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Abstract: Throughout the last 20 years, the concept of auto-inflammation is developed, culminating with the 

finding of how gene mutations of Mediterranean Fever (MEFV) seemed to be causally linked to Familial 

Mediterranean fever (FMF). The autoinflammatory illnesses presently constitute a wide variety of disorders 

that have mutual signs of frequent fever, the incidence of hyper-reactive immune cells of hereditary origin, and 

indicators of inflammation that may occur systemically or specific to an organ with no autoimmunity specific 

infection. The key causes of the unregulated inflammation are the myeloid innate immune cells which mainly 

induced production of excessive inflammatory cytokines as IL-1β and IL-18. Deficiencies through various 

signalling mechanisms regulating innate immune response, especially a single and even multiple 

inflammasomes hyperreactivity, remain the essence of pathological autoinflammatory phenotype. While FMF 

would be a monogenic autoinflammatory syndrome, it is genetically complicated and affected by 

environmental influences. Lately, epigenetic dysregulation has appeared to be a further cause of pathogenesis. 

Throughout this survey, we are addressing the epigenetic involvement pathways within (FMF). 
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1. INTRODUCTION  

 

Autoinflammatory disorders are a rising category of 

weakening and prolonged disorders with clear 

inflammation, which is sometimes systemic and 

appears through frequent fever periods. 

Hyperreactive innate immune cells are considered 

significant contributors to the pathogenesis of such 

illnesses. Furthermore, patients with an 

autoinflammatory illness show in their plasma high 

standards of the inflammatory cytokines and 

acute-stage proteins. Initially, the idiom 

autoinflammation has been used to characterize the 

existence of clearly uncontrolled inflammation 

periods within the lack of self-reactive T cells and/or 

elevated levels of auto-antibodies, and also without 

every observable infectious factor1. Several 

autoinflammatory syndromes show systemically 

and/or organ-specific inflammatory characteristics 

like frequent cyclic fever, arthritis, serositis, and/or 

dermal inflammation, innate immune cells 

stimulation and excessive production of IL-1β, 

especially monocytes2. Though at first the 

autoinflammatory idiom diseases just implemented 

on these typical inborn monogenic cyclic fever 

syndromes, like cryopyrin-associated periodic 

syndromes (CAPS) as well as FMF, this listing is 

extended yet to be an arising technologies 

implementation result, like following descent series, 

and includes a growing amount of recently 

characterized monogenic defects resulted from 

inflammation-associated genes mutation. The ample 

proof is that epigenetic dysregulation takes part in 

these diseases' pathogenesis3 (Table 1; showed by 

Stoffels and Kastner4).

 

mailto:manalfouad1@yahoo.com


 

Lotfy et al, Azhar Int J Pharm Med Sci 2021; Vol 1 (1):1-12 

2  

 https://aijpms.journals.ekb.eg/ 

 

Table (1): Autoinflammatory disorders and evidence of epigenetic contribution to pathogeny 

 

Mutated gene Disease Effector cytokine Data on 

epigenetic 

regulation 

Hereditary monogenic periodic fever syndromes 

MEFV Familial Mediterranean Fever IL-1β Yes5  

TNFRSF1A  TRAPS IL-1β No 

MVK  Hyper IgD syndrome IL-1β No 

NLRP3 Cryopyrin-associated periodic syndromes 

[familial cold autoinflammatory syndrome 

(FCAS), Muckle-Wells syndrome, 

Neonatal-onset multisystem inflammatory 

disease/CINCA] 

IL-1β Yes6 

NLRC4  NLRC4-MAS IL-1β/IL-18 No 

PSTPIP1  PAPA IL-1β No 

NLRP12  FCAS2 IL-1β No 

Antagonist deficiencies 

IL1RN  DIRA IL-1β No 

IL36RN  DITRA IL-36 No 

Complex autoinflammatory disorder 

 Behçet IL-6/IL-1β Yes7-9  

 CRO/chronic recurrent multifocal osteomyelitis  IL-10/IL-1β Yes10, 11 

 Crohn  IL-19/IL-3/IL-27 Yes12, 13  

Note: Data are from “Old dogs, new tricks: monogenic autoinflammatory disease unleashed.” by Stoffels M, Kastner DL., 

2016, Annual review of genomics and human genetics.;17:245-72. doi: 10.1146/annurev-genom-090413-025334 

 Thus, individual subjective issues regarding 

health and illness should remain doubtful. 

Amongmost patients, no test absolutely will 

determine the correct diagnosis. Cases sometimes 

require several tests that need an extended period, 

moreover the worry of meeting a practitioner14.  

Epigenetics as sure providing modern thoughts 

to improve the clinical and diagnostic approaches in 

addition to eliminating the difference between 

environmental influences and hosting genetics. 

Epigenetics possesses the possibility of being 

utilized as a biomarker of illness identification and 

treatment, illness observation, as well as therapy 

reaction. Over the last years, pharmacogenetics has  

gained vast attention also epigenetic drug (epidrug) 

improvement has made considerable progress14. 

2. DEFINITION OF EPIGENETICS 

 Epigenetics is a review of mitotic (and possibly 

meiotic) genetic modification in gene expressions 

due to variations within DNA series 15. But other 

epigenetics' principles are profound even do not 

require hereditary. For example, the US National 

Institutes of Health (2009) stated through their final 

venture that epigenetics shows the two genetic 

differences within genes activity and expressions 

(through offspring of cells or persons) and steady, 

prolonged-term modifications in the cursive capacity 

concerning cell which are unnecessarily hereditary. 

Irrespective of the right definition, epigenetic 

mechanisms that steadily modify genes expressions 

types (and/or transport modifications in cell 

splitting) are believed to contain: DNA methylation, 

modulations of histone, chromatin remodeling and 

also the non-coding RNAs16. 

3. SIGNIFICANCE OF EPIGENETIC 
STUDY 

 The detection and usage of epigenetic 

biomarkers own the possibility of affecting the 

treatment and clinical outcomes positively17. 

https://doi.org/10.1146/annurev-genom-090413-025334
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Biomarkers are linked to how the disease develops and may be alternative to illness prognostic factors 

and even the final diagnosis. Some biomarkers could 

also be possible curative goals or show that seeking 

these aims should start 18, 19. Possible markers 

foundation is just the initial stage because those 

signs have to be proven and convinced like a 

credible and statistically accepted image of a certain 

disease. The epigenetic biomarkers were previously 

integrated into different clinical fields and are 

utilized in the prophylaxis, and management of 

malignancy, disorders of autoimmunity, in addition 

to neurological and cardiac problems14. 

 In fact, we can find many merits of epigenetic 

biomarkers. Firstly, those signs show a modern trend 

in which molecular characters relate to genic and 

environmental influences that develop diseases20. 

 Epigenetics supply useful biomarkers that do 

not rely on DNA series only. The epigenetic  

biomarkers, specifically those associated with DNA 

methylation, place out the DNA and RNA on the 

basis of checking sequences and may supply a 

different settlement profile17. Investigation of 

epigenetic biomarkers may be performed on samples 

from blood, tissue, body fluid, and excretions 

generally obtained during surgical operations14. 

 Moreover,  the epigenetics disturbance may be 

tested within the genome context, before and even at 

the beginning of the disease in comparison with the 

RNA and protein-based testing in which 

abnormalities seem at comparatively delayed phases 

and sometimes in lower quantity or concentrations14. 

4. EPIGENETICS MECHANISMS 

4.1. DNA Methylation and DNA 

hydroxymethylation 

 Adding the methyl group onto the 5′carbon 

location of cytosine into  

cytosine-phosphate-guanosine (CpG) dinucleotides 

will significantly decrease DNA access for RNA 

polymerases transcription factors and, leading to 

suppression of transcription (Figure 1A). The DNA 

methyltransferase (DNMT) enzymes are accountable 

for keeping methylation. The DNA re-methylation is 

fundamental throughout cell split to transcribe the 

epigenetic code to the reproduction of the daughter 

cell. However, the de novo methylation to formerly 

functional genes' silence may contribute to the gene 

system's regulation. DNMT1 and DNMT2 are 

accountable for the re-methylation of DNA through 

the cell division21, 22, while DNMT3a and 3b insert 

modern methyl categories into already unmethylated 

DNA23.The condition is perhaps extracomplicated, 

and differentiation between conservation and de 

novo DNMTs is probably not justified or has an 

excessive simplification such as DNMT1 is actually 

implicated in the daughter strands methylation for 

the duration of the cell division and the 

organizational areas’ de novo methylation 24. 

 DNA methylation may be modified via 

Ten-eleven transmit methylcytosine dioxygenase 

(TET) proteins that transform the methyl group to 

the hydroxymethylcytosines25. So, the DNA 

hydroxymethylation seemed to be a medium within 

the method of intense DNA methylation of the 

copied suppressed genes to a demethylated case in 

uncovered and copied actively chromatin26. 

Hydroxymethylated CpG positions are unaffected by 

DNMTs, thus from DNA methylation27. The lack of 

TET proteins and hence hydroxyl diversions 

suppression may lead to high DNA methylation 

standards. Therefore, hydroxymethylation seemed to 

be a separate steady epigenetic condition25. DNA 

hydroxymethylation sounds to be an active 

epigenetic condition25. DNA hydroxymethylation 

sound to be an active epigenetic sign and identifies 

with raised gene expressions in comparison with 

methylated DNA26 (Figure 1A). 

 

4.2. Histone modifications 

 DNA is enfolded around histone protein 

groups, octamers including both transcribe of every 

histones H2A, H2B, H3, and the three dimensions  

that regulate its formation and access to the copied 

combination and H4.  The histone proteins may be 

changed in their N-terminal amino deposits, which 

intermediates modifications through their electric  

ration and thereby determine the chromatin access to 

the copied combination 29. A number of histone 

alterations were recorded, involving acetylation, 

methylation, or citrullination (Figure 1B). Instances 

for "silencing" histone changes contain H3K 

tri-methylation (H3K9me3),  histone 3 lysine 9 

di-methylation (H3K9me2), and even H3K27me3, 

while histone 4lysine 16 acetylation (H4K16ac), 

H3K4me3, H3K18ac, H3K27ac, and also H3K56ac 

seem to be activating reproduction signs30-33. As 

noted, histone alterations and CpG methylation are 

linked throughout methyl-CpG-binding proteins 

(MBD)34. Those proteins induct two histone 

deacetylases and methyltransferases that lead to 

silencing throughout the alteration of histone34,35. 

Furthermore, histone tail alterations may let and 

even prevent the DNMT3linkage36. 

4.3. Non-coding RNAs 

  The non-coding RNAs (ncRNA) seem to be 

active molecules of RNA but without translation into 

protein, also they are included in numerous 

biological procedures. According to nearly 1–2%  

in the individual genome encoded a protein, we have 

had very little information about the remaining 
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genome till current times. Besides that, the RNA world was sometimes dependent on outcomes of  

 

Figure 1: Epigenetics mechanisms. (A) DNA methyltransferase (DNMT) enzymes generate (de novo) DNA methylation at 

CpG dinucleotides. DNA Hydroxymethylation is achieved through oxidation of methylated CpG DNA and mediated by 

Ten-eleven translocation methylcytosine dioxygenase (TET) proteins. (B) Histone methyltransferases (HMT) can add (one 

to three) methyl groups to histone amino termini. (C) The transcription of non-coding RNA from intergenic or intronic 

regions can promote coding mRNA transcription by providing an open chromatin formation. (D) Short micro-RNAs 

(miRNA) can mediate transcriptional repression through inhibition of the ribosome when binding to the 3’UTR region of 

mRNAs. Also, miRNAs can stimulate the mRNA degradation through initiation of the miRISC complex28. Copyright 

note: From “The role of epigenetics in autoimmune/inflammatory disease,” by Surace AE, Hedrich CM, 2019, 

Frontiers in immunology. 10:1525. (https://doi.org/10.3389/fimmu.2019.01525).

protein-coding mRNA research. Noncoding RNAs 

were assessed to be "evolutional junk RNAs"37, 38. 

The RNA nature without coding is analyzed within 

two groups according to the numbers of nucleotides 

in the RNA molecule. The non-coding RNAs of up 

to 200 nucleotides are known as tiny or short 

ncRNA, while over 200 nucleotides are classified as 

long ncRNA. To the management of the nature of 

biological functions, ncRNAs are important. 

Worldwide, researchers are interested in identifying 

biological mechanisms or systems where the 

ncRNAs directly or indirectly operate through study 

for their roles. The non-coding RNA group 

(piwi-interacting RNA, small nucleolar RNAs, small 

interfering RNAs, microRNAs, circular RNAs, 

antisense RNAs, long intergenic non-codingRNA, in 

addition to other types) include various sections, 

however many studies throughout the literature are 

concentrated on miRNAs and long  RNAs that not 

coded37,39 (Figure 1C).  

4.4. MicroRNAs 

 MicroRNAs (miRNAs) are small (ranging from 

18 to 25 nucleotides), endogenous non-coding 

RNAs; they are efficient in the evolution and 

accountable for post reproduction organization of 

gene expressions40. It is suggested that most of the 

protein-encoding gene expressions in the individual 

genome are managed via 2654 ripe miRNAs 

(miRBase, http://www.mirbase.org) specified to 

date41.  The miRNAs may have many goals, while 

genes may be controlled with many miRNAs. Thus, 

miRNAs own significant impacts on eukaryotic 

organisms' cellular and developmental courses; 

miRNAs may have complete and even weak linkage 

to the 3′ translated area (3′ UTR) in target genes 

within the mature sequences of mRNA, instantly 

damaging mRNA or causing translation inhibition42. 

But, it is assumed that the 3' UTR areas well as the 5′ 

UTR (near the cap site) is perhaps targeted by 
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miRNAs, so contributing to miRNA-mediated 

post-transcription regulation43. In addition, several 

works have indicated that miRNAs may facilitate 

transcription genes activating (TGA). miRNA is 

included within genes activating via linking to the 

goal genes' mRNA and inducing a protein 

combination containing transcribed activators44,45 

(Figure 1D). 

 Long non-coded RNAs (LncRNAs) are formed 

from two protein-encoding (e.g., H19 and TUG1) 

and DNA areas that are not coded. LncRNAs seem 

to be capable of regulating the gene expressions 

included in several cellular systems' regulation with 

their complicated structures46. Moreover, in contrast 

to miRNAs, LncRNAs may be poorly protected 

while comparing the nucleotide sequencing among 

species47. 

 Long uncoded RNAs have proven strongly 

developed but differentiate within various forms of 

cells and tissues. Lately, a sum of 14,880 lncRNA 

transcripts was  recorded via the GENCODE 

consortium gathered through the ENCODE venture, 

containing 9277 human origins generating from the 

gene's position 5362 LncRNAs, and 9518 intergenic 

LncRNAs (LincRNAs)48. The detection of LncRNAs 

has supplied an important development in the 

classification of RNA-based processes in controlling 

gene expressions. LncRNAs may organize the 

transcription function of a certain gene or a certain 

chromosomal area. The best-known case, Xist, a 

17-kb X-chromosome transcription, is the main 

controller of polycomb-suppressor complexes (PRC) 

to combine compound parts and initiate 

X-chromosome inhibition49. On the contrary, 

LncRNAs like MALAT1 and H19 are efficient 

within lipid  and carbohydrate metabolism in 

addition to protein combination and dissolution  50, 

51. 

5. EPIGENETICS AND GENE 
EXPRESSION 

 Proteins transcription, translation, and sequent 

modulation are transmitted genetic data from the 

DNA copy from the archive to the short-lived RNA 

transporter, generally with sequent protein 

generation. Though each cell in the organism has 

basically the same DNA, cell kinds and roles are 

different due to discrepancies of quality and quantity 

in their gene expression. Subsequently, gene 

expression management is at the centre of 

uniqueness and evolution. Gene expression types 

that characterize distinguished cells are shaped 

throughout evolving and retained as cells divided by 

mitosis. Therefore as well as genetic material, cells 

gain material that is not encoded in the DNA 

nucleotide subsequence, which has been referred to 

as epigenetic information52. 

6.EPIGENETICS OF 

AUTO-INFLAMMATORY DISORDERS: 

 Familial Mediterranean Fever is considered the 

commonest inherited autoinflammatory disorder 

(MIM #249100). It's an autosomal recessive disorder 

that principally impacts individuals in the eastern 

Mediterranean basin and thus its name. The 

International FMF organization defined mutations 

causing the diseasein 1997. The mutations were 

found to occur in the MEFV genes on chromosome 

16p53. MEFV encoding for pyrin, a significant 

complex of inflammasomes that interacting with 

caspase-1 and other inflammasome compounds to 

organize IL-1β generation54,55. Although the 

consistency of MEFV as the cause of FMF was for 

more than 20 years, pyrin function has been 

discussed. Previous research on mice demonstrated 

that pyrin prevents caspase-1, and the researchers 

recommended an anti-inflammatory function to 

pyrin56. Different studies showed pyrin assembling 

an inflammasome compound and act as a 

pro-inflammatory57-59. Finally, it may be 

demonstrated that homozygous obtain-of-role pyrin 

mutation in mice causes pyrin inflammasome 

activation and acute inflammatory phenotypes via 

producing two pyrin-imperfect and knock-in mice 

that have mutated human B30.2 domains60. The 

system of pyrin inflammasome activity had been 

defined in 2016. It may be manifested that the pyrin 

inflammasome is organized through 

RhoA-dependent phosphorylation. Phosphorylated 

pyrin interacting with chaperone proteins 14-3-3 to 

keep pyrin dormant. Dysregulated interaction among 

14-3-3 and pyrin results inactivation of pyrin 

inflammasome61,62. FMF is featured by abdominal 

and chest pain, frequent fever, in addition to 

arthritis63. FMF diagnosis sometimes depends on the 

phenotypical Tel Hashomer64 or Yalcinkaya-Ozen 

standards65and may be aided with genetic 

investigation66. In 20% of cases with an FMF 

phenotype, a second mutation of the MEFV gene 

may not be observed 67. 

 Familial Mediterranean Fever patients with 

identical genotypes can present various phenotypes 

of the disease. This disparity could be because of 

other altering genes, epigenetics, or environmental 

influences. The first hint of the environmental effects 

on FMF was the discovery of the absence of minor 

amyloidosis amongst Armenian FMF cases in the 

USA68. In case of moving to Europe, the eastern 

Mediterranean patients are known to have a less 

dangerous disease69.The environmental influences 

might affect the presence of different phenotypes 

among FMF patients. One of these factors might be 

the living country70,71. They may be based on genetic 

factors coupled with a region of specific influences 

such as nutritional patterns, privation, working 

environments, as well as environmental matrice 
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pollution. These findings are important, particularly 

to the assessment of the human capability of 

amyloidosis71. A previous study of FMF cases from 

14 communities found that the residence state was 

the key factor evaluating the elevated risk of 

amyloidosis rather than the MEFV genotype71. In 

addition, a contrast among Turkish  kids who have 

FMF staying in Turkey or Germany revealed a 

higher extreme disease trend for those in Turkey, 

showing the climate as a clear influencer of the FMF 

phenotype70. 

 Additionally, previous studies comparing cases 

with identical history staying in Turkey or Germany 

have enabled environmental impact assessment of 

FMF intensity, where variables of the environment 

can cause over 12% of phenotypic variance72,73. 

Besides, advances in DNA methylation of the MEFV 

reasoned FMF genes were reported to minimize 

MEFV expressions through FMF environmental 

leukocytes in 51 FMF cases relative to 21 healthy 

regulations. These results underscore the 

environmental effects on serious FMF disease5,74. 

7. EPIGENETICS AND MICROBIOTA 

 Although FMF seems to be a monogenic 

disease, epigenetic influences as well as microbiota 

could perform a function in the FMF pathogenesis or 

phenotypic expressions. It is enticing to estimate that 

interactions of host-microbe could be significant to 

this inherent immune system disease. Khachatryan et 

al. have shown that microbiota's structure and 

ramification varied through cycles with and without 

attack, also between FMF cases and healthy 

controls75. Microorganisms can influence FMF 

because pyrin is an NLRP3 component that is a 

receptor for pathogen recognition69. It has been 

demonstrated that pyrin reveals virulent pathogenic 

activity. Cross taking of the inherent immune system 

and commensal gut bacteria (microbiota) also could 

influence (or could be influenced by) the case 

inflammatory state. Microbiota composition and 

divergence varied through the attack and attack-free 

times also between FMF cases and stable controls69. 

 Throughout that case, impacts of the 

environment influencing the gut microbiota may 

play apart in defining the start and intensity of 

disorders of the innate inflammatory pathway in the 

sense of a monogenic disease. Gut microbiota can 

also be a cause for the initiation of AA amyloidosis, 

which is one of the morbidity factors in FMF 

patients76. However, dependent on the MEFV 

genotype, various standards of basic status activating 

of pyrin could likely affect the intestinal homeostasis 

in the gut giving a complex inter-individual risk of 

developing chronic inflammation. Microbiota 

metabolites are able to modulate other 

inflammasomes under this light77. In the host gut, the 

microbiota plays an important role and is vulnerable 

to variants of genes and environment, either in health 

or disease. Being a type of uncommon hereditary 

autoinflammatory monogenic disease, FMF presents 

a history of intermittent inflammatory variants, 

having a significant effect on innate immunity.The 

microbiota is particularly susceptible to these 

inflammatory variants. Additionally, unique 

autoinflammatory reactions in FMF can be 

controlled. FMF symptoms can also be susceptible, 

and this emerging problem needs further 

consideration as an environmental, genetic 

interactivity model. Gut microbiota is potentially a 

crucial element in the determination of the FMF 

phenotype. Plenty of microbiota and its form in FMF 

cases can be based on genetic and environmental 

factors, though it has a secondary function.In 

contrast, environmental factors may be crucial in the 

long run in shaping the nature of the condition and 

the symptoms onset (i.e., AA amyloidosis). In FMF 

patients, future research should investigate 

gene-environment interactions. In addition, potential 

beneficial effects resulting from external gut 

microbiota modulation need further research into 

how complex probiotic therapies could enhance 

symptoms and development of microbiota without 

affecting the valuable impacts of the main curative 

choice in cases with FMF78. Growing proof is 

accumulating the function of intestinal microbiota in 

bile acid bioconversion within inter-individual 

differences leading predisposition to infection, 

converted metabolism and immune reaction. So, the 

genetic factors can be one of the factors deciding the 

intestinal microbiota profile in subjects with FMF79, 

80. 

8.SUMMARY AND CONCLUSIONS 

 Epigenetics perform an unbiased but essential 

function in autoimmune/inflammatory 

pathophysiology disorders. Histone alterations, 

non-coding RNAs, and also the CpG DNA 

methylation, are the greatest proofs. However, we 

recently just begin understanding this and the 

processes by which epigenetic activities cause 

disease. Full interpretation of epigenetic disease 

aetiologyis difficult as epigenetic conditions are 

highly complicated and occur accompanied by other 

epigenetic signs. They are unsteady and rely on 

several changes, containing cell cycle and exterior 

influences involving the immunologic 

micro-environment. A number of epigenetic 

alterations, implied reasons, and their participation in 

the pathophysiology has been approved, and 

otherchanges can cause a minor condition in 

regularity autoimmune/inflammatory illness and 

outstanding inflammation. 
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 Nevertheless, secondary epigenetic changes 

could affect inflammatory reactions, and their 

curative target may further regulate inflammation 

and tissue spoil. But, aside from cancer therapy, 

"epigenetic therapies "recentlystill" science fiction" 

in the immunology and rheumatology domain, as 

aim-directed implementation is recently unavailable. 

Epigenetic alterations are complicated, as well as not 

targeted methods are related to genome-wide 

modifications, which can cause severe side-effects, 

even worsening the disease. Therefore, current 

studies are justified in offering a further detailed 

view of epigenetic causes of inflammation and 

unregulated immune, and their fundamental 

molecular reasons.  

Just one complete image of epigenetics in the 

systemic inflammation will aid in: 

(i) Understanding the typical 

autoimmune/inflammatory diseases 

pathophysiology. 

(ii) Delivering molecular contributors for changeable 

manifestations, disease intensity, and results within 

associated individuals who have the phenotypically 

changing illness, and (iii) offering other goals into 

the study for vital signs in addition to individual and 

target-directed therapies. 
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List of Abbreviations: 

CAPS : cryopyrin-associated periodic syndromes  

DNMT: DNA methyltransferase 

FCAS2: Familial cold autoinflammatory syndrome-2 

FMF : Familial Mediterranean fever  

H3K27me3: histone 3 lysine 9 tri-methylation  

H3K9me2:  histone 3 lysine 9 di-methylation  

H3K9me3: H3K tri-methylation  

H4K16ac : histone 4lysine 16 acetylation 

LincRNAs : intergenic LncRNAs  

LncRNAs : Long non-coded RNAs 

MBD: methyl-CpG-binding proteins  

MEFV : Mediterranean Fever  

MicroRNAs (miRNAs) 

mRNA: messenger RNA 

MVK : Mevalonate Kinase 

ncRNA : non-coding RNAs  

NLRC4 : NLR Family CARD Domain Containing 4 

NLRC4-MAS:NLRC4-Related Macrophage 

Activation Syndrome  

NLRP12: NACHT, LRR and PYD 

domains-containing protein 12 

NLRP3 : NOD-, LRR- and pyrin domain-containing 

protein 3 

PAPA syndrome:  Pyogenic Arthritis, Pyoderma 

gangrenosum and Acne 

PRC : polycomb-suppressor complexes 

PSTPIP1: Proline-Serine-Threonine Phosphatase 

Interacting Protein 1 

TET: Ten-eleven transmit methylcytosine 

dioxygenase 

TNFRSF1A : TNF Receptor Superfamily Member 

1A 

TRAPS: Tumor necrosis factor receptor-associated 

periodic syndrome  
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