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Abstract- Liquid storage structures represent an important 

component of modern infrastructure. They can take variety of 

shapes of which the conical shape is one of the most common 
configurations. Both architects and structural engineers because 
of their appealing look and structural efficiency in addition to 

their large capacities with relatively small footprint area prefer 
conical tanks. The state of stresses in these tanks is rather 
complicated and needs powerful computational tools. However, 

in the preliminary design phase, it is important to have a 
simplified analysis method for selection of economic design 
parameters including tank height, inclination angle, and footprint 

radius needed to achieve the desired tank capacity. It is also of 
importance that the structural engineer has an insight and 
understanding of the effect of these various parameters on the 

resulting internal forces acting on the tank. This paper presents a 
simplified analysis of conical tanks under hydrostatic loading 
based on the application of the membrane theory. The equations 

governing the behavior of these structures are first derived. Then, 
they are applied on several vessels of practical dimensions and the 
resulting of stresses are presented to give a deeper understanding 

of the resulting internal actions. Moreover, a simple guide to 
achieve efficient structural preliminary design parameters for a 
wide range of tank capacities is introduced.  

Keywords- Conical tanks, Hydrostatic loading, Membrane 
theory, Surface of revolution, Meridional and circumferential 
forces. 

I. INTRODUCTION 

Vessels with conical shapes are commonly used as liquid 

containments around the world because they have a limited 

footprint and a large storage capacity. Generally, architects 

prefer the conical configuration over rectangular or cylindrical 

ones because they are more aesthetically appealing. Structural 

engineers also would prefer this system compared to the 

cylindrical shape to avoid the need of significantly thick 

cantilever slab in cylindrical tanks. However, several serious 

conical tanks’ failures occurred in the past causing significant 

economic losses. These failures motivated many researchers to 

study the behavior and design of these structures under both 

hydrostatic and seismic loadings. For example, in Belgium, 

1972, a steel water tower with a capacity of more than 1000 

tons collapsed while the tank was being filled for the first time 

and before the water reached the overflow level, as reported by 

Vandepitte [1]. Another collapse of an elevated conical water 

tower occurred  in Fredericton, Canada, in 1990 and was 

reported by Korol [2]. The investigations of those steel conical 

tanks revealed that the collapse occurred due to buckling under 

hydrostatic pressure. 

Conical vessels generally have two common shapes: pure 

and combined. When vessel consists entirely of a truncated 

conical shape, it is referred to as “Pure Conical Tank”. On the 

other hand, when the containment vessel has a truncated 

conical shape with a superimposed cylindrical cap, this vessel 

configuration is referred to as “Combined Conical Tank”. 

Moreover, these tanks can be ground supported or elevated on 

a supporting shaft, as shown in Fig.1. 

Numerous experimental investigations focusing on the 

structural behavior of conical vessels under hydrostatic 

loadings have been conducted. Vandepitte et al. [3] 

investigated the stability of hydrostatically loaded conical 

shells supported only along the lower edge. They conducted an 

extensive experimental test program covering 768 models 

made of different materials (mylar, brass, aluminum and steel) 

with varying thicknesses, inclination angels and boundary 

conditions. All models were filled with water until they 

collapsed and the water heights at which buckling occurred 

were recorded.  

Other research studies were conducted numerically El 

Damatty et al. [4] studied the stability of  steel liquid-filled 

conical tanks under hydrostatic loading taking into account the 

effects of geometric imperfections and residual stresses. A 

finite-element formulation based on a consistent shell element, 

developed by Koziey and Mirza [5] and then extended by El 

Damatty et al. [6] to include both geometric and material 

nonlinearities, was used. Elastic stability analyses of conical 

shells with different geometric imperfection patterns were 

undertaken. The results of this study indicated that the 

presence of axisymmetric imperfections leads to the lowest 

limit load for the structure. The results also revealed that 

yielding typically precedes elastic buckling for tanks having 

practical dimensions. 

 

 
(a)                                  (b)                                   (c) 

Figure 1. Geometry variations of conical tanks. 

(a) Photograph of an elevated pure conical tank, (b) Photograph of a 

ground-supported pure conical tank, and (c) Photograph of an 

elevated combined conical tank. 

 

It is worth mentioning that this study was followed by a 

valuable discussion between Vandepitte and El Damatty 
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considering elastic and inelastic buckling and effect of residual 

stresses due to welding [7]. Based on their discussion, it was 

concluded that yielding might have happened during the 

buckling process of the cones tested by Vandepitte et al. [4].  

 El Damatty et al. [8] developed a procedure to determine the 

critical imperfection shape in conical tanks by assuming an 

imperfect shape in the form of Fourier series with equal 

coefficients associated with all harmonics. In the same study,  

stability analyses were conducted on  the small-scale tanks 

tested by Vandepitte et al. [3]. The buckling wavelength and 

the critical water heights obtained from these analyses were 

shown to agree with the experimental results.  The study also 

confirmed that axisymmetric imperfections are the most 

critical for conical tanks and that yielding typically precedes 

buckling in those hydrostatically-loaded structures.  Similar 

conclusion was obtained by Lagae et al. [9] who constructed 

numerical models for a series of imperfect conical tanks and 

explained how the imperfections can cause large 

circumferential tensile stresses eventually leading to plastic 

collapse of the tank. 

Tekleab [10] studied the stability of cylindrical and conical 

thin-walled tanks under hydrostatic loading. The axisymmetric 

elastic-plastic buckling phenomena, buckling modes and 

strengths of meridionally compressed and internally 

pressurized cylindrical and conical shells were investigated. 

Simplified expressions were obtained for the prediction of 

axisymmetric elastic-plastic buckling strength of general thin-

walled cylindrical and conical shells. 

The consistent shell element by Kozeiy and Mirza [6] was 

utilized by Azabi et al. [11] to study the linear behavior of 

reinforced concrete conical tanks under hydrostatic pressure. 

The results of this Finite Element Model (FEM) and an 

approximate method based on using equations from the 

Portland Cement Association, (PCA) design aids [12] 

combined with the equivalent cylindrical approach by the 

American Water Works Association (AWWA) [13], were 

compared.  It was concluded that the approximate approach 

can be used to design tank walls to resist only ring tension and 

meridional moment. However, the equivalent cylindrical 

approach does not account for the meridional compression 

existing in conical tanks. This may lead to an inadequate 

design resulting from following the approximate approach. 

Elansary et al. [14] and Elansary and El Damatty [15] 

extended Azabi et al. [11]’s FEM  to account for shrinkage and 

creep as well as the nonlinear behavior of concrete. The 

nonlinearity of concrete was considered by including a 

concrete constitutive model previously developed by 

Pietruszczak et al. [16] and Jaing [17]. The developed 

nonlinear FEM was used to study the behavior of 

hydrostatically loaded concrete conical tanks with a wide 

range of practical dimensions. It was reported that the 

maximum deflection of the tank’s wall occurs at the middle 

one-third of the tank height while the maximum hoop stress 

occurs at 1/5 - 1/6 of the tank’s height. It was also reported that 

the maximum meridional stress in the concrete wall and 

reinforcing bars occur within the bottom 10% region of the 

tank’s vessel. 

Conical and cylindrical concrete tanks were studied by 

Bruder [18] by comparing two different analysis tools; (i) 

Circular Concrete Tanks (CCT) Without Pre-stressing by PCA 

[12] and (ii) three-dimensional FEM using a commercial 

software program. Comparisons between internal forces 

obtained from the two tools were made to investigate the range 

of internal force discrepancies. Finally, recommendations 

regarding the analysis of these tanks were provided. It was 

recommended that an FEM should better be employed if the 

geometry, loads, and boundary conditions of the tank are 

outside the parameters outlined by CCT. Otherwise, the 

internal forces obtained from CCT would lead to an inadequate 

design. However, they pointed out that the use of FEM needs 

prior modeling experience and context for the analysis output 

or else misleading results might not be recognized.  

Composite steel-concrete conical tanks under hydrostatic 

pressure were investigated by Elansary and El Damatty [19]. 

A Finite Element Model for Composite tanks (CFEM), which 

accounts for both geometric and material nonlinearities, was 

developed. The material nonlinearity was considered by 

including nonlinear models for steel, concrete, and the 

connecting studs. In the CFEM, both the concrete and steel 

walls were modelled using the consistent shell element, 

previously developed by Koziey and Mirza [5], while the 

connecting studs between the two walls were modelled using 

a contact element based on a smearing approach. This contact 

element was previously developed by Siddique and El 

Damatty [20] to model the interface between steel plates and 

Glass Fiber Reinforced Polymer (GFRP) plates. An Equivalent 

Section Method (ESM) for the analysis of composite tanks, 

which is based on using an equivalent single wall, was 

introduced. It was concluded that the values of the load 

capacity, displacements, forces, and stresses estimated by the 

ESM in both the concrete wall and the steel shell, were 

significantly less than those predicted by the CFEM.  

The current paper presents a simplified technique to analyze 

conical tanks under hydrostatic loading based on the 

application of the membrane theory. Such analysis might help 

the design engineers to obtain an insight about the internal 

forces acting on these structures in the hoop and meridional 

directions. For this, the simplified equations were applied on 

several vessels with practical dimensions and the resulting 

state of stresses were presented. Moreover, a simple guide to 

achieve efficient structural preliminary design parameters for 

a wide range of tank capacities was introduced. 

 

II. SIMPLIFIED ANALYSIS PROCEDURE 

The internal actions in thin shells shaped in the form of 

surfaces of revolution are quite complicated. Generally, each 

side of an element cut out of the thin shell is subjected to 

various types of internal actions. These are normal force, a 

tangential in plane shearing force, a transverse out of plane 

shearing force, bending moment and twisting moment. 

Numerical procedures such as finite element method can be 

used to obtain the solution involving these internal actions. On 

the other hand, a simplified approach can be adopted to get an 

insight into the general internal forces acting on these tanks 

that is sufficiently accurate for preliminary design purposes. 
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This approach is generally referred to as the membrane 

theory. In this theory, the transverse shear, the bending 

moment, and the twisting moment are neglected. Therefore, 

only the normal force and tangential shearing force are 

considered. However, for axisymmetrically loaded shell of 

revolution, it can be proved that the tangential shearing force 

is equal to zero and only the normal forces acting on the sides 

of the element remain. Usually, these components are referred 

to as the meridional (axial) forces and the circumferential (ring 

or hoop) forces. The general equations that govern these forces 

are as following. (refer to Fig. 2) [21]: 

(1) 

 (2) 

Where:  

Nϕ, NӨ are the internal forces per unit length acting in the 

meridional and circumferential directions, respectively. 

ϕ is the angle between the normal to the surface of the shell at 

all points of a parallel circle and the axis of the shell, i.e., it can 

define the parallel circle. 

r is the radius of the parallel circle. 

r1, r2 are the principal radii of curvature, as shown in Fig. 2 

Pr, Pϕ are the two components of axisymmetric external surface 

load per unit area in the directions normal and tangent to the 

shell, respectively. (Since the load is axisymmetric, these 

components are independent of the coordinate Ө) 

In case of conical shells, the angle ϕ is constant and cannot 

serve as coordinate. Instead, a parallel circle is defined by the 

distance S from the apex (see Fig. 3). Replacing the subscript 

ϕ by S and using the following relations, the general equations 

of axisymmetrically loaded shells of revolution (1) and (2) 

turns into equations (3) and (4) for conical shells. It is noticed 

that in the case of conical shells NӨ and NS are independent. 

(3) 

 (4) 

For the case of conical tanks, neglecting the self-weight of the 

tank and taking into consideration the pressure of the contained 

liquid the following expressions can be obtained. 

 (5) 

 (6) 

Where: 

γ is the specific weight of the contained liquid. 

H is the height measured from the apex to the liquid level. (see 

Fig. 3) 

 

Figure 2. Meridional and circumferential forces acting on an 

axisymmetrically shell of revolution 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Dimensions of liquid filled conical tank. 

 

S0 is the distance from the apex to the liquid level along the 

meridional direction, as shown in Fig. 3. 

 

III. ANALYSIS RESULTS 

To get an insight into the behavior of water filled conical tanks, 

several tanks having practical dimensions were analyzed 

utilizing the previously obtained equations (5) and (6). 

Different tank parameters were taken into consideration. These 

include tank inclination angles, footprint radii and heights. 

(See Table 1) The results of these cases are presented in the 

following subsections. 

 

Table 1. Parameters of the analyzed cases 

 

Parameter 
Inclination 

Angle 

Footprint 

Radius (m) 
Height (m) 

Effect of  

Inclination Angle 

00 

300 

400 

450 

500 

600 

4 7 to 10 

Effect of 

Footprint Radius 
450 

3 

4 

5 
6 

9 

Effect of  
Height 

450 4 

7 

8 
9 

10 

 

𝑁∅

𝑟1
+

𝑁𝜃

𝑟2
= 𝑝𝑟  

𝑟 sin ∅ 𝑁∅ =   𝑟1 𝑟2 (𝑝𝑟 cos ∅ − 𝑝∅ sin ∅) sin ∅ 𝑑∅   

𝑁𝜃 =
𝑆 𝑃𝑟

tan ∅
 

𝑁𝑆 =
1

𝑆 sin ∅
  𝑆 (𝑝𝑟 cos ∅ − 𝑝𝑆 sin ∅)  𝑑𝑠    

𝑁𝜃 =
𝛾𝐻𝑆

tan ∅
− 𝛾𝑆2 cos ∅ 

𝑁𝑠 =
𝛾 cos ∅

𝑆
 
𝐻 𝑆2 − 𝑆0

2 

2 sin ∅
−

𝑆3 − 𝑆0
3

3
  

𝑟1 𝑑∅ = 𝑑𝑠          𝑟1 → ∞       𝑟2 =
𝑆

tan ∅
        𝑟 = 𝑆 cos ∅ 
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A. Effect of Inclination Angle 

The effect of various inclination angles on the resulting 

internal actions, for tanks having a bottom radius of 4 m and a 

height of 9 m, is shown in Fig. 4. An inclination angle of Ө = 

zero represents the special case of cylindrical tank. In this case 

no meridional forces occur while the hoop forces follow a 

linear distribution resulting from increased liquid pressure 

starting from zero at the top to its maximum at the bottom. By 

increasing the inclination angle, it is observed that both the 

hoop and the meridional forces increase and follow a nonlinear 

distribution. The maximum value of the hoop forces occurs at 

the lower one-third of the tank height. The level of the 

maximum hoop force is observed to increase with the increase 

of the inclination angle. On the other hand, the maximum 

meridional forces occur at the bottom rim of the tank. 

The maximum internal actions in tanks with different 

inclination angles are presented in Fig. 5. A mild increase of 

the resulting internal forces occurs up to inclination angle of 

400 after which the forces seem to rapidly increase with the 

increase of the inclination angle. A more pronounced increase 

in the meridional forces is observed. 

B. Effect of Tank Footprint Radius 

Conical tanks of bottom radii ranging from 3 to 6 m with a 

height of 9 m and an inclination angle of 450 were analyzed 

and the resulting internal forces are shown in Figs. 6 and 7. 

By increasing the bottom radius, it is observed that the hoop 

forces increase. Moreover, the height at which the maximum 

 

(a)                                                    (b) 
Figure 4. Distribution of internal actions for different inclination 

angles. (r=4m and Htank=9m) 

(a) Hoop forces, and (b) Meridional forces. 

 

Figure 5. Maximum internal actions in tanks with different inclination 

angles. (r=4m and Htank=9m) 

 

hoop forces occur decreases gradually from 1/3 to 1/6 of the 

tank height. On the other hand, the meridional forces decrease 

with the increase of the tank bottom radius. This is attributed 

to the increase of the resisting perimeter in wider tanks. 

C. Effect of Tank Height 

Figs. 8 and 9 show the results of analysis of conical tanks 

having bottom radius of 4 m and an inclination angle of 450 

with various heights of 7, 8, 9, and 10 m. Clearly, both the 

maximum hoop and meridional forces linearly increase by 

increasing the tank height. The maximum hoop force occurs at 

0.21, 0.24, 0.27, and 0.30 of the tank height for tanks with 7, 

8, 9, and 10 m height, respectively. It is also observed that, the 

meridional forces increase at a higher rate than the hoop forces. 

(a)                                                    (b) 
Figure 6. Distribution of internal actions for different footprint radii. 

(Ө=450 and Htank=9m) 

(a) Hoop forces, and (b) Meridional forces. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Maximum internal actions in tanks with different footprint radii. 

(Ө=450 and Htank=9m) 

 

(a)                                                    (b) 
Figure 8. Distribution of internal actions for different tank heights.  

(Ө=450 and r=4m) 
(a) Hoop forces, and (b) Meridional forces. 
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Figure 9. Maximum internal actions in tanks with different tank heights. 

(Ө=450 and r=4m) 

 

D. Guide for Preliminary Dimensioning 

To get an insight into the optimum preliminary dimensioning 

of a tank in terms of its volume capacity, sample design charts 

for tanks with 4 m footprint radius, are presented in Fig. 10. It 

shows the maximum internal forces in tanks having different 

heights and inclination angles. For example, given the 

footprint radius, one can use these charts to obtain the suitable 

height for the required volume. Knowing these parameters 

(footprint radius and tank height), the inclination angle 

satisfying the desired tank capacity can be easily calculated. 

Other charts can be generated for different footprint radii.  

It should be emphasized that this simple guide is limited to the 

early stage of tank dimensioning, but the detailed design 

should rely on a more accurate analysis tool such as finite 

element method (FEM) or equations and charts developed 

using FEM such as [22,23]. 

 

IV. CONCLUSIONS 

Based on the results of the current study the following 

conclusions can be drawn: 

1- The hoop forces were observed to increase when 

increasing any of the dimension parameters 

(inclination angle, footprint radius, and height) of the 

tank. 

2- The meridional forces were observed to increase 

when increasing the tank inclination angle or height, 

but they decrease when increasing the footprint radius. 

3- The maximum meridional forces occur at the bottom 

rim of the vessel. 

4- The maximum hoop forces take place at the lower one 

third of the tank height and its location varies 

depending on the tank geometry. 

5- The presented analysis, though being simple, can give 

the designer an insight about the effect of various 

parameters on the internal forces acting on this type 

of tanks under hydrostatic loading.  

 

 

 

 

 

 

(a) 

(b) 

Figure 10. Maximum internal actions in tanks with different tank heights and 

inclination angles (r=4m) 

(a) Hoop forces, and (b) Meridional forces 
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