
Benha Journal of Applied Sciences (BJAS) print : ISSN 2356–9751

Vol.(2) Issue(1) Oct.(2017), 91-97 online : ISSN 2356–976x

http:// bjas.bu.edu.eg

Benha Journal Of Applied Sciences, Vol.(2) Issue(1) Oct.(2017)

Performance Analysis of Applying Load Balancing

Strategies on Different SDN Environments
M.I.Hamed, B.M.ElHalawany, M.M.Fouda and A.S.Tag Eldien

Electrical Engineering Dept., Faculty of Engineering, Shoubra, Benha Univ., Egypt
.

E-Mail: m.ibrahim@feng.bu.edu.eg

Abstract

Software-Defined Network (SDN) is considered a breakthrough to the global network. It plays an important

role in performance improvement and network optimization. SDN is a new mechanism for managing and

designing networks rather than the current traditional network system which does not afford more services and

higher data rates; therefore, we analyze the effect of applying load balancing techniques and its importance in

different SDN environments. In this paper, we propose a dynamic server load balancing technique in SDN

architecture. Hence, we implement a server Connection-based load balancing technique and evaluate its

performance with a static Round-robin and Random-based in both mininet emulation environment and

Raspberry Pi OpenFlow-enabled switch using Ryu OpenFlow controller. The performance of the proposed

algorithm is compared with Round-robin and random distribution of clients' requests. The results show that the

proposed technique achieves more reliability and higher resource utilization than the Round-robin and Random-

based load balancing strategies. In addition, the proposed scheme exhibits more scalability and low-cost

characteristics.

Keywords: Software defined-network, Ryu controller, Load balancing, Open Flow, Raspberry Pi.

1.Introduction

 In a traditional switch, packet forwarding which

can be described as the “data plane” and high-level

routing (the control plane) occur on the same

device. Some of the drawbacks of the traditional

networks are that the physical network devices such

as switches, routers, and load balancers are vendor

specific. Some of these devices are not compatible

with the each other [1]; furthermore, it is not

allowed to change their functionality. SDN solves

most of the traditional network issues and

limitations. SDN is a new technology which

decouples the control plane from data plane based

on virtualization concept. The data plane is still

implemented in the switch itself but the control

plane is implemented in software and a separate

SDN controller makes the high-level routing

decisions [2]. The switch and controller

communicate with each other by means of the

OpenFlow protocol [3]. Data plane is responsible

for the processing and delivery of packets based on

the state of the routers and endpoints (e.g., Internet

Protocol (IP), Transmission Control Protocol

(TCP), Ethernet, etc.), while the control plane

determines how and where the packets are

forwarded based on the state of the network

devices. As a result, network’s intelligence and

state are logically centralized. SDN aims to make

the network devices to be more software-based

instead of hardware-based to improve the efficiency

of the traditional network. SDN has a centralized

controller which controls the traffic through the

network. The most commonly used open-source

SDN controllers are POX [4], Ryu [5], Trema [6],

and OpenDayLight (ODL) [7]. In literature,

Raspberry Pi is often used as an OpenFlow switch

testbed because of its affordable price (only a few

dollars) [8] while the other OpenFlow switches cost

thousands of dollars [9]. In SDN, it is easy to

program and adjust network rules and policies to

manage network flows according to network

requirements [10]. The SDN structure comprises of

three layers as shown in Fig (1), which can be

described as follows.

 Application layer: It is a layer at which

applications and programs are installed that

provides services to the infrastructure layer such

as load balancing, firewall, and network

monitoring.

 Control layer: It contains a centralized controller

to control the traffic flows through the network

and uses OpenFlow protocol to communicate with

the infrastructure layer to monitor the overall

view of the entire network.

 Infrastructure layer: It consists of both physical

and virtual network devices such as switches,

routers, and access points.

Currently, the load over the global network is

very high and growing rapidly due to the

continuously increasing user demands such as

browsing, search engines, downloading files, and

social networking; Therefore, a load balancer is

required to distribute the requests across multiple

resources such as servers and network links to

enhance the overall network performance (e.g.,

reducing the latency and response time, increasing

the throughput, and utilizing the available

resources). In this paper, we analyze and investigate

two SDN environments by applying load balancing

applications based on software algorithms running

on Ryu controller that allows flexibility to the

network instead of dedicated expensive hardware

load balancer devices. Ryu controller is chosen due

to its performance, rapid development, and simple

programmability in python. There are some

advantages of using SDN technology such as:

mailto:adlytag4%7d@feng.bu.edu.eg

92 Performance Analysis of Applying Load Balancing

Benha Journal Of Applied Sciences, Vol.(2) Issue(1) Oct.(2017)

 Directly programmable: SDN network is

directly programmable because the control

plane is decoupled from forwarding plane.

 Agile: It is easy to control the network traffic.

 Centrally controlled: As mentioned above, there

is a centralized device called controller which

provides the overall view of the network.

 Open standards-based: Most of the SDN

controllers are not vendor specific; in addition,

they are open-source which enables easy

programming.

Mininet emulator [11] is used to emulate the entire

network structure including hosts, OpenFlow

switches, and controllers. Mininet is an SDN

emulator tool written in python via script file or

Command Line Interface (CLI) commands. It

allows creating virtual network components such as

controllers, OpenFlow switches, virtual links, and

hosts on a single machine; it supports several SDN

topologies and is installed under Linux or Ubuntu

operating system. Ryu [5] is considered one of the

top most five controllers in terms of its usage,

utilization, and deployment [12]. There are many

components predefined in Ryu which can be

modified, extended, and composed for creating new

network management and control applications due

to network requirements. Ryu supports OpenFlow

protocol 1.0, 1.2, 1.3, 1.4, 1.5 versions for

managing network devices [13]. All of the code is

freely available under the Apache 2.0 license. Ryu

is fully written in python. There are some

limitations of mininet. One of these limitations is

that the Central Processing Unit (CPU) resources

are shared among the virtual components. All

mininet hosts share the host file system and Path

Identifier (PID) space; therefore, the performance is

quietly affected by these limitations. In addition to

using mininet, A real-time testbed is also

implemented for our SDN network using Raspberry

Pi [14] as a low-cost OpenFlow-enabled switch and

compare its performance with the results obtained

by using mininet.

Load balancing can be implemented for

different situations including distributing traffic

across multiple paths or distributing the clients’

requests across the servers [15]. This improves the

overall network performance by optimally utilizing

the available resources which lead to a reduction in

both latency and response time and an improvement

in the network throughput. Distributing the clients’

requests across the available servers avoids

network’s congestion and overload. The traditional

load balancers are very expensive hardware

devices; in addition, they are vendor specific (i.e.,

not open source) in contrast to using software load

balancer application with SDN controller.

Bindhu et al. [16] implemented a congestion

control and a dynamic load balancing algorithm by

taking into account the weights of edges and nodes

to find the shortest path between the nodes. The

drawback of this work is that it is suitable only for

small networks. Hu et al. [17] implemented a

controller load balancing architecture for OpenFlow

networks which partitions the control traffic across

multiple controllers. One of these controllers called

“super controller”, responsible for partitioning the

control traffic and distribute them across the

available controllers in the network. Li et al. [18]

introduced a load balancing routing algorithm in the

Fat-Tree network to distribute the traffic across

multiple paths equally. The drawback of this

algorithm is that it takes a long time to be executed

which causes more delay in the network.

In this paper, we propose a load balancing

scheme for distributing client’s requests across the

available servers at which the next request is

forwarded to the least-loaded server. We evaluate

our load balancing scheme with Random-based and

Round-robin and we also analyze their effects on

the overall network performance. The results are

compared based on mininet emulation environment

and Raspberry Pi OpenFlow switch testbed.

Fig (1) Three layers of SDN structure.

M. I.Hamed, B.M.ElHalawany, M.M.Fouda and A.S.Tag Eldien 93

Benha Journal Of Applied Sciences, Vol.(2) Issue(1) Oct.(2017)

2.Material and methods

In this section, we discuss three load balancing

techniques for the system model shown in Fig (2),

at which multiple servers are connected to the

controller through OpenFlow switch. All servers

provide the same service to the clients. The

controller has a list of IP addresses assigned to the

servers statically. The clients can access servers by

using virtual IP address which represents the

service’s IP; the load balancer distributes the

requests among servers. In other words, from the

client’s perspective, all servers are regarded as a

single server.

When a client requests the virtual IP, the request

is forwarded to the controller through the

OpenFlow switch to decide which server the

request is forwarded to. The controller selects the

server according to the load balancing application;

then, the controller modifies the packet header

including destination Medium Access Control

(MAC) address and destination IP of the selected

server and sends these rules to the OpenFlow

switch again. The switch forwards the request to the

port assigned to the selected server; then, the

selected server replies to the client’s request

through the OpenFlow switch. Every packet must

be forwarded to the controller to decide which

server will handle the client’s request. The load

balancing algorithms implemented in this paper are:

 Random-based: In this case, one server is

selected randomly from the available servers.

 Round-robin: The requests are distributed

among servers in a sequential manner. In other

words, the chosen server is always the server of

the next round in the network; therefore, all

servers almost handle the same number of

requests

 Server-based: This algorithm selects the server

least number of concurrently active TCP

connections of the server machines. Netstat

command is used to verify the number of

server’s active connections.

Fig (2) Load balancing algorithm operation steps.3.Results and discussion

In our environment, the network components

composed of: OpenFlow switch, OpenFlow

controller, load balancing application, hosts, and

servers. In this experiment, Open vSwitch software

is used in case of using Raspberry Pi and OVSK

switch in case of using mininet; Ryu OpenFlow

controller is used for controlling and managing the

network flows with the aid of the load balancing

application. There are three hosts used in this

experiment as follows: one client generates

Hypertext Transfer Protocol (HTTP) traffic and two

HTTP servers reply to the clients’ requests as

shown in Fig (3) .

The network performance is measured in terms

of throughput, number of errors, and response time

for both algorithms. The response time refers to the

time interval between generating HTTP request by

a client and receiving the reply from the server. The

simplest way to measure the request throughput is

to send requests to the server at a fixed rate and to

measure the rate at which replies arrive. The

experiments are conducted using mininet installed

on virtual machine (VMware) and a Raspberry Pi as

OpenFlow switch. In our implementation, Ryu

controller is used with OpenFlow protocol version

1.3; two laptop devices are used as a client and a

controller respectively running Ubuntu 14.04 64-bit

operating system and 3 Raspberry Pi kits model 2B

V1.1 as two servers and OpenFlow switch running

Linux operating system, called Debian-based

Raspbian Kernel version 4.4. In this paper, Open

vSwitch software is installed on one of the

94 Performance Analysis of Applying Load Balancing

Benha Journal Of Applied Sciences, Vol.(2) Issue(1) Oct.(2017)

Raspberry Pi kits to use it as a real-time low-cost

OpenFlow switch. Open vSwitch is a multilayer

software switch licensed under the open source

Apache 2 license [19]. USB LAN dongles RD9700

model are used to extend the USB ports of

Raspberry Pi OpenFlow switch to be connected to

client and servers since Raspberry Pi has only one

built-in Ethernet interface. The characteristics of

the hardware devices used in our implementation

are summarized in Table 1.

Fig (3) Network environment

Table (1) Hardware devices characteristics

Host name Client Controller Raspberry Pi

CPU Core i7 2.4GHz Core i3 2.4Ghz A 900MHz quad-core ARM Cortex-A7

Memory 8GB RAM 4GB RAM 1GB RAM

Additional

Features

 4 USB ports, one Ethernet port, and micro SD card slot

For our emulation environment, mininet version

2.2 is used to create 3 virtual hosts and one

OpenFlow switch with the remote controller by

using the following command:

$sudo mn --topo=single,3 --mac --

controller=remote --

switch=ovsk,Protocols=OpenFlow13

One of the three hosts is a client and the others

are servers; the servers are running on port 80. In

order to measure the web server performance, a

software tool known as Httperf [20] is installed on

the client. Httperf provides a flexible facility for

generating various HTTP workloads. To measure

the response time, requests are generated by using

Openload tool [21] via the following command:

$sudo Openload http://virtual ip:80 (N)

where N is the number of concurrently clients

requesting the web server. To make a host acts as a

server running on port 80, the following command

is executed on the host’s CLI:

$sudo python -m SimpleHTTPServer 80&

In our experiment, a different number of

connections are generated with different load sizes

to request the virtual IP (service IP) with different

request rates; therefore, HTTPerf tool is used to

generate HTTP requests to the web server and then

calculating throughput and number of errors using

the following command on the client side:

$sudo Httperf --server=“virtual ip” –num-

conns=“number of connections” --rate=“request

rate” --port=80

3. Results and discussion

In our scenario, the connection-based load

balancing algorithm is compared with Random-

based and Round-robin strategies in two

environments: using mininet emulation

environment with OVSK switch and Raspberry Pi

low-cost OpenFlow switch. The network

performance metrics are throughput, number of

errors, and average response time of a web server.

A. Performance of the emulated scenario using

mininet:

HTTPerf tool is used to measure the throughput

and the number of errors occurred in our network.

As shown in Fig (4), the throughput in case of using

our proposed algorithm is better than Random-

based and Round-robin strategies. The number of

errors that were encountered during a test using

Connection-based technique is fewer than Random-

M. I.Hamed, B.M.ElHalawany, M.M.Fouda and A.S.Tag Eldien 95

Benha Journal Of Applied Sciences, Vol.(2) Issue(1) Oct.(2017)

based and Round-robin as the request rate increased

as shown in Fig (5) .

The Openload tool is also used to measure the

average response time; the average response time

for the proposed technique is lower than the Round-

robin and random strategies (0.98, 1.068, and 1.23

ms respectively).

B. Performance of the Raspberry Pi scenario

The performance measurements for the hardware

implementation using a Raspberry Pi as OpenFlow

switch supports the results obtained in the

emulation as shown in Fig (6) . The average

response times for the proposed algorithm, Round-

robin, and Random-based are 2.852, 3.013 and

3.022 ms respectively. Fig (7) shows the number of

errors using Connection-based algorithm is less

than Round-robin and Random-based as the request

rate increased. Hence, the network performance is

better using our proposed technique because it

distributes traffic across available servers based on

least number of server’s active connections. In

contrast, using Random algorithm, the controller

may select only one server occasionally which

causes server overload and other servers will be

unloaded. We observed that there is a threshold

point in the request rate in case of using both

Raspberry Pi and mininet. After this point, the

throughput decreased and the errors increased

extremely

Fig (4) Request rate vs Throughput using mininet

Fig (5) Request rate vs Number of errors using mininet

96 Performance Analysis of Applying Load Balancing

Benha Journal Of Applied Sciences, Vol.(2) Issue(1) Oct.(2017)

Fig (6) Request rate vs Throughput using Raspberry Pi

Fig (7) Request rate vs Number of errors using Raspberry Pi.

4. Conclusions

This paper presents an OpenFlow-based

solution for servers’ overload problem by

implementing a server-based load balancing

application in SDN environment instead of the

traditional load balancer. In this paper, three load

balancing techniques are compared and evaluated

using mininet emulation tool and real-time

Raspberry Pi testbed using Ryu controller. It is

found that the proposed algorithm is better than the

Round-robin and Random-based strategies in terms

of throughput, number of errors, and response time.

5. Acknowledgment

This work has been partially supported by

Scientific Research Fund at Benha University,

Project “Evolution Toward 5G Cellular Wireless

Networks: Reliability and Energy Efficiency

Challenges”.

References

[1] S.Kaur, J.Singh, K.Kumar, and N.S.Ghumman,

“Round-Robin Based Load Balancing in

Software Defined Networking,” Computing for

Sustainable Global Development (INDIACom),

New Delhi, India,2015.

M. I.Hamed, B.M.ElHalawany, M.M.Fouda and A.S.Tag Eldien 97

Benha Journal Of Applied Sciences, Vol.(2) Issue(1) Oct.(2017)

[2] D.Kreutz, F.M.V.Kreutz, P.E.Verssimo, C.E.

Rothenberg, S.Azodolmolky, and S.Uhlig,

“Software-Defined Networking: A

Comprehensive Survey,” Proceedings of the

IEEE, vol. 103, no. 1, pp. 14, 2015.

[3]“OpenFlow Protocol”, available at,

https://www.opennetworking.org/sdn-

resources/openflow .

[4] “POX OpenFlow Controller”, available at,

https://OpenFlow.stanford.edu/display/ONL/P

OX+Wiki .

[5] “Ryu SDN Framework”, available at,

https://osrg.github.io/Ryu/

[6] “Trema”, available at,

https://trema.github.io/trema/.

[7] “The OpenDaylight platform”, available at,

https://www.opendaylight.org/.

[8] “Raspberry Pi price”, available at,

https://www.raspberrypi.org/blog/price-cut-

raspberry-pi-model-b-nowonly-25/ .

[9] “HP OpenFlow switch price”, available at,

https://www.opennetworking.org/sdn-

openflow-products?start=20.

[10] “SDN”, available at,

http://www.cse.wustl.edu/%7Ejain/cse570-

13/ftp/sdn/index.html

[11] “Mininet”, available at, http://mininet.org/.

[12] R.Khondoker, A.Zaalouk, R.Marx, and

K.Bayarou, “Feature-based Comparison and

Selection of Software Defined Networking

(SDN) Controllers,” World Congress on

Computer Applications and Information

Systems (WCCAIS), Hammamet, Tunisia,

2014.

[13]“Osrg/Ryu”,available at,

https://github.com/osrg/ Ryu.

[14]“Raspberry Pi”, available at,

https://www.raspberrypi.org.

[15] H. Uppal and D. Brandon, 2010. “OpenFlow

Based Load Balancing,” University of

Washington, USA.

[16] M. Bindhu and G. P. Ramesh “Load Balancing

and Congestion Control in Software Defined

Networking using the Extended Johnson

Algorithm for Data Centre,” International

Journal of Applied Engineering Research

(IJAER), vol. 10, no. 17, pp. 12911, 2015.

[17] Y.Hu, W.Wang, X.Gong, X.Que, and S.Cheng,

2012 . “BalanceFlow: Controller load

balancing for OpenFlow networks.”, Cloud

Computing and Intelligent Systems (CCIS),

IEEE 2nd International Conference on IEEE,

Hangzhou, China.

[18] Y.Li and D.Pan, “OpenFlow based Load

Balancing for Fat-Tree Networks with

Multipath Support,” IEEE International

Conference on Communications (ICC-2013),

Florida, USA, 2013.

[19] “Open vSwitch/ovs”, available at,

https://github.com/Open vSwitch/ovs.

[20]“Httperf”, available at,

https://github.com/httperf/httperf.

[21] “OpenLoad”, available at,

 http://openwebload.sourceforge.net/

http://mininet.org/

