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Abstract

The devote of this paper is discussing the existence and uniqueness of fractional linear integro partial differential equation with
evolution kernel of heat type due to modified Bielecki method. In addition, Laplace homotopy perturbation method is used to
obtain the numerical solutions in the space Cz(E X [0, T]). Therefore, we estimate the error in different cases of a.
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1. Introduction

Fractional partial differential equations have been
interested in the recent literatures as it has many application
in various fields of physics and engineering such as
biophysics, bioengineering, quantum mechanics, finance,
control theory, image and signal processing, viscoelasticity
and material sciences [4-6, 14, 15]. Most fractional partial
differential equations don’t have analytic solutions so
numerical techniques must be used as [7, 8] Laplace-
Adomian decomposition method (LADM) is used to obtain
the solution numerically. In [12] Kexue and Jigen discussed
the Laplace transform (LT) method for solving fractional
differential equations with constant coefficients. In [10, 18]
the homotopy analysis method is applied to obtain the
solution of a multi-order fractional differential equation in
the Caputo sense. In [1] EI-Borai et al. studied the Cauchy
problem (CP) in Banach space E for linear fractional
evolution equation.

In this work, we consider the following FLIPDE with
evolution kernel of heat type has the following form:

%u(xt) _ a*u(xt)
R = 0 [ k(e t — y)ulx,y) dy
+h(x,t), 0<a<l, (1.1)
with initial condition
u(x,0) = f(x), (1.2)
where % is the Caputo fractional derivative of
2
order a and 2 u(x 9 is a linear closed bounded operator.

Also, fo k(x,t—y) u(x,y)dy; t€[0,T] is a linear
closed bounded operator defined in the space E x [0,T],
h(x,t) is afree term of and u(x,t) € E X [0, T].

The existence and uniqueness solution of (1.1) under
condition (1.2) will be proved due to Modified Bielecki
method. Moreover, the stability of the solution will be
discussed. In addition, LHPM will be used to obtain the
numerical solution of FLIPDE. Finally, numerical results
will be discussed and the difference between exact solutions
and approximate solutions will be calculated.

2. Preliminaries

Here, we summarize the definitions and lemmas in
addition conditions of operators that we are used for
discussion the existence, uniqueness, and the stability of the
solution.

Definition 1. The Caputo fractional derivative of order 0 <
a < 1, is defined as [16]

DEF(O) = 1 Jy 2 (¢ =)™ dd. (21)

Definition 2. The Riemann-Liouville fractional integral
operator of order 0 < a < 1, is defined as [17]

D) = rgho FOC =00, (22)

Definition 3. (E, d) is said to be a complete metric spaces
if metric space d is defined as[1]

—A(t+x)
d(u(xl t), v(x, t)) = m%x (e II U(x, t)
X,

B ) a1

(2.3)

Definition 4. Laplace transform of a function u(x, t),
t>0 [2]
u(x, s)Llu(x, t)] = fooo u(x, t)e stdt; s > 0. (2.9)

Definition 5. Laplace inverse of a function U(x, s) defined

as
u(x,t) = LU, )] = — [T Ux, s)estds.  (2.5)

27i VY —L®

Propositionl LT for Caputo derivative of function u(x,t)
[2]
L(D%u(x,t)) = L [

t _ —_q Ou(x,7)
Ak DRl

= —[sL(u(x, ) — u(x,0)]. (2.6)

sl-a

Abdou et al. proved the following lemmas [1]
Lemma 1.

Jy € =m©@Ddy < H©E Ve, (27)
where0 <6 <1, A>1and t €[0,T].
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Lemma 2.

S5
t o2 §-1 1 1) jat
[} eM(t —m)©@Vdn < (5) (1 +E)e , (2.8)
where0 <§ <1, A>1 and t €[0,T].
For solution of (1.1) under initial condition (1.2) the

following conditions must be satisfied:

* The solution u(x, t) and its fractional derivative —a et

belong to the space C(E % [0,T]), where Cgz(E X [0, D
be the set of all continuous functions.
* Free term h(x,t) is bounded and continuous in the
space Cg(E x [0, T]).
2

o 3
o The second derivative operator o generates an

analytic semigroup Q(t,r(x)) and satisfies the following
condition;
IQ(t,r()) ISk, — vt=0,

2
and Il Q7)) I< 5 (2.9)
where |lll is the norm in E and k is a positive constant.

* The integral operator fot k(x,t —y)g(x,y)dy satisfies
uniformly Holder conditionint € [0, T] for every g(x,y) €
E x [0, T] as the following conditions;

I f)? kGt —y) g y)dy — [ k(x,t —y) g(x, y)dy |

< Ik () Il (8 — )P < Ly (t, — £, (2.10)
Vt,, t, €[0,T], ty > t,, and 0 < B < 1.
And,
t Il ky () Il L,
||ka,t— tr)dy I< ,
; ( Y)Q(tir)dy ) )y

y€(01), r€E, (2.11)
where, kq, k, and r are functions of x and Q(¢t;r(x)) €
E x [0, T]. Therefore, Ly, L, are constants where || k;(x) |l
<Ly and |l ky(x) I<L,.

3. Existence and uniqueness solution by wusing
""Modified Bielecki method"
Now, we rewrite (1.1) under (1.2) by using (2.2) and
the properties of fractional calculus as the following relation

t 52
u(x, t) = up(x) +F( )f g u(x 6’)( —0)*"1do

F(a)f f k(x t— y)u(x,y)(t - e)a_ldydg
@ —— [ (t = 6)%" h(x,0)d6. (3.1)

In this section, the technique of Modified Bielecki
method is generalized as [14] to obtain the existence and
uniqueness solution of (1.1) under condition (1.2) in Banach
space E by searching the existence and unigueness of
equivalent equation (3.1) for0 < a < 1.

Theorem 1. Suppose that the integral operator
fot k(x,t —y) u(x,y)dy and the second derivative
2 u(x,t)

JCZ

a .
operator are closed linear bounded operators for

0 < a <1 then, (1.1) with initial condition (1.2) and its
equivalent (3.1) have a unique solution in Banach spaceE

Proof. Let K be an operator defined by

1 ('o%u(x,6)

Ku(x,t) = uo(x)+r() T(

t —0)*1do

1 —_
+@fofo k(x, t = y)u(x,y)(t - 0)*"! dydd

t
F(l) (t — 0)* 1h(x, )do.
(3.2)
Taking the norm of (3.2), we get
Il Ku(x, ) 1< 1l ug(x) I +—f 1 “("9) (t—6)*"1|do

I'(a)
@f I k(xt—Y)u(x,y)(t—fi)"“1 Il dyde
tro o Il (¢t = 8)" h(x,0) Il 6. (3.3)

Using propertles of differential and integral operators,
we have

0%u(x,t)
I “ox? 1< LIl ulxt)l,
I f, k(e t —y)uCxy)dy IS Ml u(x,t) |, (3.4)

where L and M are positive constants.
Using (3.4) in (3.3), we get

L+M (¢
Il Ku(x, 6) I<I uo(x) I+ f Il u(x, 0)(t — )% Il 6
0

@ — [0 (t—0)*h(x,0) 1 d6. (35)

Using Cauchy Schwarz inequality and Lemma 1, we
can obtain
I Ku(x,t) I<Il ug(x) Il
1 1 a-—-1
o (E) TA @ + Mu, ©) I+ h(x, 6 1),
T = max. (3.6)

0<t<T
It obvious that the operator K maps the ball B, c E into
itself, this clear from inequality (3.6), since
r=="=, ¢ =lluy(x) Il +8; Il h(x, ¢) I

1-6,
L+M ,1

and §; = F(a)( Yo 1T.

Therefore,

r>0 and o >0 then, §; < 1.

Then, the inequality (3.6) involves the boundedness of
the operator K.

Let the two functions u(x, t) and v(x,t) € E X [0, T] be
two solutions of (1.1) then, formula (3.3) leads to
Il Ku(x,t) — Kv(x, t) |l

*u(x,0)  9*v(x6) _ 1
< r@f ||( )(E—6)c" 11 do

d0x? dx?
T d 1y ket =y)uxy)dy(t =) Il do

— o 1Jy kGt =y y)dy(t = 0)* 1 do.
@.7)

Using (3.4) and Cauchy-Schwartz inequality we can
conclude that

Il Ku(x,t) — Kv(x, t) | < ?;’V)’ Axf e=AE+0) |

(u(x,0) —v(x,0)) Il do fo e (t —0)*1do. (3.8)
Equation (3.8) can be adapted in the following form by

using Lemma 2,
matxe"l("”) I Ku(x t) — Kv(x, t) |l
X,

L+M
<
~ T'(a)

( )*(1 + —)max e 2O | (u(x, t) — v(x, t) II.
(3.9)
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Using Definition 3, the formula (3.9) becomes have the
following form
d(ku(x,t), kv(x, t)) < o d(u(x, t), v(x,t)), (3.10)

a

where, g; = %G) 1+ i).

If we choose A sufficiently large then, o; < 1and d is a
contraction mapping. Finally, by using Banach fixed point
theorem K has a unique fixed point which is the unique
solution of (3.1) and its equivalent (1.1) with initial
condition (1.2). This completes the proof of Theorem 1.

4. The stability of the solution
Now, we will discuss the stability for the solution of
(1.1) with initial conditions (1.2).

Theorem 2. Let u,(x,t) be a sequence solution of (1.1)
with initial condition wu,(x,0) = g,(x), where g,(x) €
E,(n=123,....). If the sequences of the second

d?gn(x)

derivative >
dx

and the sequence of integral operator

(fot k(x,t—y)gn(x)dy) converges uniformly on E X

[0, T]. Then, the sequence of solution w, (x,t) converges
uniformly on E x [0, T] to a limit function u(x, t) which is
the solution of (1.1).

Proof. If we suppose that u, (x,t) = uj(x,t) + g,(x), then
we obtain the following formula by substituting in (1.1)

% up(xt) 3%uj, (x,t)

s = o T, 0<a<l, (4.1)
where,
d’gn(x) | (*
Zn(x,t) = d;Z +f k(x,t = y)gn(x)dy
0

+ [y kGot —yun(oy)dy + h(xy).  (42)
By using semi-group method we can conclude that
U6, 0) = [ £ (0)p(t“6)do
t poo
va [ [ oc-meie®
0 Y0
o((t =m0z, (x,n)dOdn.  (4.3)

Here, &,(0) is a probability density function defined on
the interval (0, o) as

1,11 -1/a
a(t) = —t7 Tap, (t719), (4.4)
where density function p, (t) is defined as
pa(®) = L7 (ePY). (4.5)

Using the properties of integral and derivative
operators, we get

” Zn(X, t) - Zm(x, t) ”

<e+ue+ afot fooo fon o(t —n)*t

$a(0) Il k(x,t = ¥)gn(x)((t —m)*0) I
Il z,(x,n) — zym (x,n) || dydOdn. (4.6)

Using the condition (2.11) and Lemma 2 we conclude that

Il z,(x, t) — zpp (x, ) |l

<u* G)av (1 + i) | z,(x,t) — zp (x, 6) | +u(1 + €),
(4.7)

where,
v=1—y, €>0and pu*=a L, g,(x) fom 07¢,(6)d6.

Forall n,m = N, u(x,t) € E x [0, T] and sufficiently
large 4, we have

me}:xe"l(x”) Il z,(x,t) — zp (x, ) I< u(1 + €). (4.8)
X,

Since E is a complete normed space, then the sequence
z,(x,t) converges uniformly on E X [0, T] to a continuous
function z(x, t), therefore, the sequence u;; (x, t) converges
uniformly on E x [0,T] to a continuous function. This
completes the proof of Theorem 2.

5. Numerical schema for homotopy perturbation
method (HPM)

The HPM has recently been reported to be useful for
obtaining numerical solutions for fractional equations.
HPM is more efficient method for solving fractional
problems of limited scope in the period from [0,1]. The
greater generality of the method often allows for strong
convergence of the solution over larger spatial and
parameter domains as HPM provides a simple way to ensure
the convergence of the solution series. We describe the
HPM as in [3, 9, 11] for a general type of the nonlinear
differential equation with boundary conditions

Aw)—f(r)=0, req. (5.1)

B(w2)=0, rer, (5.2)
where A is a general differential operator, B is a boundary
operator, f(r) is a known analytical function and T is the
boundary of the domain. The operator A can be divided into
two parts L and N where L is a linear operator and N is a
nonlinear operator. Therefore, (5.1) have the following form

Lw)+ N —f(@)=0. (5.3)

We define a homotopy H(r,p): Q@ X [0,1] = R as
H(u,p) = (1 —p)[L(w) — L(up)] + p[Aw) — f(1)] =0,
p €[0,1],r € Q. (5.4)
where p € [0,1] and u, is an initial approximation for
(5.1) with

H(u,0) = L(u) — L(up) =0,

H(u,1) =AM)—f(r)=0. (5.5)

Assume that the solution of (5.1) can be written as a
power series in p, we get

v =30, phug. (5.6)

Substituting from (5.6) in (5.4) and comparing the

coefficients of powers of p yields a successive procedure to
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determine u,. Finally, by putting p = 1, we obtain the
solution of (5.1).

6. Description of LHPM for FLIPDE with evaluation
kernel of heat type
We obtain the following by using Definition 2.4 and

proposition 2.6, LT can be applied on equations (1.1), (1.2)

S1l—a [s®(x,5) — Ppo(x)] = % + k(x,s)®(x,s)

+h(x,s), (6.1)

and

Do (%) = L(uo(x)). (62)
where ®(x,s), h(x,s) and k(x,s) are the LT of u(x,t),
h(x,t) and k(x, t) respectively.
According to HPM we can obtain that

© . 92 — . .
Yizo P’ ®j(x,s) = %(ﬁ + k(x, S)) Yizo P’ ®;(x,s)
+=[Bo ()] +z h(x,5). (6.3)
where ®;(x, s) are the unknown functions. By comparing
the coefficients of powers of p we conclude that
1 1_
P’ @0 (x,5) = <[] + (. 5)
2

1/0 _
pl:d,(x,s) = E(ﬁ + k(x, s)) Dy(x,5)

By taking the limit p — 1, we conclude that

Hy(x,5) = Xz ®(x,5). (6.5)
Taking Laplace inverse, then the formula (6.5) leads to
u(x, t) = u,(x,t) = LY (H,(x, 5)). (6.6)

Equation (6.6) represents the approximate solution of (1.1).

7.  Numerical examples
Here, the numerical results of two different examples
are presented by using LHPM at different values of a.

Example 1 Consider the following FLIPDE of heat type
with evolution kernel k(x,t —y) = x(t — y).

0%u(x,t) 09%u t
———+f x(t = ) u(x,y) dy
0

at*  9x?
+h(x,t), (x,t)€[0,1] x[0,T], (7.1)
with initial-boundary conditions
u(x,0) = u(0,t) = 0, (7.2)
and the exact solution is
u(x, t) = t%sin(x). (7.3)

Results of exact solutions (Exact) and approximate
solutions (Appro) moreover, the difference between them
(error) of Example 1 are obtained numerically by using
LHPM at different values of a in Table (1) and Table (2).

P, (x,5) = 5 (5 + E(x,5)) Pu(x,9). (6.4)
s* \ox
x=t a=0.98 a=0.8
Exact Appro Error Appro error

0 0 0 0.00E+00 0 0.00E+00
0.04  6.39829E-05 6.39832E-05 257E-10  6.39844E-05  1.46E-09
0.08 0.000511454 0.000511471 1.65E-08  0.000511526  7.21E-08
0.12 0.001723856 0.001724046 1.90E-07  0.001724566  7.10E-07
0.16  0.004078546 0.004079631 1.09E-06  0.004082165  3.62E-06
0.2  0.007946773 0.007950991 4.22E-06  0.007959626  1.29E-05
0.24 0.013691671 0.013704509 1.28E-05  0.013728008  3.63E-05
0.28 0.021666283 0.021699302 3.30E-05  0.021754034  8.78E-05
0.32 0.032211616 0.032286671 7.51E-05 0.032400447  1.89E-04
0.36  0.045654741 0.045809961 1.55E-04  0.046026805  3.72E-04
0.4  0.062306935 0.0626048441  2.98E-04  0.062990779  6.84E-04
0.44  0.08246188 0.083000073 5.38E-04  0.083649951  1.19E-03
0.48 0.106393922 0.107318739 9.25E-04  0.108364173  1.97E-03
0.52  0.134356389 0.135880062 1.52E-03  0.137498494  3.14E-03
0.56  0.166579992 0.169001753 242E-03  0.171426706  4.85E-03
0.6 0.20327129 0.207002991 3.73E-03  0.210535536  7.26E-03
0.64 0.244611253 0.250208047 5.60E-03  0.255229528  1.06E-02
0.68 0.290753894 0.298950564 8.20E-03  0.305936648  1.52E-02

Table (1) Results of Example 1 at a=0.98 and a=0.8.
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x=t a=0.48 a=0.38
Exact Appro Error Appro error

0 0 0 0.00E+00 0 0.00E+00
0.04 6.39829E-05 6.40139E-05 3.10E-08 6.40621E-05 7.92E-08
0.08 0.000511454 0.000512423  9.69E-07  0.000513607 2.15E-06
0.12 0.001723856 0.001731142 7.29E-06  0.001738759 1.49E-05
0.16 0.004078546 0.004109117 3.06E-05 0.004137503 5.90E-05
0.2 0.007946773 0.008039996 9.32E-05 0.008118478 1.72E-04
0.24 0.013691671 0.013924033 2.32E-04 0.014103789 4.12E-04
0.28 0.021666283 0.022170308 5.04E-04  0.022532005 8.66E-04
0.32 0.032211616 0.033199312 9.88E-04 0.033861461 1.65E-03
0.36 0.045654741 0.047445954  1.79E-03  0.048573961 2.92E-03
0.4  0.062306935 0.065363044 3.06E-03  0.067178967 4.87E-03
0.44 0.08246188  0.087425305 4.96E-03  0.090218364 7.76E-03
0.48 0.106393922 0.114133991  7.74E-03  0.118271876 1.19E-02
0.52 0.134356389 0.146022135 1.17E-02  0.151963235 1.76E-02
0.56 0.166579992 0.183660558 1.71E-02  0.191967193 2.54E-02
0.6 0.20327129  0.227664649  2.44E-02  0.239017485 3.57E-02
0.64 0.244611253 0.278702048 3.41E-02  0.293915863 4.93E-02
0.68 0.290753894 0.337501312 4.67E-02  0.357542315 6.68E-02

Example 2 Consider the following FLIPDE of heat type

Table (2) Results of Example 1 at « = 0.48 and a = 0. 38.

with evolution kernel k(x,t — y) = x(t% — y).

0%u(x,t) 0%u

+ J- x(t? —y) ulx,y) dy + h(x, t),
0

and the exact solution is

u(x,t) = xt. (7.6)
Results of exact solution and approximate solution
the difference between exact solution and

Jt® - dx2 moreover,
(x,t) € [0,1] x [0, T]. (7.4) approximate solution of Example 2 are obtained
with initial- boundary conditions numerically by using LHPM at different values of a in
u(x,0) = 0. u(0,t) = 0. (75) Table (3) and Table (4)
x=t a=0.98 a=0.8
Exact Appro Error Appro error

0 0 0 0.00E+00 0 0.00E+00

0.08  0.0064 0.006400005 4.75E-09 0.00640001 1.01E-08

0.16  0.0256 0.025600321 3.00E-07 0.025600565 5.65E-07

0.24  0.0576 0.057603391 3.39E-06 0.057605938 5.94E-06

0.32  0.1024 0.102418943 1.89E-05 0.102431501 3.15E-05

0.4 0.16 0.160071941 7.19E-05 0.160114924 1.15E-04

0.48  0.2304 0.230614038 2.14E-04 0.230730884 3.31E-04

056 0.3136 0.314138081 5.38E-04 0.314409081 8.09E-04

0.64  0.4096 0.410795803 1.20E-03 0.411355422 1.76E-03

0.72 05184 0.520818703 2.42E-03 0.521876306 3.48E-03

0.8 0.64 0.644542085 4.54E-03 0.646405928 6.41E-03

0.88 0.7744 0.782432322 8.03E-03 0.785536612 1.11E-02

0.96  0.9216 0.935117372 1.35E-02 0.940052162 1.85E-02

Table (3) Results of Example 2 at « = 0.98 and a = 0. 8.
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x=t a=0.48 a=20.2
Exact Appro Error Appro error

0 0 0 0.00E+00 0 0.00E+00
0.08 0.0064 0.006400038 3.85E-08 0.006400121 1.21E-07
0.16 0.0256 0.025601717 1.72E-06 0.025604462 4.46E-06
0.24 0.0576 0.057615839 1.58E-05 0.057636748 3.67E-05
0.32 0.1024 0.102476629 7.66E-05 0.10256404 1.64E-04
0.4 0.16 0.160260308 2.60E-04 0.160523538 5.24E-04
0.48 0.2304 0.231107041 7.07E-04 0.231751436 1.35E-03
0.56 0.3136 0.315245804 1.65E-03 0.316613491 3.01E-03
0.64 0.4096 0.413021902 3.42E-03 0.415637189 6.04E-03
0.72 0.5184 0.524926958 6.53E-03 0.529545511 1.11E-02
0.8 0.64 0.651631339 1.16E-02 0.659292398 1.93E-02
0.88 0.7744 0.794018991 1.96E-02 0.806100106 3.17E-02
0.96 0.9216 0.953224759 3.16E-02 0.971498701 4.99E-02

Table (4) Results of Example 2 at « = 0.48 and a = 0. 2.
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8. Conclusions

The fundamental goal of this paper is to propose an
efficient algorithm for the solution of FLIPDE with
evolution kernel of heat type moreover, we discussed the
existence and uniqueness using modified Bielecki method
in addition, stability of these equations is discussed using
the semi-group method. Finally, LHPM is introduced for
solving with evaluation kernel FLIPDE of heat type to show
the applicability and efficiency of the proposed method. we
conclude that the LHPM is very powerful and efficient in
founding numerical solutions for FLIPDE of heat type with
evaluation kernel as the results of exact solutions and
approximate solutions moreover, the difference between
exact solutions and approximate solutions (errors) are
obtained numerically by using LHPM at different cases of
a in Table (1), Table (2), Table (3) and Table (4).

In Table (1) and Table (2) for Example 1 we conclude that
+ Exact solution and approximate solution are identical at
x=t=0.
« Since x and t increase then, error also increases for

differenta = 0.95, « = 0.8, = 0.48 and « = 0.35.

* The error increases when a decreases as maximum error

for Example 1 is 6.68F — 02 at « = 0.38.

In Table 3 and Table 4 for Example 2, we conclude that
* Exact solutions and approximate solutions are the same
atx =t =0.
» When x and t increase then, error also increases for

differenta = 0.95, ¢ = 0.8, a = 0.48 and a = 0.2.

* The error increases when « is decrease as maximum

error for Example 2 is 4.99E — 02 ata = 0.2,

x =096, andt = 0.96.
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