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Abstract- This work investigates the creeping flow problem 

via a swarm of porous circular cylindrical particles using the cell 
model technique. Brinkman equation inside the porous 
cylindrical region is used, and Stokes equation for the clear fluid 

would be satisfied. The stress-jump condition, together with the 
continuity of the velocity components and the continuity of 
normal stress, are employed at the porous-liquid interfaces. In 

contrast, no-couple stress condition and no-spin condition are 
used on the outer boundary of the cell. In addition, we are 
applying no-slip boundary conditions on the surface of the solid 

core.  Our problem is solved analytically, and stream function 
expressions are derived for the inside and outside flow fields. The 
influence of the drag force on each porous cylindrical particle in 

the cell is calculated. The graph depicts the variation of 
hydrodynamic permeability with various parameters and 
especially the impact of the jump coefficient. The results of this 

model may be used to examine the membrane filtration process. 

Keywords: Cylindrical porous Particle-in-cell model - Stokes 
flow - Brinkman equation – Permeability - Drag force.   

 

I. INTRODUCTION 

The fluid flow problem in concentrated media is essential 

for chemical and industrial applications. A wide range of these 

applications includes flows through sand beds and oil 

collectors, sedimentation, and membrane filtration. 

Membranes are distinguished by a complicated porous 

structure that can be represented using various models, 

including curvilinear and rectilinear conduits or assemblages 

of porous or impermeable cylindrical (spherical) particles. It 

is well known that the flow inside and outside porous media 

is governed by Stokes or Brinkman equations and continuity 

equations. Solving a boundary value problem for these 

equations is extremely complicated, where porous structures 

have complex boundaries as known. Many approaches 

simplify the liquid flow process through porous layers, such 

as the collocation method, the effective medium 

approximation, and the cell method.  

The Happel-Brenner cell model approach is the most 

significant in which an outer envelope surrounds each particle 

as a single unit cell to avoid cumbersome calculations 

resulting from considering the flow over the entire swarm of 

particles. Thus, the reduced boundary problem is solved 

separately for each single unit cell, considering the effects of 

neighbours particles using appropriate boundary conditions 

on the outer cell. On the outer hypothetical envelope cell, 

various boundary conditions correspond to all known models: 

 Happel [1], Kuwabara [2], Kvashnin [3] and Cunningham [4] 

are applied. Happel [1,5] and Kuwabara [2] assumed cell 

models with spherical (cylindrical) shapes for both particle 

and outer envelope. With this formulation, the flow can be 

axially symmetric and have an analytical solution. The Happel 

model would vanish on the outer cell boundary, but the 

vorticity no longer exists there, as expected by the Kuwabara 

model. Although both formulations produce almost identical 

velocity fields and drag forces, the Happel formulation does 

not need an exchange of mechanical energy between the cell 

and its surroundings. 

On the contrary, the Kuwabara formulation requires a 

small mechanical energy exchange with the surroundings. 

The viscous dissipation in the fluid layer does not entirely 

consume the mechanical energy that the sphere provides to the 

fluid. Instead, a little part is released into the environment. 

Kvashnin [3], Cunningham [4], and Mehta [6] considered 

different boundary conditions on the outer surface of the cell 

using two distinct cell models. Kvashnin [3] assumed that the 

tangential component of velocity approaches a minimum 

concerning radial distance at the cell surface, indicating cell 

symmetry. The tangential velocity has been assumed to be a 

component of the average fluid velocity by Cunningham [4] 

and Mehta [6], denoting the homogeneity of the flow on the 

cell boundary. The particle-in-cell models mentioned above 

have analytical solutions that are always effectively valuable 

to several industrial problems. But, in complicated geometry 

cases, creeping flow solutions for these models have not been 

determined. Following the approach of Happel and Kuwabara, 

many authors studied the analytical solutions for simple 

geometries like cylinders and spheres. Further, particle-in-cell 

models with particles enclosed with a porous layer have 

received much attention in the literature.  

The drag force produced by porous cylinders inside a 

viscous fluid at a low Reynolds number has been observed by 

Stechkina [7]. Depending on the Brinkman model, Pop and 

Cheng [8] discussed the mathematical formulation of the 

steady incompressible flow via a circular cylinder submerged 

in a medium with constant porosity and the exact solution of 

governing equations. They demonstrated that the tangential 

velocity increases from zero near the wall to a maximum value 

at a small distance and then drops to its asymptotic value away 

from the wall. In addition, the flow separation hadn't occurred 

at the cylinder's surface, as proved. Depending on Darcy's law 

for describing the flow in the porous structure, a uniform flow 

via a permeable heterogeneous circular cylinder was 

investigated by Singh and Gupta [9]. 

Furthermore, Gupta [10] discussed the steady creeping 

flow through a porous cylinder by applying a matched 

asymptotic technique, as Kaplun [11] had done for an 

impermeable circular cylinder. Deo [12] applied Happel and 

Kuwabara boundary conditions when studying stokes flow 

through a swarm of porous circular cylinders. Lately, Kim and 
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Yuan [13] studied an effective model for membrane filtration 

technique to compute its particular resistance to aggregated 

colloidal cake layers. Using Kuwabara's boundary condition, 

Deo [14] analyzed the Stokes flow problem across an array of 

porous circular cylinders-in-cell surrounding an impermeable 

core. Vasin [15] described another model consisting of an 

assembly of impervious cylindrical particles enveloped in a 

porous layer and then evaluated its permeability. Based on the 

four different boundary conditions on the cell surface, they 

considered cylinders' transverse, longitudinal, and random 

orientations relative to fluid flow.  

The requirements for solving the governing equations in 

the porous and fluid regions involve defining the appropriate 

porous-interface conditions. Due to the non-local form of the 

volume-averaged strategy, Ochoa-Tapia and Whitaker [16] 

inferred that the stress jump condition exists at the interface 

to combine Darcy's law with Brinkman's equation when the 

matching process needs a discontinuity in stress. Additional 

stress jump condition involving inertial impacts was 

developed by Ochoa-Tapia and Whitaker [17] using the 

Forchheimer equation with the Brinkman correction and the 

Navier-Stokes equations. In this case, there are two 

coefficients: one related to extra viscous stress and the other 

to inertial stress. Because of these interesting applications, 

numerous papers [18-22] are devoted to this topic. Kuznetsov 

[23] discussed the flow in conduits partially filled with porous 

material using the stress-jump boundary condition at the 

porous-clear fluid interface. Raja Sekhar and Sano [24], who 

discussed two-dimensional viscous flow via a distorted void 

inside the porous region, also employed these boundary 

conditions reasonably recently. As a result, the stress-jump 

boundary condition fluid-porous interface can not be 

neglected. Therefore, there is necessary to investigate such 

issues; hence this work is concerned with studying the slow 

viscous flow problem of an incompressible Newtonian fluid 

through an aggregation of concentric clusters of porous 

particles with cylinder shapes using stress jump condition. 

Furthermore, the essence of a stress jump condition 

consideration affects the formation of porous layers on the 

surface of rigid particles that result from the dissolution and 

adsorption of polymers, so a porous layer on the surface of an 

impermeable cylindrical core is taken into consideration. Any 

modification in the frictional force on the interface between 

fluid and solid surfaces, like the colloid particles' surfaces or 

variation in the overall permeability of the membrane, is due 

to the formation of porous layers on the surfaces of rigid 

particles. The Brinkman equation is satisfied to describe the 

flow in the porous cylindrical shell, whereas the Stokes 

equation outside these porous regions is used. Applied 

boundary conditions include the continuity for velocity 

components, as well as for normal stresses at the porous 

cylindrical shell and the absence of velocity components on 

the solid core surface. Uniform velocity and absence of 

tangential stresses (Happel model) are applied on the 

hypothetical cell surface. Representative results are compared 

and presented in both cases using Mathematica software. It 

has been graphically explained how various factors affect  

hydrodynamic permeability, and some significantly limiting 

cases have been discussed. 

 

II. PROBLEM DESCRIPTION AND MATHEMATICAL 

FORMULATION 

A primary assumption used in this investigation is that a 

periodic mesh of identical coaxial cylindrical particles 

consists of a solid cylindrical core of radius a and is enveloped 

by a porous cylindrical layer having a radius b and 

permeability K.  Meanwhile; we consider a liquid concentric 

hypothetical cylinder surrounding the porous cylindrical layer 

and the flow of a viscous Newtonian fluid at small Reynolds 

numbers (creeping flow ) is steady and axisymmetric. Let us 

suppose that the fluid with uniform velocity U moves 

perpendicular to the z-axis of three coaxial cylinders from left 

to right. The radius of this hypothetical cell c(c > b) is 

specified so that the volume fraction of the partially porous 

particles to the volume of a cell equals the volume fraction of 

particles in the concentrated system, as shown in Fig. 1 

 
 

Figure 1. Schematic representation of the physical model and the 

coordinate system. 
 

Where 𝜀 means the porosity, the Stokes and continuity equations are 

used for an incompressible Newtonian flow with small values for 

the Reynolds number (creeping flow) outside the porous region 

(𝑏 ≤ 𝑟 ≤ 𝑐). 

 

{
𝜇1∇2�̃�(1) = ∇�̃�(1),

∇ ∙ �̃�(1) = 0.
}                                                 (1) 

 

The Brinkman and continuity equations are assumed to govern 

the flow in the porous cylindrical shell (𝑎 ≤ 𝑟 ≤ 𝑏). 

 

{
𝜇2∇2�̃�(2) −

�̃�2

�̃�2
𝜒2�̃�(2) = ∇�̃�(2),

∇ ∙ �̃�(2) = 0.
}                            (2) 

 
Here, the velocity vector and pressure outside and within 

the porous cylindrical shell, respectively, are represented by  
�̃�𝑖 , �̃�𝑖 , 𝑖 = 1,2  Where �̃�1 , �̃�2  the viscosity coefficients of the 

liquid are supposed to be constant and equal to improve the 

correlation between theoretical values and experimental data 

when determining permeability, the relationship between the 

dimensionless permeability coefficient  𝜒2 = 𝑏2/𝑘  and the 

permeability of the porous layer is inverse. 
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The cylindrical coordinate system is introduced with 𝑧 

axis directed along the cylinder and a polar axis orientated 

along the free stream approaching the considered system. The 

continuity equation for two-dimensional, steady 

incompressible flow is automatically satisfied when 

substituting the velocity components (𝑣𝑟 , 𝑣𝜃)  in terms of 

stream function in polar coordinates form, we get: 

 

𝜕𝑣𝑟
(𝑖)

𝜕𝑟
+

𝑣𝑟
(𝑖)

𝑟
+

1

𝑟

𝑣𝜃
(𝑖)

𝜃
= 0                                             (3) 

 

𝑣𝑟
(𝑖)

=
1

𝑟

𝜕𝜓(𝑖)

𝜕𝜃
,           𝑣𝜃

(𝑖)
= −

𝜕𝜓(𝑖)

𝜕𝑟
                     (4) 

 

Let us proceed to the dimensionless variables and add the 

following notations for ease of problem analysis: 𝑟 =
�̃�

𝑏
, 𝑽 =

, 𝑃 =
�̃�

𝑃0
, 𝑃𝑜 = 𝜇

𝑈

𝑏
.  We can get the sets of constitutive 

equations in the dimensionless form after eliminating the 

pressure vector in both Eqns. (1) and (2) and using the velocity 

components (𝑣𝑟 , 𝑣𝜃) as mentioned above. 

   

∇4𝜓(1) = 0,            1 ≤ 𝑟 ≤
1

√𝛾
                               (5) 

 

∇2(∇2 − 𝜒2)𝜓(2) = 0,            𝜆 ≤ 𝑟 ≤ 1             (6) 
 

Also, the tangential and normal stress expressions can be 

obtained as well as the pressure from the following relations, 

respectively, as 

 

T𝑟𝜃
𝑖 = 𝜇(

1

𝑟

𝜕𝑣𝑟
𝑖

𝜕𝜃
−

𝑣𝜃
𝑖

𝑟
+

𝜕𝑣𝜃
𝑖

𝜕𝑟
)                            (7)  

 

T𝑟𝑟
𝑖 = −𝑃𝑖 + 2𝜇

𝜕𝑣𝑟
𝑖

𝜕𝑟
                                    (8) 

 

𝜕𝑝𝑖

𝜕𝑟
= ∇2𝑣𝑟

𝑖 −
𝑣𝑟

𝑖

𝑟2 −
2

𝑟2

𝜕𝑣𝜃
𝑖

𝜕𝜃
− 𝜒𝑖

2𝑣𝑟
𝑖                      (9)  

 

III. THE SOLUTION TO THE PROBLEM 

The solution of the fourth-order partial differential 

equations (5) and (6) is obtained by the separation of variables 

method and can be presented in the form of stream functions 

in cylindrical coordinates. Suitable stream functions for each 

region can be given as respectively 

 

𝜓(1)(𝑟, 𝜃) = (𝐴 𝑟 + 𝐵 𝑟3 +
𝐶

𝑟
+ 𝐷 𝑟 ln (𝑟))sin (𝜃) 

                                         1 ≤ 𝑟 ≤
1

√𝛾
                (10) 

 

       𝜓(2)(𝑟, 𝜃) = (�́� 𝑟 + �́� 𝑟3 + �́�𝐼1(𝜒𝑟) + �́� 𝐾1(𝜒𝑟)sin (𝜃) 

                                              𝜆 ≤ 𝑟 ≤ 1             (11)                          
 

where 𝐼1(𝜒𝑟)and 𝐾1(𝜒𝑟)are the first-order modified Bessel 

functions of the first and second kinds, respectively. In our 

model, we use physically realistic boundary conditions to 

analyze the flow for each region as follows: 

 

 No-slip condition on the solid core surface   𝑟 = 𝜆 

 

    𝑣𝑟
(2)

(𝜆, 𝜃) = 0,    𝑣𝜃
(2)

(𝜆, 𝜃) = 0                          (12) 

 

 Velocity and stress tensor are thought to have 

continuous normal components on the porous 

surface 𝑟 = 1, while stress-jump conditions for the 

tangential components: 

 

  𝑣𝑟
(1)

(1, 𝜃) = 𝑣𝑟
(2)

(𝜆, 𝜃),   𝑣𝜃
(1)

(𝜆, 𝜃) =  𝑣𝜃
(2)

(𝜆, 𝜃)   
(13) 

    𝑇𝑟𝑟
(1)

(1, 𝜃) = 𝑇𝑟𝑟
(2)

(𝜆, 𝜃)                                      (14) 

    
𝜕𝑣𝜃

(2)
(1,𝜃)

𝜕𝑟
−

𝜕𝑣𝜃
(1)

(1,𝜃)

𝜕𝑟
= 𝜂𝜆 𝑣𝜃

(2)
                             (15) 

 

 No shear stress (Happel condition) on the surface of 

the hypothetical cell 𝑟 = 1/ √𝛾  to mimic the 

existence of other aggregates of the same size in the 

vicinity: 

 

           𝑇𝑟𝜃
(1)

(
1

√𝛾
, 𝜃) = 0                                             (16)                                                     

 The radial component of velocity on the outside cell 

surface is continuous as follows: 

 

        𝑣𝑟
(1)

(
1

√𝛾
, 𝜃) = 𝑈 cos (𝜃)                                (17)  

                       
We are using the boundary conditions from Eqns. (12) - 

(17), we can calculate the values of the eight arbitrary 

constants shown in the Appendix for reader convenience. 

IV. EVALUATION OF DRAG FORCE AND 

HYDRODYNAMIC PERMEABILITY 

  An essential aspect of the flow problem we are studying is 

drag force. Therefore, the impact of the stress jump values on 

the drag force and hydrodynamic permeability is the most 

significant result of our investigation. The force applied to the 

cylinder during the flowing fluid is known as drag. It is 

assessed by adding the normal and tangential stress 

components' contributions to the force acting along the flow 

direction. 

 

𝐹 = ∫ (𝑇𝑟𝑟|𝑟=1cos (𝜃) − 𝑇𝑟𝜃|𝑟=1sin (𝜃))
2𝜋

0
𝑑𝜃                 (18) 

 

 

Therefore, we can get the normal and tangential stress 

values 

 

𝑇𝑟𝑟
(1)(𝑟, 𝜃) = −

4𝜇𝑈

𝑏
(𝐵𝑟 +

𝐶

𝑟3 −
𝐷

𝑟
) cos(𝜃)                      (19) 

 

𝑇𝑟𝜃
(1)(𝑟, 𝜃) = −

4𝜇𝑈

𝑏
(𝐵𝑟 +

𝐶

𝑟3) sin(𝜃).                            (20) 
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Substituting Eqns (19) and (20) into Eqn. (18) and 

integration, one obtains 

  

𝐹 = 4𝜇𝜋𝑈𝐷.                                                                   (21)  

 

The hydrodynamic permeability of a membrane which is a 

significant physical characteristic, can be defined as the ratio 

of the uniform flow rate to the cell gradient pressure: 

 

𝐿11
̅̅ ̅̅ =

𝑈

𝐹 / �̅̅� 
                                                                     (22) 

 

where �̅� = 𝜋𝑐2   the volume of the unit length cell. We can 

get the hydrodynamic permeability of the system by 

substituting the drag force value from Eq. (21) into Eq. (22). 

 

𝐿11
̅̅ ̅̅ =

𝑏2

4𝜇𝛾𝐷
= 𝐿11

𝑏2

𝜇
                                                   (23) 

 

𝐿11 = 1/4𝛾𝐷  is the non-dimensional form of 

hydrodynamic permeability, which is dependent on three 

parameters (𝛾, 𝜆, 𝜒).  

Fig. 2 illustrates that the hydrodynamic permeability 

decreases with increasing 𝜒. This response is quite natural due 

to the concept of  𝜒. It is inversely proportional to the square 

root of the permeability of the porous media, which indicates 

the properties of filtration flow. Meanwhile, an increase in 

stress jump coefficient 𝜂 , which describes the role of the 

tangent stress jump at the interface, enhances the 

hydrodynamic permeability profile compared with Deo [14] 

at 𝜆 = 0.5, 𝛾 = 1. Deo [14] has reported that a decrease in 

dimensionless hydrodynamic permeability results from an 

increase in the permeability parameter value. Here, we 

observed that a stress jump coefficient 𝜂 = 0.7 has the most 

significant effect on the permeability at a particular value 

𝜒 → 2. This result reports the improvement of hydrodynamic 

permeability for a viscous fluid flow that moves perpendicular 

to a system composed of a solid cylinder covered with a 

porous layer. The dotted line in Fig. 2 shows higher values of  

𝐿11 up to a certain value when at 𝜆 = 0.5, 𝛾 = 0.8, 𝜂 = 0.7  

and 𝜒  approaches to 2.4. 

Fig. 3 presents the hydrodynamic permeability behaviour in 

logarithmic coordinates and compares our results with the 

data reported in [15], where a membrane is composed of a 

periodic set of identical impenetrable cylinders covered with 

a porous layer. 

As can be seen from this figure, the solid line nearly 

coincides with what is obtained by [15] in Fig. 3 when 𝜆 =
0.5 and 𝛾 = 0.8. A more noticeable increase in the natural 

logarithm of dimensionless hydrodynamic permeability is 

observed , 𝜂 = 0.7 , from the solid line. From a physical 

viewpoint, the permeability and volume fraction variations 

that cause the velocity of the fluid flowing through the porous 

media to change are related to the stress jump coefficient, 

which depends on the features of the porous media. As a result, 

the physical significance of these jump coefficients might be 

attributed to the associated enhancements in permeability or 

porosity. On the other side, small values of the natural 

logarithm of dimensionless hydrodynamic permeability are 

obtained by choosing 𝜂 = 0.7. 

 

 
Figure 2. Variation of 𝑳𝟏𝟏 against 𝝌 when 𝝀 = 𝟎. 𝟓 for solid cylindrical 

particles covered with a porous layer in a homogeneous fluid flow for 

different cases: (1) 𝜼 = 𝟎. 𝟕, 𝜸 = 𝟎. 𝟖 , (2) 𝜼 = 𝟎. 𝟕, 𝜸 = 𝟏 and (3) Deo 

[14] 𝜼 → 𝟎, 𝜸 = 𝟏. 

 

 
 

Figure 3. Variation of 𝑳𝟏𝟏 against 𝝌 solid cylindrical particles 

covered with a porous layer in a homogeneous fluid flow when 𝝀 =
𝟎. 𝟓 and 𝜸 = 𝟎. 𝟖 for different cases: (1) 𝜼 = 𝟎. 𝟕, (2) vasin2009 𝜼 → 𝟎 

and  (3) 𝜼 = −𝟎. 𝟕. 

 

Fig. 4 shows the pattern of the curves corresponding to a 

monotonic reduction in the natural logarithm of 

hydrodynamic permeability to a limiting value at 𝛾 → 1 for all 

cases. The natural logarithm of dimensionless hydrodynamic 

permeability is higher when a more justified stress jump 

coefficient 𝜂 = 0.8  affects fluid flow at the porous-liquid 

interface. A system of porous circular cylinders, each of 

radius b, will be produced when the rigid core vanishes 𝜆 → 0, 

i.e. 𝑎 → 0. 

It should be confirmed that the structure of porous circular 

cylinders has more permeability than an assembly of porous 

cylindrical particles with a solid core curve (3) because more 

flow can penetrate through the porous media. The negative 

stress jump coefficient 𝜂 = −0.8  influence is less dominant on 

the natural logarithm of hydrodynamic permeability, as 

presented in a curve (4). In short, we can observe that the 

natural logarithm of hydrodynamic permeability 

corresponding to the positive jump coefficient overestimates 

the other cases. 
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   Figure 4. Variation of 𝐥𝐧 (𝑳𝟏𝟏) against 𝝌 solid cylindrical particles 

covered with a porous layer in a homogeneous fluid flow when  𝜸 = 𝟎. 𝟖 

for different cases: (1) 𝜼 = 𝟎. 𝟖, 𝝀 = 𝟎. 𝟓  (2) 𝜼 → 𝟎, 𝝀−. 𝟎,  (3) 𝜼 →
𝟎, 𝝀 = 𝟎. 𝟓 and,  (4) 𝜼 = −𝟎. 𝟖, 𝝀 = 𝟎. 𝟓 

 

 
    

Figure 5. Variation of 𝑳𝟏𝟏 against 𝜸 for a system of porous 

circular cylinders in a homogeneous fluid flow when  𝝀 → 𝟎, 𝜼 =

𝟎. 𝟓 for different cases: (1) 𝝌 = 𝟏,  (2) 𝝌 = 𝟑  and  (3) 𝝌 = 𝟐𝟎. 

 

Fig. 5 exhibits the variation in hydrodynamic permeability 

with 𝛾  and 𝜒 for a swarm of porous cylindrical particles of 

radius 𝑏. We noticed that 𝐿11 decreases with increasing 𝛾 since 

the radius 𝑐  of the outer cylindrical cell decreases at high 

values of 𝛾 .This causes the particles to approach the walls 

more closely and experience more drag. In addition, this 

decrease occurs more rapidly for higher levels o 𝜒. As we 

stated above, the hydrodynamic permeability reflects distinct 

and enhanced behavior because of the action of stress jump 

coefficient 𝜂 = 0.5  when comparing this result with the 

published values in Deo [14].  

Fig. 6 shows the same previous behavior but for porous 

cylindrical particles with an impermeable core under the stress 

jump condition. Again, a reduction in permeability for porous 

cylindrical particles with an impermeable core is expected 

since the exposed solid core causes higher resistance to the 

imposed flow. 

 

 
Figure 6. Variation of 𝑳𝟏𝟏 against 𝜸 for porous cylindrical particles 

with an impermeable core when  𝝀 = 𝟎. 𝟑, 𝜼 = 𝟎. 𝟓 for different cases: 

(1) 𝝌 = 𝟏,  (2) 𝝌 = 𝟑  and  (3) 𝝌 = 𝟐𝟎. 

 

It can be noticed from Fig. 7 that the trend of hydrodynamic 

permeability variation with 𝜒 is the same as the permeability 

behavior shown in Deo [14] for a system of porous cylindrical 

particles inside a homogeneous fluid. The hydrodynamic 

permeability rapidly decreases for high values of 𝛾. Another 

observation stands here that the effect of the stress jump 

coefficient is not seen for a set of porous cylindrical particles 
 

 

 
Figure 7. Variation of 𝑳𝟏𝟏 against 𝝌 for a system of porous 

circular cylinders in a homogeneous fluid flow when  𝜼 =
𝟎. 𝟓, 𝝀 → 𝟎 for different cases: (1) 𝜸 = 𝟎. 𝟐𝟓,  (2) 𝜸 = 𝟎. 𝟓,  (3) 𝜼 →

𝟎, 𝝀 = 𝟎. 𝟓 and,  (4) 𝜼 = −𝟎. 𝟖, 𝝀 = 𝟎. 𝟓 . 

 

V. RESULTS AND DISCUSSION 

Using the cell model technique, this study aims to 

investigate the creeping flow problem through a swarm of 

porous circular cylindrical particles. Brinkman equation and 

the Stokes equation are employed inside and outside the 

porous cylindrical region, respectively. At the porous-liquid 

interfaces, the stress-jump condition is used along with the 

continuity of the velocity components and the continuity of 
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normal stress. on the outer boundary of the cell, no-couple 

stress and no-spin conditions are applied. Additionally, we are 

applying no-slip boundary conditions to the surface of the 

solid core.  The dependence of hydrodynamic permeability on 

stress jump condition is investigated. It can be observed that 

when the jump coefficient increases, the hydrodynamic 

permeability reaches a maximum and then begins to decrease. 

The hydrodynamic permeability increases with jump 

coefficient signifying lesser flow resistance for a higher shear 

stress in porous region compared to the clear fluid region. 

Consequently, stress jump condition caused significant 

changes in permeability. All the previously stated results have 

been verified as limiting cases which in good agreement with 

this study. 
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