journal Of Applied Sciences, Vol.(1) Issue (1) Jan.2016.


mailto:a_a_soliman@hotmail.com

On Stability of Nonlinear Differential System Via Cone-Perturbing 122

81 = 61(€) = 0 andd; = 63(e) = 0 sych that for
every solution of perturbed equation (1.5).the
inequality
ult, tgug) < e t=t,
holds , provided that
up <81 and @1(t) <83

Theorem 2.1
Suppose that there exist two functions

81,92 € CU X R,R] withgs (1. 0) = g,(1,0) =0
and there exist two Liapunov
functions

V,EC [J X S, R“] and V,, €C [y x5, nsE,R?]
with Vi(t,0) =v,,(t0) =0
Sy ={x€R" [Ix]l <n} forn>0 aend S{

where

denotes the complement of Sn satisfying the
following conditions:
(Hy) Vyi(tx) s locally Lipschitzian in X .
DV, (t,x) <g(t.V,(tx)) V(tx) €] xS,
(Hz) Van (tx) is locally Lipschitzian in x

b(llxID < V(6 %) < a(llxll)  v(t,x) €] xS, n 5§

where &b € K are increasing functions.
(H3)
DV, (1.0) + D'V, (4) < 6y [:,Vl (tx) + Vzﬂ[t,x)) (t,x) €] x5, N85,
(Hy)  If the zero solution of (1.3) is equistable
, and the zero solution of (1.4) is totally equistable

Then the zero solution of ( 1.1 ) is totally
equistable.

Proof

Since the zero solution of the system (1.4) is
totally equistable , given P(€) = 0 there exist two
positive numbers
81 =1063(e) =0and &, =53(e) > 0 gych that
for every solution @(t.to. @g) of perturbed
equation (1.6) the inequality

w(ttg. wy) <e t=1tg (2.1)

holds , provided that

wg <8 and ¥2(t) <83

Since the zero solution of (1.3) is equistable

8g(e)

. and ty €] .
given 2 , there exists
& = &8(tgy, €) = 0such that

d, (e)

holds ,provided that o = &
From the condition (H2) we can find
8y = 84(€) = 0 gych that

5 8o 5
a(8y) + <8 (2.3)

To show that the zero solution of (1.1) is T1 —
totally equistable , it must show that for
every€ = 0.ty €J there exist two positive
numbers 81 =384(€) = 0and &, =8,(e) = 0
such that for every solution X(t.ta. ¥o) of perturbed
equation (1.2).the inequality

I (t ty xg)ll << e fort =t

holds  ,provided that
IRt ) < 65

Suppose that this is false, then there exists a

|IX_0 |I < 6_1 and

solution X(t.to.xg) of (1.2) with t1 =to such
that
llx(tg. to. )l =84 . lx(ty. to.xp)ll=€ (24)
(2.4)
8y < Ix(ttg, xp)ll < € for t€ [ty ty]-
Let 81 =m and setting

m(t,x) =V, (%) + Vy (¢, %)

since V1(tx) and Vo, (tx) gp Lipschitzian

in x for constants M1 and M, respectively.
Then

D7V 6.2+ D7y () 2 £ D7V () L4 D () 1 £ MIR(E )

where M= M; + My From the condition
(H3) we obtain the differential inequality

DV (tx) + D7V, (tx) < gy (t,vl (tx) + qu(t,x)) + MIR(t, %)l

for t € [tg.t1]Then we have

D*m(t,x) < g,(t m(tx)) + MIR(E )l

Let @o = m(tg,Xg) = Vy(to, Xp) + Vo (tp, %)

Applying the comparison Theorem (1.4.1) of
[71], ityields

m(t,x) < r,(¢ tg, wy) for te [ty t,].
where Tz(t,to, @p) is the maximal solution of the
perturbed equation (1.6)

Define @2(t) = MIIR(t, %)l

To prove that

15 (t tg, wg) < b(e).

It must be show that

we < 8] and @2(t) <63

Choose Yo = Vi(tg.Xp). From the condition
(Hy) and applying the comparison Theorem of [7
], it yields

Vit =) <r (8t ug)
where T1(t.to.Up) js the maximal solution of
(1.3).

From (2.2) att =to
g (€)
Tz (2.5)

From the conditon (Hz2) and (2.4) , at
t=t,

Van (to. %) < allixoll) < a(8y) (2.6)

From (2.3), we get

Vi (to.Xg) =14(tp.tg.up) <

8g(€) .
wo = Vy(to,Xe) + Voq (tg. Xg) £ —=— +a(5,) < &;.

Since @2(t) = MIR(t,x)ll < M&; =&
From (2.1) ,we get
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m(t,x) = r;y(t,tg, wg) < b(e) 2.7)
Then from the condition (Hz), (2.4) and (2.7)
we get t =1y

ble) = b{[lx(t; ) < Vay (b4, x(t,)) < milty, x(t,)) < 1y(ts, b, g) < b(e).

This is acontradiction ,then it must be
Ix(ttg,x)ll <e fort=t,

holds ,provided that [IX0 [[<é_1 gngd
IR(t,x)I < &5

Therefore the zero solution of (1.1) is totally
equistable.

3. Totally ®o — equistable.

In this section we discuss the concept of
Totally ®o — equistable of the zero solution of
(1.1) using cone valued perturbing Liapunov
functions method and Comparison principle
method.

The following definition [3] will be needed in
the sequal.

Definition 3.1
The zero solution of the system (1.1) is said to

be totally ®o — equistable (Po — equistable with
respect to permanent perturbations) if  for
every€ > 0,
ty €] anddy € Ky there exist two positive
numbers 81 =98;(€) > 0and §; = §,(e) = 0
such that the inequality

(g, x(ttg.xg)) <€ fort=t,

holds ,provided that (®o.Xa) <81and
IRt 3l < 8; where X(tto,*p) is the maximal
solution of perturbed equation (1.2).

Let for some P = 0

5, ={x e R",(§p.x) < p, ¢y € Kp}

Theorem 3.1
Suppose that there exist two functions

81,92 ECUXR,Rlwith 81(t.0) =g,(t,0) =0
and let there exist two cone valued Liapunov
functions

Vv, € c[] X s*,K} and V,, €C[JxS; n8;K]
with Vi(t,0) =V (t0) =0

where

S;={x € K,(¢g.x) <n ,§g €K} forn=>0 and S;
denotes the complement of 5 satisfying the
following conditions:

(hy)  V1(t.x) js locally Lipschitzian in * and

D100 VI; () <g (8 V3(6%) for (tx) €] xS,

(h)  Van(t%) s jocally Lipschitzian in *
and

b((g,x) < [(%,ngq(t,x]] Sa(gyx) for (tx)€JxS,n s;f

where &b €K gre increasing functions.

(1) D*T(00, V] (6,2)) + D*1(00 Vg (89 < g V3 62) + ¥y 1,0))
for (t,x) € J X 5, n 55,

(hy) If the zero solution of (1.3) is %o —
equistable , and the zero solution of (1.4)is totally
@ — equistable . then the zero solution of ( 1.1)
is totally ®o — equistable.

Proof

Since the zero solution of (1.4) is totally
$o — equistable , given, given B(€) =0 there
exist two positive numbers

81 =83(€) > 0 and8; =83(e) = 0 such that
the inequality

(Do, I2(t. tg, wo)) <€ t=ty
(3.1)
holds , provided that
(o, wp) <87 and @2(t) <83 | where

rz(t.te. wo) is the maximal solution of perturbed
equation (1.6).
Since the zero solution of the system (1.3) is
60 (€)
$o — equistable , given 2
there exists & = 8(tg.€) = 0 such that
(o, T1(t tg,ug)) < 60256] 3.2)
holds ,provided that I[($o.ulo) =6  where
ry(t.te. up) s the maximal solution of(1.3)
From the condition (h2) we can choose
6y = 84(e) >0 gych that

and t; €]

59100 s
a[: :l:] +?{: 1 (33)

To show that the zero solution of (1.1) is T1 —
totally®o — equistable it must be prove that for
every € = 0.ty €] and ¢y € Kp there exist two
positive numbers 81 = 84(€) >0

and &; = 6;(e) > 0 guch that the inequality
(g, x(ttg.xg)) <€ fort=t,
holds  ,provided  that  (®0.Xp) < 81and
IR(t )N < 8, where X(t.to. %) is the maximal
solution of perturbed equation (1.2).
Suppose that is false, then there exists a solution

%(t,to, xp) of (1.2) with t1 >to such that
(Go x(to to X)) =08y, (Pp.x(tyte%)) =€ (3.4)
81 = (o x(ttgx)) =€ for te[tyty]
Let 6, =1 and setting
m(t,x) =V, (%) + Vy (¢, %)

since V1(t®) and V(63 40| nschitzian

in x for constants My and M, respectively.
Then

D (¢g. V4 (t,%));.2 + D* E[qJU,V]zﬂ[t,x}}l 2
< D*[(¢g, V] (£.%));.1 + D* (¢0,vzn(t,x))1 1+ MRt

Benha Jo Benha Journal Of Applied Sciences, Vol.(1) Issue (1) Jan.2016.



On Stability of Nonlinear Differential System Via Cone-Perturbing 124

where M= M; + My From the condition
(hz)  we obtain the differential inequality
D"y, VI, (tx)) + D* (%Vzr,[th)) 0 (Wl (tx) + qu[t,x)) + MIRGE
for t & [to.t1] Then we have
D* (0. m(t,x)) = g, (t m(t,x)) + MIR(E )|
Let @Wo = m(tg,Xg) = Vy(tg,Xg) + Vo (tg, xp)
Applying the comparison Theorem of [7], yields
(g, m(t,x)) = (g, 72(8,tg, ) ) for tE [tg,t4].
Define @2(t) = MIIR(t,x)Il
To prove that

[(dg, 1z (L tg, wg)) < b(e).
It must be shown that

[(@g. @]g) <87 and ®2(0) <63

Choose Yo = Vi(to.Xp). From the condition
(hy) and applying the comparison Theorem

[7], it yields

[(90, VI (t.%)) = [(do, 114 (t 25, 1p))

From (3.2) att =t

(0. Vi (to, %)) = [(dg,r]1(to, to 1)) <
(3.5)

From the condition (hz2) and (3.4),att =t
(®0, Van(to X)) < aldg, xo) < a(5y)

(3.6)
From (3.3), we get

8p(€)
2

NG
[(&g,w]g) = (90, V3 (t5 %)) + (Rbnvvzn(tnrxn]) £ % +a(8;) <&

Since ®2(t) =MIR(t, )|l = M§, = &3

From (3.1) ,we get

(g, m(t,x)) = (g, r2(8, tg, wp)) < b(e)

(3.7

Then from the condition (hz), (3.4) and (3.7) we
get at t=14

b(e) = b(¢_0,x(t_1)

(0720 (tLx(t1) < (0t La(t1)) (0,012 (1110.0.0)) < bl

This is a contradiction ,then
(bo.x(ttg.x0)) <€ fort =ty
provided that ($o.%a) < 81and
IR(E, )l < 8; where %(t.to.x0) is the maximal
solution of perturbed equation (1.2).

Therefore the zero solution of (1.1) is totally
o — equistable.

4. Practically equistable
In this section, we discuss the concept of
practically equistable of the zero solution of (1.1)
using perturbing Liapunov functions method and
Comparison principle method.
The following definition [5] will be needed in
the sequal.

Definition 4.1
Let 0 <A <A pe given . The system (1.1) is

said to be practically equistable if for to €] such
that the inequality
| x(ttg.xg)ll<A4 fort=t, 4.1)

holds ,provided that IIX_.0 Il <A where X(t. tq. %)
is any solution of (1.1).

In case of uniformly practically equistable ,the
inequality (4.1) holds for any to.

We define

S(A) = {x € R™: ||x|| < A, A=0)

Theorem 4.1
Suppose that there exist two functions
g1.82 € ClJ X R, R] withgs (t. 0) = g2(t.0) = 0 and
there exist two Liapunov functions
V1 €C[J x S(A),R"] and Vs, €C[J x S(A) N S(B)",R"]
with
Vi(t,0) =vy5(t,0) =0
where
S(B)={x€RY |zl <B,0<B<A} and S(B)C
denotes the complement of S(B) satisfying the
following conditions:
(D Vyi(tx) s locally Lipschitzian in x .
D'V (tx) < g, (£, V,(t.x)) Vv(tx) € J xS(A).
(ID) V55(t%) s locally Lipschitzian in X .
b(lIxl) < Va5 (t %) < alllxll)  ¥(tx) €] x S(4) N S(B)C.
where &b € 5 are increasing functions.
(1)
D*Vy(tx) + DV (,0) < gy (6 Vy(4.3) + Vg t¥))  V(6%) €] x S(4) n S(B)"
(I¥)  If the zero solution of (1.3) is equistable ,
and the zero solution of (1.4) is uniformly
practically equistable .
Then the zero solution of (1.1) is practically
equistable.

Proof
Since the zero solution of (1.4) is uniformly

practically equistable, given 0 <29 <A sych that
for  every solution w(ttg. we) of (1.4) the
inequality

w(t ty, wg) < b(A) (4.2)
holds provided ®o = 4.

Since the zero solution of the system (1.3) is

. . — and ty ER .
equistable , given 2 0 *there exist

6 =06(tp.€) > 0 gych that for every solution
u(t, to,up) of (1.3)

A,
u(t, tg, ug) < ?U (43)
holds provided that Up =&

From the condition (II) we can find A =0
such that
Ag
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To show that The zero solution of (1.1)
practically equistable , it must be exist 0 <A <A
such that for for any solution X(t.to.xo) of (1.1)
the inequality

Ix(ttyx)ll <4  fort=t,
holds ,provided that lIX_0 II <A

Suppose that this is false, then there exists a
solution X(t.to.xg) of (1.1) with t1 > to such
that
Ix(to. to, xp)ll = A,
(4.5)

A=l tg. xp)ll = A

Let A=B and setting

m(t,x) =V, (%) + Vp (£, %)

From the condition (III) we obtain the
differential inequality for t € [tg.ty]

D*m(t,x) < g,(tm(tx))

Let wo = m(ty, xg) = Vy(tg.xp) + Vap(ty, xg)

Applying the comparison Theorem [7] , yields

m(t,x) < r,(¢ tg, wy) for te [ty t,].
where Tz(t.tg. wg) js the maximal solution of (1.4)

To prove that
rp(t, tg, we) < b(A).

It must be show that @ =2Ag.

Choose Wo = Vi(te.Xg).f rom the condition
(II)  and applying the comparison Theorem of

[7], yields

Vi (tx) =1y (8, tp, ug)

where T'1(t,to,Ug) is the maximal solution of (1.3).
From (4.3)att =tg

A

[[x(ty, to. x|l = A

for t€ [ty ty].

From the condition (II) and (4.5) , att =to

Va5 (to. %) = a(llx(tp)l) < a(l)

From (4.4),(4.6) and(4.7), we get

wp =Vy(tg. Xg) + Vap(te.Xg) =X

From (4.2) ,we get

m(t,x) < r;(t ty, wy) < b(A4)
Then from the condition(I) | (4.5) and (4.8), we
get att =14

b(&) = b{{|x(t;)[]) < Vyp(ty, ;) <mity,x(t;)) < vy (tg,tg, wp) < b(A).

This is a contradiction ,then

I %(t, ty, x50l < A fort =t,

provided that X0 [l <A

Therefore the zero solution of (1.1) is
practically equistable.

5. practically ®o — equistable

In this section we discuss the concept of
practically ®o — equistable of the zero solution of
(1.1) using cone valued perturbing Liapunov
functions method and Comparison principle
method.

The following definitions [6] will be needed
in the sequal .

Definition 5.1

Let 0 <A <A pe given . The system (1.1) is
said to be practically %o — equistable, if for
tg €] and ¢y € Ky sych that the inequality

(bg x(ttg. X)) < A fort =1, (5.1)
holds ,provided that (g, Xg) < 4
where
%(t,t. o) s the maximal solution of (1.1)

In case of uniformly practically $o —

equistable ,the inequality (5.1) holds for any to.
We define
SH (A) = {X = K! ( ¢U:xj = A: ¢D € KE}

Theorem 5.1
Suppose that there exist two functions
g1.82 € C[J X R, Rl with
g1(t.0) = g2(t.0) =0 and et there exist two cone
valued Liapunov functions
vV, €C[ % $°(A),K] and Vyg € C[J x 5°(4) n $*(B)¢, K]
with
Vi(t,0) = V25(t,0) = 0 where
S*(B)={x €K, (dg,%x) <B0<B<A ¢yeky}
and S*(B)® denotes the complement of S”(B)
satisfying the following conditions:
() Vi(tx) s locally Lipschitzian in x relative
to K.
D* (g, V1 (1.X)) = g4 (t, V5 (£, %)) V(tx) €] xS (4).
(i) Vag(t.x) s locally Lipschitzian in x
relative to K .
b(dg,x) < (9o, Vap(t %) <a(0g,0)  V(tx) €] xS (A) nS'(B).
where &b EX gre increasing functions.
(iii) (4.6)
D (g, V (£.X)) + D* (g, Vg (£%)) < g5 (£V; (£%) + Vp(1,%))

4.7)
v(t,x) €] x $*(A) N $*(B)C.
(iv) If the zero solution of (1.3) is Po —
equistable, and the zero solution of (1.4) is
uniformly practically 4(.1'.».8) equistable.

Then the zero solution of (1.1) is practically ®o —
equistable.
Proof

Since the zero solution of the system (1.4) is

uniformly practically ®o — equistable, given given

0 <2 <a(B) for 2(B) =0 sych that the
inequality
(¢g. T2 (1 to, wo)) < a(B) (5.2)

holds provided (o, 0]o) =g where

r2(t,to. we) s the maximal solution of (1.4).
Since the zero solution of the system (1.3) is

@0 — equistable , given 2 and to ER.
there exist 0 =0(tg.49) such that the
inequality

(g, 71 (t tg, 1p)) {Z—Q (5.3)
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From the condition (ii) . assume that
a(B) < b(A) (5.4)
also we ian choose A1 = 0 sych that
0
a(}) + > =4 (55)
To show that the zero solution of (1.1) is
practically ®o — equistable. It must be show that
for 0<=A<A, tp€e] andey €Ky sych
that the inequality
(bg x(ttg. X)) < A fort =1,
holds ,provided that ($o.%) <4 where
%(t,to, xp) s the maximal solution of (1.1).
Suppose that is false, then there exists a
solution x(t, o, xp) of (1.1) with
ty >t; >ty sych that for (Po.Xp) <4 where
A =min(Ay, A
(o, x(ty, tg. %)) = Ay,
(5.6)
M = (bpx(tty,x)) <A
LetA&r =B and setting
m(t,x) =V, (£,x) + Vop(t,x)
From the condition (iii) we obtain the
differential inequality
DA+ (¢.0,m(t,x)) < (00,92 (t,m(tx)) for te[t1e2]

(g, x(t2,tg. %)) =4

wg =m(ty,x(t;)) =V (&, 2(t1)) + Vyp(ty, x(ty))

Applying the comparison Theorem of [7] ,
yields
[(@]g m(t,x)) < (g, 72 (L. tg, wg))
To prove that
(¢g.72(t tg, wy)) < a(B)
It must be show that
[(dg. w]p) =2
Choose Uo = Vi(tg.Xp)  From the condition
(1) and applying the comparison Theorem [7 ] it
yields
(. V1(t,x)) = (g, 14 (E tg, up))
From (5.3) at t =11
(B V:(62) < Bor(ttoue) <2 oo
From the condition (i) and (5.6) , att = t1
(dg. Vog(ty. x(t1))) < (g x(21)) < aldy) (5.9)
From (5.5),(5.8) and(5.9), we get
b0, Vap(ty, 2(t1)) < 49
From (5.2) ,we get

([(@1.0m(tx) = (# 0,72 (50,0 0)) < a(B) (5.10)
Then from the condition (i) . (5.4) , (5.6) and
(5.10), we get att =tz
b(A) = b(dg,x(t;))

< (¢_0,m(t_2,x(t_2))

< (g, r2(t2, tg, wg))

< a(B)

= a(A).

which leads to a contradiction ,then it must be

(o.x(ttg, %)) < A fort=t,
holds ,provided that (®o.X0) <4  Therefore the
zero solution of (1.1) is practically %o —
equistable.
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