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Abstract 

Mean Field Annealing (MFA) merges collective computation and annealing 

properties of Hopfield Neural Networks (HNN) and Stochastic Simulated 

Annealing (SSA), respectively, to obtain a general algorithm for solving 

combinatorial optimization problems. Mean Field Annealing is a 

deterministic approximation, using mean field theory and stochastic 

simulated annealing. Since MFA is deterministic in nature, this gives the 

advantage of faster convergence to the equilibrium temperature, compared 

to stochastic simulated annealing. The mathematics of MFA is shown to 

provide a powerful and general tool for deriving optimization algorithms. In 

this paper, the MFA concepts are studied, the mathematics of MFA are 

derived, and different response functions are used to implement the MFA 

algorithm. Experimental results are implemented using different network 

topologies on a real classification problem known as Graph bipartitioning 

which was applied on Circuit Bi-partitioning.  A comparative approach 

using the different response functions is applied. Two annealing schedules 

namely: the Cauchy annealing schedule and the linear annealing schedule 

are used and compared. The study and results are encouraging and 

promising.   
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1. Introduction. 

 
    Many optimal classification techniques are limited in their use since the solution 
is frequently trapped in a local minimum. In other words, the solution cannot free 
itself from the local minimum and move towards the global minimum. The 
deterministic gradient method and the stochastic annealing method are two major 
classes of optimal techniques for resolving combinatorial optimization problems. 
The Hopfield neural network is the most widely used deterministic method. The 
Hopfield network is a recurrent network that embodies a profound physical 
principle, namely,  storing information in a dynamically stable configuration. 
However, energy change in the Hopfield network is a steepest descent process. 
Therefore, it always converges to the local minimum not the global minimum. 
Stochastic Simulated Annealing is a stochastic optimization algorithm based on the 
physical analogy of annealing a system of molecules to its ground state. It has a 
non-zero probability of transition from one state to another and the ability to move 
towards a worse state to escape from local traps. The cooling process is simulated 
using the Monte Carlo simulation method following the Boltzmann transition rule. 
The MFA algorithm gives a simple approximation to the state in thermal 
equilibrium. In the MFA, the state values are replaced by their means. In contrast, 
SSA performs computationally expensive Monte Carlo simulations and then 
extracts the average as the final result. Therefore, a major computational saving can 
be obtained through the MFA algorithm. Indeed, many simulation results confirm 
the MFA reaches equilibrium faster than SSA [22]. 
 
    A Hopfield network is a fully connected recurrent single layer, unsupervised 
network. Hopfield and Tank were the first to use a neural network model for 
solving optimization problems [18,19]. Hopfield neural networks contain 
highly interconnected nonlinear processing elements (―neurons‖) with two-state 
threshold neurons or graded response neurons. Hopfield neural networks 
(HNN) are a class of densely connected single layer nonlinear networks of 
perceptrons. It contains highly interconnected nonlinear processing elements 
[21].  The network‘s energy function is defined through a learning procedure so 
that its minima coincide with states from a predefined set. However, because of 
the network‘s nonlinearity, a number of undesirable local energy minima 
emerge from the learning procedure. This has shown to significantly affect the 
network‘s performance [20]. 
 
       Mean field annealing is a deterministic approximation to stochastic simulated 
annealing which is significantly more computationally efficient (faster) than 
stochastic simulated annealing. Instead of directly simulating the stochastic 
transitions in stochastic simulated annealing, the mean (or average) behavior of 
these transitions is used to characterize a given stochastic system. Because 
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computations using the mean transitions attain equilibrium faster than those using 
the corresponding stochastic transitions, mean field annealing relaxes to a solution 
at each temperature much faster than does stochastic simulated annealing. This 
leads to a significant decrease in computational effort. The idea is to use a 
deterministic mean-valued approximation for a system of stochastic equations to 
simplify the analysis that has been adopted at various instances. Generally 
speaking, such approximations are adequate in high dimensional systems of many 
interacting units (states) where each state is a function of all or a large number of 
other states allowing the central limit theorem to be used. 
  
    Deterministic annealing is a stochastic simulated annealing based method, which 
replaces computationally intensive stochastic simulations by straightforward 
deterministic optimization of the modeled system error energy[6]. A deterministic 
annealing approach replaces explicit stochastic simulations by expectations [7]. 
Unlike stochastic simulated annealing, where random moves are made on the given 
energy surface, deterministic annealing can be viewed as incorporating the 
―randomness‖ into the energy function by extracting properties of the macroscopic 
system from microscopic averages. In this approach, an effective energy function is 
obtained and is deterministically optimized at each temperature sequentially, 
starting from a high temperature and going down [5]. The word deterministic refers 
to the fact that thermal equilibrium is obtained by directly minimizing the free 
energy, in opposition to the stochastic simulation used by stochastic simulated 
annealing [2]. Deterministic annealing for optimization of the organized modularity 
provides good solutions either on a classification point of view or on a visual point 
of view [3]. Its extensions also rely on clustering, regression and parsimonious 
modeling [6,8]. 
 
       The rest of the paper is organized as follows: Section two discusses the 
Simulated Annealing (stochastic and deterministic). In section three, the 
physical analogy between Hopfield Networks and Statistical Mechanics is 
illustrated with its mathematical interpretations which shows the isomorphism 
between Hopfield Networks and the Ising Model. Section four discusses the 
Mean Field theory, the Mean Field approximation, and the derivation of the 
Mean Field equations. Experimental results are discussed in section five. 
Conclusion is outlined in section six. 
 

2. Simulated Annealing. 

Simulated Annealing (SA) is a compact and robust technique, which provides excellent 
solutions to single and multiple objective optimization problems with a substantial 
reduction in computation time. It is a method to obtain an optimal solution of a single 
objective optimization problem and to obtain a pareto set of solutions for a multi-
objective optimization problem. It is based on an analogy of thermodynamics with the 
way metals cool and anneal. If a liquid metal is cooled slowly, its atoms form a pure 
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crystal corresponding to the state of minimum energy for the metal. The metal reaches 
a state with higher energy if it is cooled quickly [13]. 

     Simulated Annealing (SA) is one of the emergent calculation algorithms that 
solves optimization problems, and is an effective technique for solving 
combination optimization problems [30, 31, 32, 33]. SA is an algorithm that 
simulates the physical evolution of a solid from a high temperature state to a 
thermal equilibrium state. SA searches randomly around the neighborhood of a 
present searching point. The next searching point can be accepted even when the 
fitness value of the next point is worse than that of the present. SA algorithms 
repeat these steps, and the optimization state is finally expected from given initial 
state. Therefore, it can derive the global solution. 

    In physics, the method for allowing a system such as many magnets or atoms in 
an alloy to find a low-energy configuration is based on annealing [34]. In physical 
annealing the system is heated, thereby conferring randomness to each component 
(magnet). As a result, each variable can temporarily assume a value that is 
energetically unfavorable and the full system explores configurations that have 
high energy. Annealing proceeds by gradually lowering the temperature of the 
system — ultimately toward zero and thus no randomness — so as to allow the 
system to relax into a low-energy configuration. Such annealing is effective 
because even at moderately high temperatures, the system slightly favors regions in 
the configuration space that are overall lower in energy, and hence are more likely 
to contain the global minimum. As temperature is lowered, the system has an 
increasing probability of finding the optimum configuration [35]. 

 
     In metallurgy [29] and material science, annealing is a heat treatment of material 
with the goal of altering its properties such as hardness. Metal crystals have small 
defects, dislocations of ions which weaken the overall structure. By heating the 
metal, the energy of the ions and, thus,  theirdiffusion rate is increased. Then, 
dislocations can be destroyed and the structure of the crystal is reformed as the 
material cools down and approaches its equilibrium state. When annealing metal, 
the initial temperature must not be too low and cooling must be done sufficiently 
slowly so as to avoid the system getting stuck in a meta-stable, non-crystalline, 
state representing a local minimum of energy. 
 
   Simulated annealing algorithm is a general purpose optimization technique that 
has been used to solve many combinatorial optimization problems [28]. It has been 
derived from the concept of metallurgy in which we have to crystallize the liquid to 
required temperature [29]. In this process liquids will be initially at high 
temperature and molecules are free to move. As the temperature goes down, there 
shall be restriction in the movement of the molecules and liquid begins to solidify. 
If the liquid is cooled slowly enough, then it forms a crystallized structure. This 
structure will be in minimum energy state. If the liquid is cooled down rapidly then 
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it forms a solid which will not be in minimum energy state. Thus the main idea in 
simulated annealing is to cool the liquid in a control matter and then to rearrange 
the molecules if the desired output is not obtained. This rearrangement of 
molecules will take place based on the objective function which evaluates the 
energy of molecules in the corresponding iterative algorithm. SA aims to achieve 
global optimum by slowly converging to a final solution, making downward moves 
hoping to reach global optimum solution [27]. 
     

2.1 Stochastic Simulated Annealing. 
 
The stochastic simulated annealing (SSA) combines the gradient descent technique 
which is a probabilistic hill-climbing algorithm with a random process to find the 
global minimum for its energy function E [36]. Stochastic simulated annealing 
models the degrees of freedom as a collection of atoms, slowly being cooled into 
their stable states with the temperature T as the controlling parameter. The energy 
surface defined as E(s) for a particle state s is a Boltzmann distribution function 
that allows changes in s to increase E, thus providing the network with a 
mechanism to escape from being trapped in a local minimum [37]. This is made 
possible since changes to s which decrease E are always accepted, whereas a move 
which causes an increasing ∆E will be taken with the Boltzmann probability, 
Pr{uphill move} = exp(-∆ E / T). 
 
    The stochastic simulated annealing method for finding an optimal configuration 
of neuron states given a set of weights is based on the physical annealing metaphor. 
It involves the following basic steps: 

1. Randomize neuron states once in the beginning, and initialize the 
temperature to a high value. 

2. Choose a neuron I randomly from the network. 
3. Compute the energy EA of the present configuration A. 
4. Flip the state of neuron I to generate a new configuration B. 
5. Compute the energy EB of configuration B. 

6. If EB  < EA then accept the state change for I. otherwise accept the state 

change for neuron I with a probability  where 

. 

7. Continue selecting and testing neurons randomly, and set their states 

several times in this way until a thermal equilibrium is reached. 
8. Finally, lower the temperature and repeat the procedure. 

 
Decreasing the temperature continues until it reaches a very small value. 
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2.2 Mean Field Annealing. 

Mean Field Annealing combines the collective computation property of Hopfield 
neural network model with the annealing notion of stochastic simulated annealing 
in order to form a better algorithm. In MFA, discrete variables called spins 
(neurons or nodes) are used for encoding the combinatorial optimization problems. 
In MFA each node or neuron responds to the average or mean of forces (fields) due 
to the nodes connected to it [11]. An energy function written in terms of spins is 
used for representing the cost function of the problem. Then, using the expected 
values of these discrete variables, a gradient descent type relaxation scheme is used 
to find a configuration of the spins which minimizes the associated energy function. 
MFA is also a general strategy like stochastic simulated annealing, and can be 
applied to different problems with suitable formulations. 

     Mean field annealing (MFA) merges collective computation and annealing 
properties of Hopfield neural networks[18], and stochastic simulated annealing, 
respectively, to obtain a general algorithm for solving combinatorial optimization 
problems. MFA can be used for solving a combinatorial optimization problem by 
choosing a representation scheme in which the final states of the spins (neurons) 
can be decoded as a solution to the target problem. Then, an energy function is 
constructed whose global minimum value corresponds to an optimum solution of 
the problem to be solved. MFA is expected to compute the optimum solution to the 
target problem, starting from a randomly chosen initial state, by minimizing this 
energy function. Steps of applying mean field annealing technique to a problem 
can be summarized as follows: 

1. Choose a representation scheme which encodes the configuration space of 
the target optimization problem using spins. In order to get a good 
performance, number of possible configurations in the problem domain 
and the spin domain must be equal, i.e., there must be a one-to-one 
mapping between the configurations of spins and the problem. 

2. Formulate the cost function of the problem in terms of spins, i.e., derive 
the energy function of the system. Global minimum of the energy function 
should correspond to the global minimum of the cost function. 

3. Derive the mean field theory equations using the energy function i.e., 
derive equations for updating averages (expected values) of spins. 

4. Minimize the complexity of update operations in order to get an efficient 
algorithm. 

5. Select the energy function and the cooling schedule parameters. 

Mean field annealing is identical to stochastic simulated annealing except for one 
aspect: instead of choosing moves randomly, it intelligently selects what appears to 
be the best candidate. Mean field annealing is a specific type of a graduated non-
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convexity algorithm[9]. The advantages of mean field annealing is that, it is one of 
two orders of magnitude faster than stochastic simulated annealing 

    3. The physical analogy between Hopfield Networks and Statistical 
Mechanics 

The mean field annealing algorithm is a formulation of combinatorial optimization 
in terms of artificial neural networks (ANN). Artificial neural networks are mostly 
used in applications such as pattern recognition and classification but may also be 
used for optimization. 

      Historically, the connection between artificial neural networks and statistical 
mechanics has its roots in a 1982 paper by Hopfield. With the introduction of an 
energy function, the isomorphism between recurrent neural networks and the Ising 
model as shown in figure(1), a fundamental in statistical mechanics, a whole new 
set of analysis tool became available. As a consequence, a large number of 
physicists are involved in the development of artificial neural networks.     

       Physicists worked on Ising models for many years and obtained brilliant 
achievements in the theory of continuous phase transition, which occur when a 
small change in a parameter such as temperature or pressure causes a large-scale, 
qualitative change in the state of a system. Phase transitions are common in physics 
and familiar in everyday life [17]. The Ising model is defined on a discrete 
collection of variables called spins, which can take the value of 1 or -1. The spins 
interact, in pairs, with energy that has one value when the two spins are the same, 
and a second value when the two spins are different. In Ising model, the spin at 
every site is either up (+1) or down (-1)[16]. 

 

 

 

 

 

 

 

 

 

 

 

    

Figure(1) : The isomorphism between neural networks and Ising spin-systems. 
(Left) A fully connected neural network with nodes taking values {-1, 1}. The solid 
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lines represent the coupling between the neurons. (Right) A spin-system with 
particles (solid dots) having either spin up or down (arrows) and the force 
interaction between the spins (dashed lines). Both systems are described by the 
energy function(1) and the update rule(2). 

    The conventional Hopfield neural network model is the most commonly used 

model for auto-association and optimization. Hopfield networks are auto-

associators in which node values are iteratively updated on local computation 

principle: the new state of each node depends only on its net weighted input at a 

given time. This network is fully connected network and the weight matrix 

determination is one of the important tasks when used for certain applications[19]. 

In Hopfield neural network model, processing devices are called neurons. Each 

neuron has two states firing 1 and not firing 0. Each neuron is connected to other 

neuron by a weight factor Wij, such that Wij = Wji [10,15]. 

 The Hopfield energy function 

                                              → ( 1 )   

and the rule for updating the state variables 

                        → ( 2 ) 

provides a simple way of exemplifying the connection between neural networks 
and the spin-systems of statistical mechanics. In the neural network interpretation 
the variables  represent the state of an individual node and  the connection 
strength between node i and node j. The updating rule prescribes that a node flips 
its state according to an activation potential, 

                                                     →  ( 3 ) 

which is a weighted sum of all the states of the other nodes. In the statistical 
mechanics interpretation, the variable  represent the spin of a particle and  the 
force interaction between the spin of particle i and j. 

Hopfield defined a single-layer network consisting of interconnected individual 
perceptrons and modified perceptrons (with sigmoid nonlinearities)[20]. The 
Hopfield net has a large number of stable states, corresponding to local minima of 
the energy function (1). Given a starting state, the update rule (2) will drive the 
network to the nearest local minimum. By associating the states with a pattern the 
network can be used as an associative pattern memory, where a distorted or partial 
pattern is used as a starting state from which the network can relax to a previously 
stored valid pattern. The patterns are stored in the network by clever coding of the 
connection weight  such that a pattern is stored in  through a learning rule. 
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    Stochastic nodes 

To reach the global minimum of the energy function (1) from any given starting 
state, the updating rule (2) is not sufficient, and techniques such as simulated 
annealing, allowing the process to escape local minima, must be employed. 

In a physical spin-system in an environment with a non-zero temperature the spins 

will fluctuate due to thermal noise. To emulate the thermal noise behavior, the 

deterministic updating rule (2) is replaced by a stochastic rule 

 →  (4) 

where  

                                             →  (5) 

Since 1 – g( ) = g( ) we can write the probability of finding  in either of its 

states at any given value of the control parameter c as 

                                      → (6) 

This makes it reasonable to talk about the thermal average of a variable, 

interpreted as the expectation value 

 

 

 

 

                                       →  (7) 

It is easy to see that in the limit of , which means that there is no thermal 
noise present, the stochastic updating rule (4) turns into the original deterministic 
updating rule(2). 

     The process of searching for the global minimum open up the possibility of 
using Hopfield networks to solve optimization problems coded in . The initial 
approach was only partly successful and frequently led to infeasible or low quality 
solutions but the idea was important in spurring development of similar more 
efficient optimization methods. 

       As a remedy for the slow convergence, the Mean Field learning rule, which 
replaces the random sampling of states with an approximate calculation, was 
introduced. The basic idea, which also explains the name of the algorithm, is that 
instead of explicit (a very large number of) states, the expectation value of the node 
under study is determined by the mean field generated by the surrounding nodes.  
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    4. Mean field theory 

The main idea of the Mean Field theory is to focus on one particle and assume that 

the most important contribution to the interactions of such particle with its 

neighboring particles is determined by the mean field due to the neighboring 

particles. For a physical many-particle system in thermal equilibrium, the state 

probability distribution is given by the Boltzmann distribution: 

P(s) =                                                                          → ( 8 ) 

Where Z denotes the partition function  

Z =                                                                      → ( 9 ) 

and S is the set of all possible states s. 

The way to improve the convergence speed of the Boltzmann machine is to work 

with the mean values, or rather expectation values, of the state variables. The 

reasoning behind this is quite simple. We already know that the Boltzmann 

distribution (8) holds all information on a system in thermal equilibrium and from 

it we can calculate the thermal average of any quantity A that depends on S. In 

particular, the expectation value of a state, E[s] = {E[ ]}, for a particular value of 

c is given by 

                          →  (10) 

where Z is the partition function (9). 

It is in fact possible to obtain E[s], and many other quantities, directly from Z 

without the need for the extra summation in (10). The procedure is best shown by 

an example: start from a Hopfield energy function 

                  →  (11) 

where the bias terms  are introduced for the sake of this example, they can be set 

to zero later. 

Differentiating the partition function Z for the energy given in (11) with respect to  

                                              → (12) 

it can immediately be seen that the result is indeed E[ ] save for a factor c/Z, 

which means that we can establish the following relation 

                          →  (13) 

Furthermore, under the condition that there is a single optimal state  

 →  (14) 
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This suggests that instead of minimizing f(s) directly, we could try to evaluate the 
mean value E[s] at a sufficiently high temperature, and then track it as the control 
parameter c is lowered towards zero, and the partition function contains enough 
information to yield E[s]. 

     4.1The mean field approximation 

In statistical physics the mean-field approximation is one of the most common and 
easy-to-use frameworks [25]. It is also a powerful method for finding minimum 
points of cost or energy functions. The method has similarities to Boltzmann 
machines, as both methods are based on stochastic simulated annealing in order to 
avoid local minimum. Mean-field approximation is a deterministic method that 
uses the results of spin-glass theory[24]. The term ‗mean-field approximation‘ can 
have various meanings in statistical mechanics and it actually refers to a whole set 
of different approximations all with different levels of accuracy. The main idea is 
to ignore the fact that the constituents of the solid under investigation are 
interacting, and to treat the interaction as an ‗average effect‘. The difference 
between approximations lies in the way we perform averaging [26].  

     The following method to estimate E[s] by means of the mean field (MF) 
equations is a standard method of statistical mechanics. I will however skip on 
some of the details in the derivation of the MF-equations in order to keep the 
complexity down while still providing reasonable arguments backing the results.  

     Before deriving the MF-equations, we need some prerequisites. Consider the set 

 = {s | s = {si}, si in P, i = 1,2,…,L} where P is a problem specific set of feasible 

values. Furthermore, a mapping   is assumed to exist for every problem, 

associating each state with a real valued cost, with the lowest cost corresponding to 

the optimal solution. Given a function  used in a summation over the values 

of  we want to express it as an integral in a pair of continuous variables ( ). 

Generally, we can write  

                          → (15) 

where  is the Dirac delta function, defined as 

                                  → (16) 

which in combination with (15) gives  

      → (17) 

Using (17) we can now state an expression for 

    →  (18) 
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→ (19) 

      → (20) 

where the last step is accomplished by noting the identity  

   → (21) 

To perform the summation over all states s we note that 

     → (22) 

and consequently 

 → (23) 

where a constant factor has been left out. 

Given the expression (23) to estimate the sum over all states of a general 

expression in s we can now continue with the derivation of the MF-equations. 

Using (23) we can rewrite the partition function (9)  in terms of the new, 

continuous, variables u and v as 

                              →  (24) 

where the effective energy (cost)  is: 

→  (25) 

From statistical mechanics it is well known that the double integral of (24) is 

dominated by its saddle points and Z can thus be approximated by the integrand 

itself, 

                                                   →  (26)          

Evaluated for the saddle points given by the simulations stationarity in  

                                               → (27) 

and  

                                                        →  (28) 

The saddle point requirements lead to  

                                                                → (29) 

and  

                                                                                      → (30) 

which are subsequently combined to form the MF-equations 

                                             → (31) 
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Applying the MF-equations to the now familiar Hopfield energy function (3) we 

find that (31) states the relation 

                                      → (32) 

which, when compared to (9) from the discussion on stochastic nodes leads to the 

interpretation of  as the thermal average  of  for c > 0. Again, in the limit 

of c = 0 the expression (3) is recovered. 

The only, but important, difference between (9) and (32) is that the activation 

potential  is computed from the thermal average  of  rather than  itself. 

By explicitly stating  and moving the summation inside the expectation operator 

       → (33) 

We can interpret the activation potential as the mean of the contributions from the 

field of surrounding states (spins). 

As an alternative to interpretation by visual inspection, returning to the Hopfield 

energy in equation (11) expressed in terms of v 

                    → (34) 

and the corresponding  

                     →   (35) 

From the approximation expression (26) to compute Z we find 

 

   → (36) 

where  C is a constant and by using the relation between  and Z established in 

(13) we find  

   →  (37) 

As expected. 

    In a similar way, if we replace equation (4) by the following equation: 

 

                              →  (38)   

 

We reach to the following equation: 

E[si] =     , which is a sigmoid function.                                 →  (39)    
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5. Results. 

 

Suppose we have a large number of variables (neurons or nodes) si , i = 1,2,…,N, 

where each variable can take one of two discrete values, for simplicity chosen to be 

1 . The optimization problem is: find the values of si so as to minimize the cost or 

energy 

 

   where wij is the weights (edges) that are symmetric, and can be positive or 

negative. We require the self-feedback terms to vanish ( i.e., wii = 0 ) , because the 

non-zero wii merely add an unimportant constant to E, independent of si . This 

optimization problem can be visualized in terms of a network of nodes, where 

bidirectional links or interconnections correspond to the weights wij = wji. This 

network suggests a physical analogy which in turn will guide our choice of solution 

method. Imagine that the network represents N physical magnets, each of which 

can have its north pole pointing up (si = +1) or pointing down (si = -1). The wij are 

functions of the physical separations between the magnets. Each pair of magnets 

has an associated interaction energy which depends upon their state, separation, 

and other physical properties: Eij = -1/2 wij si sj . The energy of the full system is 

the sum of all these interaction energies as given in Equation (40). 
 
   The optimization task is to find the configuration of states of the magnets (nodes 
or units) with the most stable configuration; the one with lowest energy. This 
general optimization problem appears in a wide range of applications, in many of 
which the weights do not have a physical interpretation. In this paper, the 
implementation of our work was applied on a real classification problem known as 
graph bipartitioning (bipartite graph) that is defined as follows: 
Definition:   A bipartite graph is a graph G whose vertex V can be partitioned into 
two non empty sets V1 and V2 . The sets V1 and V2 are often called the color classes 
of G. 
 
    The graph bipartitioning problem can be applied, for example, on Circuit Bi-
partioning i.e., when one has to split a circuit design over two circuit boards, and 
the objective is to place the components on either boards (partitions) in such a way 
that the number of connections between the circuit boards (cut size) is minimized, 
with the added constraint that the number of components on both boards is the 
same (balance constraint). This will arise in a VLSI circuit partitioning problem. 
Partitioning a VLSI circuit graph into disjoint graphs of minimum cut size is the 
objective. 
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     The partitioning task is ubiquitous to many subfields of VLSI CAD. Partitioning 
heuristics are used to address the increasing complexity of VLSI design; systems 
with several million transistors are now common, presenting instance complexities 
that are unmanageable for existing logic level and physical level design tools. 
Partitioning divides a system into smaller, more manageable components; the 
number of signals which pass between the components corresponds to the 
interactions between the design sub-problems. In a top-down hierarchical design 
methodologies, early-made decisions in the system synthesis process will constrain 
succeeding decisions. Thus, the feasibility, not to mention the quality, of automatic 
placement, global routing, and detailed routing will somewhat depend on the 
quality of partitioning problem. 
 
   The circuit bi-partitioning optimization is focused on finding an acceptable 
solution based on the delay, power, and cut-set cost. The cut-set cost is the number 
of inter-partition connects, which if not selected carefully, will immensely degrade 
the overall solution quality. 
 
Cut-set cost function. The cut-set cost is incremented each time a net has at least a 
connection in another partition. The pertinent net is checked for each node in the 
circuit; once found, the net is checked if it has connections in other partitions. A 
net that has connections in more than one partition means that these connections 
will have to be cut, i.e., increases the undesirable cut-set. 
 
Imbalance Constraint. The partitions imbalance is the difference between the 
numbers of nodes of the partitions. The imbalance constraint is verified to be 
within a predetermined value, namely the imbalance tolerance. 
 
If we identify the circuit with a graph where the components are the nodes and the 

connections between components are the edges of the graph, the state variables si 

have the following interpretation: 

 
We can thus formulate the following objective function: 

 
Where the first term is minimal if the nodes of all connected pairs (si, sj) are in the 

same partition and the second term is minimal if there is an equal number of nodes 

in each partition.  
     The parameter  is used to trade off the importance of a minimal cut size 
against the constraint that the number of nodes in each partition should be the 
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same. A value of  would immediately lead to a solution where all nodes are 
gathered in the same partition. If the chosen value of  is too large the cut size 
would be far from optimal. There will in general always be a small imbalance in 
the final solution, but in most problems of this kind, a small imbalance is not a 
problem. If the  value equals 1, this will give equal weight to an additional cut 
and an added imbalance. 
 

    In MFA, each node (magnet) can take a continuous value -1 si , which 

equals the expected value of a binary node in the system at temperature T. In other 

words, the analog value si replaces the expectation of the discrete variable, E[si]. 

The behavior of the force exerted by the nodes connected to si behaves as follows: 

the larger this force, the closer the analog si getsto +1; the more negative this force, 

the closer si gets to -1. The temperature T also affects si. If T is large, there is a 

great deal of randomness and even a large force will not insure si  At low 

temperature, there is little or no randomness and even a small positive force insures 

that si = +1. Thus at the end of an anneal, each node has value si = +1 or si = -1 as 

shown in our experimental results. 
 
    One of the most important features in MFA is the choice of the annealing 
schedule. The annealing is an operation in metal processing. Metal is heated up 
very strongly and then cooled slowly to get a very pure crystal structure with a 
minimum of energy. In this paper, we discuss two important annealing schedules as 
follows: 
 

1- For the first schedule  T(k) = α T(k -1) , 0 < α < 1                          →   (S1) 
This is a linear annealing function which is the simplest form of the polynomial 
annealing functions interpolated between the points determined by the start 
temperature, which is the beginning of the annealing process, the ending 
temperature, which denotes the ending process, the maximum temperature, and the 
minimum temperature. Experiences has shown that α should be between 0.8 and 
0.99. Of course the higher the value of α, the longer it will take to decrement the 
temperature to the stopping criterion. 
 
Figure(2) represents the classes obtained after training the network on the same 

adjacency matrix used for all response functions. The patterns are classified into 

two different classes. The number of patterns in each class differs from response 

function to another. Although all states lies in the interval [-1,1], i.e., -1 , 

at the end of the annealing process we find that . This 

means that if the force exerted by the nodes connected to si is large then the analog 

si tends to +1. If the force exerted by the nodes connected to si is small (more 



Mean Field Annealing for Pattern Classification using different response functions: A Comparative Approach. 

 

 

 

 

 

 

 

 

 

17 

negative) then the analog si tends to -1. At the beginning of the annealing, the 

temperature T is large, and there is a great deal of randomness. At the end of the 

annealing, the temperature T is low, and in this case there is little or no 

randomness. 

 

 
(a): The number of patterns in each class using Tanh Function. 

 
(b) : The No. of patterns in each class using ½(1+tanh) Function. 

 
c): The No. of patterns in each class using Cos Function. 

 
(d): The No. of patterns in each class using Sin Function.  

Figure(2): Pattern Classification for using different response functions – the 1
st
 

Schedule. 

 

    In Figure(3), the number of patterns in each class using cosine response function 

are equal. This means that there is partitioning balance for each board when we 

apply the Circuit bi-partitioning problem. Each board contains an equal number of 



Journal of the ACS, Vol. 4, May 2010 

 

 

 

 

 

 

 

 

 

18 

wires. The difference using Tanh function is less than the difference using 

½(1+tanh) function which is less than the difference using Sin response function. 

In case of the Circuit bipartitioning problem, we find that the difference between 

the number of wires on the two boards, i.e., the partitioning imbalance using the 

Tanh response function is less than the partitioning imbalance using  ½(1+tanh)   

which is less than its counterpart in case of using the sine response function.  

 
Figure(3): the number of patterns in each class for the response functions- 1

st
 

Schedule. 

 
Table(1) : the end value of each state at different functions using the 1

st
 schedule. 

State Tanh 1/2(1+Tanh) Cos Sin 

S1 -1 -1 -1 -0.999185725679839 

S2 1 1 -1 0.999984804160683 

S3 -1 -1 -1 1 

S4 1 1 -0.999999999999 1 

S5 1 1 1 1 

S6 1 1 0.9322041269898 1 

S7 -0.9999999999 1 1 1 

S8 -1 1 1 1 

S9 1 0.93757078694 1 -0.999977806845763 

S10 1 -1 -1 1 

S11 1 1 1 1 

S12 1 0.99999999363 -1 1 

S13 1 -1 1 1 

S14 -1 0.99999999999 1 1 

S15 -1 1 -1 -0.366252200291844 

S16 -0.9999999999 1 -1 1 

S17 1 1 -1 1 

S18 1 1 1 1 
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S19 -0.9828661461 1 0.0507615962715 1 

S20 1 1 -1 1 

S21 -0.9999999999 1 1 1 

S22 1 -1 -1 1 

S23 -1 -1 1 1 

S24 1 0.98218915225 -1 1 

S25 1 0.99999999995 -0.999999999999 -0.999657865027457 

S26 1 -1 -1 -0.999788473314367 

S27 -1 -1 1 1 

S28 1 1 1 1 

S29 1 1 -1 1 

S30 1 1 1 -0.999998472487542 

Table(1) indicates that for the first schedule, and at the beginning of the annealing, 
we find that the states of each node lies between -1 and +1 i.e., -1  . 
Increasing the number of iterations implies that the state of each node tends to +1 
or -1. A faster convergence to the equilibrium temperatures (i.e., at low 
temperature) occurs when the state reaches . In this case a minimum energy has 
been obtained. At the end of the annealing, we find that the state of each node 
converges either to +1 or -1. Applying all response functions, we find that there are 
two classes of patterns. The number of patterns in each class differs from the 
number of patterns in its counterpart using other response function. 
 

2- For the second schedule T(k) = T(0) / k.                                            → (S2) 
 
This schedule is known as the Cauchy annealing. A faster schedule is the Cauchy 

schedule in which the equation converges to the global minimum when moves are 

drawn from the Cauchy distribution. MFA allows each node to take on analog 

values during search; at the end of the search the values are forced to be si = ± 1, as 

required by the optimization problem. Figure(5) shows the first eleven iterations 

against the different four response functions stated above. The eleventh iteration is 

when the first node converged to +1 using the tanh and   response 

functions . The other two functions sine and cosine lies between ± 1. The 

convergence using this schedule as shown in figure(5) is faster than the 

convergence using the previous schedule which occurs at iteration number 18
th
 as 

shown in figure(2). 
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(a): The number of patterns in each class using Tanh response Function.  

 

(b) : The No. of patterns in each class using ½(1+tanh) response Function.  

 

(c): The No. of patterns in each class using Cos response Function.  

 

(d): The No. of patterns in each class using Sin response Function.  

Figure(4): Pattern Classification using the response function – the 2
nd

 Schedule. 

Figure(5) shows the number of patterns in each class. The difference between the 

number of patterns in each class when using the  response function   

is less than the difference  when using the tanh response function, which is less 

than its counterpart using the cos response function. The effect of using the sin 

response function makes the difference is the largest. 
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Figure(5): the number of patterns in each class for the response functions- 2
nd

 

Schedule. 

On the other hand, in case of the Circuit Bipartitioning problem we find that the 

partitioning imbalance using  response function is less than the 

partitioning imbalance using the tanh response function which is less than the 

difference between the number of wires for the two boards (classes) using cosine 

response function. Using the sine response function, we find that the partitioning 

imbalance is the largest among all the response functions. In this schedule, there is 

no partitioning balance for any response function. 

 

Comparing Figure(3) and Figure(5), we find that the annealing schedule affecting 

the number of patterns in each class. For the circuit bipartitionig problem, we find 

that the two boards contain different number of wires for the same response 

function for the Cauchy annealing schedule and linear annealing schedule. 

 

Figure(6) shows that the cosine response function using the second schedule gives 

the lowest energy function. In schedule1, we find that the minimum energy using 

the cosine response function is less than the minimum energy using the 

 response function   which is less than the minimum energy of using 

tanh response function. The minimum energy using sine response function is the 

largest one among all the others in this schedule. On the other hand, in schedule 2 

we find that: the minimum energy when using the cosine response function is less 

than the minimum energy when using the sine response function which is less than 

the minimum energy when using   response function. The minimum 

energy when using tanh response function is the largest one among all the others in 

this schedule.  
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Figure(6): the Minimum Energy for the two Schedules for each response function. 

Table(2) represents the end values of the states when the second schedule is used. 

The values of the states converged to +1 or converged to -1 similar to the values of 

states in table(1). The patterns contained in each class differs from class to class 

using the same response function or using different response functions. Also the 

annealing schedule affects the number of patterns contained in each class.  

 

Table(2) : the end value of each state at different functions using the 2
nd

 schedule. 

State Tanh 1/2(1+tanh) Cos Sin 

S1 1 -0.99380788981618 -1 -1 

S2 1 -0.99961186188042 -1 0.83365460701215 

S3 1 0.99991930493661 -1 -1 

S4 1 -0.99999999999961 -1 -1 

S5 0.999999999999998 -0.9999999959990 -0.9999999995747 -1 

S6 0.99999999996152 -0.99994143646702 -1 -1 

S7 1 0.99999970602817 -1 -1 

S8 1 1 -1 -1 

S9 0.999999999962372 -0.99999999999998 -1 -1 

S10 1 -0.93748842328295 -1 -1 

S11 1 0.99999999999967 -1 -1 

S12 1 1 -1 -1 

S13 1 0.9999999999999 0 -1 

S14 -0.99999999999999 1 -1 -1 

S15 0.999999999999961 -0.9999999999999 -1 -1 

S16 -0.99999999999998 1 -1 -1 

S17 -0.99822084371429 -0.99921787980353 -1 -1 
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S18 1 0.99999999999999 -1 -1 

S19 1 -0.99999999980890 -1 -1 

S20 -1 1 -1 -1 

S21 -0.42801569048668 -0.97802611846943 -1 -1 

S22 1 0.99999999999998 1 -1 

S23 1 0.99999999999999 -1 -1 

S24 1 -0.99999999999999 -1 -1 

S25 -0.99999999999996 0.99999999999999 -1 -1 

S26 -0.99999999999999 1 -1 -1 

S27 0.999999999869405 -0.99999999999999 -1 -1 

S28 1 1 -1 -1 

S29 0.999999999999924 0.99999999999999 -1 -0.97600699776045 

S30 1 -0.99999999890035 -1 -0.98143955255299 

 
Figure(7) shows a comparison between the behavior of the temperature in each 

schedule. The Cauchy annealing schedule decreases the temperature more rapidly 

than the linear annealing schedule. On the other hand the Cauchy annealing 

schedule converges better  than the linear annealing schedule. The randomness 

occurs rapidly in the first ten iterations when using the second schedule rather than 

using the first schedule. 

 

 

Figure(7) : the behavior of the temperature for the two schedules. 

Table(3) shows the minimum energy which represents the cost function using the 

different response functions. From the table, we find that the minimum energy 

results from using the cosine function, while the largest one results from using the 

response sine function. 
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   Table (3) the minimum energy for each schedule using different functions. 

 

Function Tanh 1/2(1 + Tanh) Cos Sin 

M.E (S1) 13.925767 99.4697155 -40.796316 216.54952 

M.E(S2) 65.382885 -16.53134 197.30314 346.353 

 

 
 

Figure(8 ) Classification of patterns using the Sigmoid Function – 1
st
 Schedule. 

 

Figure(8) shows that patterns are classified in two classes. The first class contains 

number of patterns greater than the number of patterns in the second class when 

using the first schedule. 

 

 
 

Figure( 9) Pattern classification using the response function (Sigmoid ) – 2
nd

 

Schedule 

 

Figure(9) shows that there exists two partitions of classes. The first class 

contains number of patterns less than the number of patterns in the second class 

when using the second schedule. 
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Figure( 10 ) Pattern Classification using Sigmoid Function for the Two Schedules. 

 

Figure(10) shows that the number of patterns in the first class when using schedule 

2 is greater than the number of patterns in the second class when using the schedule 

1, which is greater than the number of patterns in the first class when using the first 

schedule. While the second class contains the lowest number of patterns when 

using the second schedule . For the case of circuit bipartitioning problem, we find 

that the partitioning imbalance when using the first schedule is less than its 

counterpart when using the second schedule for applying the sigmoid response 

function. 

 

Table(4) shows the minimum energy for the two schedules using the sigmoid 

function. In the Cauchy annealing, the minimum energy is less than the minimum 

energy of the linear annealing function. 

 

Table(4): the minimum energy for the two schedules using the sigmoid function. 

 

The Schedule T(k) = T(0) / k T(k) = α * T(k – 1) 

M.E -132.201801024419 -16.5283015519348 

 

Table(5) shows the mean value of the number of patterns in each class using all the 

response functions in the two schedules. We find that the mean value of the 

number of patterns in the first class using all the response functions in the first 

schedule is greater than the number of patterns in the first class when using the 

second schedule, while the number of patterns in the second class when using the 

first schedule is less than the number of patterns 
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   Table(5) : Mean and standard deviation for the number of patterns in each class 

 

Class Tanh ½(1+tanh) cos sin sigmoid Mean STD 

Class1(S1) 18 22 15 24 14 18.6 4.3 

Class2(S1) 12 8 15 6 16 11.4 4.3 

Class1(S2) 23 16 2 1 20 12.4 10.3 

Class2(S2) 7 14 28 29 10 17.6 10.3 

 

in the second class when using the second schedule. The standard deviation when 

using the first schedule is less than its counterpart for the second schedule. In case 

of using the circuit bipartitioning problem, we find that the mean value of 

partitioning imbalance = 18.6 – 11.4 = 7.5 when using the first schedule is greater 

than the partitioning imbalance when using the second schedule, which = 17.6 – 

12.4 = 5.2 for all the response functions. 

 

For Circuit Bi-partitioning, the partitions imbalance which is the difference 

between the numbers of nodes of the partitions using the two schedules is shown in 

table(6).   

 

Table(6): partition imbalance for circuit bi-partitioning into 2 classes for the 2 

schedules 

Schedule Tanh ½(1+tanh) cos sin sigmoid 

S1 6 14 0 18 2 

S2 16 2 26 28 10 

  

Finally, the performance evaluation of stochastic simulated annealing and mean 

field annealing is discussed as follows: 

 Stochastic simulated annealing is slow, in part because of the discrete 

nature of the search through the space of all configurations. MFA is an 

alternate, faster method that allows each node to take on analog values 

during search; at the end of the search the values are forced to be  1, as 

required by the optimization problem. 

 In SSA, searching the configurations space is of a discrete nature, while it 

is of a continuous nature in MFA.  

 In SSA, the moves directions are chosen at random, while MFA is just like 

SSA except that the (apparently) best move is always chosen. 
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 MFA is deterministic in nature and this gives the advantages of faster 

convergence to the equilibrium temperature, compared to SSA. 

 The MFA decrease in computational effort than SSA. 

 MFA simplify the analysis that has been adopted at various instances than 

SSA. 

 MFA replaces explicit stochastic simulations by Expectations. 

 

6. Discussion and Conclusions 

 

Mean Field Annealing combines the collective computation property of Hopfield 

Neural Network model with the annealing notion of simulated annealing in order to 

form a better algorithm. In Mean Field Annealing, discrete variables called spins 

(neurons) are used for encoding the combinatorial optimization problems. It 

consists of setting an annealing schedule and then at each temperature finding an 

equilibrium analog value for every spin. This analog value is merely the expected 

value of the discrete state of a neuron in a system at temperature T.  

    In this paper, two annealing schedules are discussed: the linear annealing 

schedule and the Cauchy annealing schedule and five response functions are used 

namely: the tanh function,    function, the cosine function, the sine 

function, and finally the sigmoid function. In this paper, we state the following 

conclusions: 

 

1. The mathematical derivation of the Mean Field and Mean Field 

approximation is derived.   

2. A real classification problem known as graph bipartitioning is applied on 

the Circuit Bipartitioning problem. 

3. The patterns are classified into two classes for graph bipartitioning 

problem, and into two boards for the circuit bipartitioning problem. 

4. For the circuit bipartitioning problem, the partitioning imbalance is 

calculated and compared using the two schedules for all the response 

functions and shows that: the partitioning imbalance using the linear 

annealing schedule is less than the partitioning imbalance using the 

Cauchy annealing schedule. 

5. Partitioning balance occurs using the cosine response function for the first 

schedule. 

6. The mean value and standard deviation of the number of patterns in each 

class are calculated and compared showing that the mean value of the 

number of patterns (wires) in the 1
st
 class (first board) is greater than the 

mean value of that in the 2
nd

 class (second board) using the 1
st
 schedule for 

all the response functions. On the other hand, the Mean value of the 
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number of patterns in the 2
nd

 class (2
nd

 board) is greater than the mean 

value of that in the 1
st
 class (1

st
 board ) using the 2

nd
 schedule for all the 

response functions. 

7. The standard deviation when using the first schedule is less than the 

standard deviation when using the second schedule. 

8. The minimum energy is calculated and compared for all the response 

functions using the two schedules. 

9. Cauchy annealing converges better than linear annealing. 

10. The annealing process using the linear annealing is better than its 

counterpart of the Cauchy annealing. 

11. The Minimum Energy (the cost function) using the sigmoid response 

function is the lowest among all the other response functions when using 

the second schedule. 

 



Mean Field Annealing for Pattern Classification using different response functions: A Comparative Approach. 

 

 

 

 

 

 

 

 

 

29 

References 

 
1. Choi J., Qiu J., Pierce M., and Fox G.:‖ Generative Topographic Mapping 

by Deteministic Annealing‖. Procedia Computer Science, (2010) 1-10. 
2. Angelini L, Nardulli G., Nitti L., Pellicoro M., Perrino D., and Stramaglia 

S.: ― Deteministic annealing as a jet clustering algorithm in hadronic 
collisions‖. Physics Letters B 601 (2004) 56-63. 

3. Rossi F., and Villa N.: ― Topologically Ordered Graph Clustering via 
Deterministic Annealing‖. ESANN‘2009 proceedings, European 
Symposium on Artificial Neural Networks – Advances in Computaional 
Intelligence and Learning, 2009. 

4. Sharma P., Salapaka S., and Beck C.: ― A Deterministic Annealing 
Approach to Combinatorial Library Design for Drug Discovery‖. 
American Control Conference, USA, 2005. 

5. Chang M., Lin C., and Weng R.: ― Adaptive Deterministic Annealing for 
two Applications: Competing SVR of Switching Dynamics and Travelling 
Salesman Problems‖. Proceedings of the 9

th
 International Conference on 

Neural Information Processing ((ICONIP‘02), vol. 2, 2002. 
6. Czabanski R., ― Neuro-Fuzzy Modeling Based on a Deterministic 

Annealing Approach‖. International Journal of Applied Mathematics & 
Computer Science, Vol. 15, No. 4, 561-576, 2005. 

7. Rao A., Miller D., Rose K., and Gersho A.: ―A Deterministic Annealing 
Approach for Parsimonious Design of Piecewise Regression Models‖. 
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol 21, 
No.2, 1999. 

8. Rose K.:‖Deteministic Annealing for Clustering, Compression, 
Classification, Regression, and Related Optimization Problems‖. 
Proceedings of the IEEE, Vol, 86, No. 11, 1998. 

9. Bilbro G., Snyder W., Garnier S., and Gault J.: ―Mean Field Annealing: A 
Formalism for Constructing GNC-Like Algorithms‖. IEEE Tansactions on 
Neural Networks, Vol. 3, No. 1, 1992. 

10. Popoviciu N., and Boncut M.: ― On the Hopfield algorithm. Foundations 
and examples‖. General Maathematics Vol. 13, No. 2, 2005. 

11. Duda R., Hart P.,and Stork D.: ―Pattern Classification‖ Second Edition, 
2001. 

12. Eldos T.: ―Simulated Annealing with Deterministic Decisions‖. Journal of 
Computer Science 5 (12) :977-982, 2009. 

13. Suman B., and Kumar P.: ―A survey of simulated annealing as a tool for 
single and multiobjective optimization‖. Journal of the Operational 
Research Society (2006) 57, 1143-1160. 

14. Salakhutdinov R., and Hinton G.: ― Deep Boltamann Machines‖. 
Proceedings of the 12

th
 International Conference on Artificial Intelligence 

and Statistics (AISTATS), 2009. 



Journal of the ACS, Vol. 4, May 2010 

 

 

 

 

 

 

 

 

 

31 

15. Mishra D., Shukla A., and Kalra P.: ― OR-Neuron Based Hopfield Neural 
Network for Solving Economic Load Dispatch Problem‖. Neural 
Information Processing – Letters and Reviews, Vol. 10, No 11, 2006. 

16. Jimenez A., Tiampo K., and Posadas A.: ― An Ising model for earthquake 
dynamics‖. Nonlinear Processes in Geophysics, 2007. 

17. Feng Y.: ―The Boundary Conditions Geometry in Lattice-Ising Model‖. 
Electronic Journal of Theoretical Physics 7 (2005). 

18. He H., and Sykora O.: ― A Hopfield Neural Network Model for the 
Outerplannar Drawing Problem‖. International Journal of Computer 
Science, 32:4, IJCS-32_4_17, 2006. 

19. Mishra D., and Kalra P.: ― Modified Hopfield Neural Approach for Solving 
Nonlinear Algebraic Equations‖. Engineering Letters 14:1, EL_14_1_23, 
2007. 

20. Pavlovic V., and Friedman D.: ―Enhancement of Hopfield Neural 
Networks using Stochastic Noise Processes‖. IEEE workshop on Neural 
Networks for Signal Processing, 2001. 

21. Zhang W., and Tang Z.: ― A New Algorithm Using Hopfield Neural 
Network with CHN for N-Queens Problem‖. International Journal of 
Computer Science and Network Security, Vol.9 No.4, 2009. 

22. Sheng J., and Liu H.: ―Stereo vision using a microcanonical mean field 
annealing neural network‖. Computer Network System. 8, 1997. 

23. Lee K.: ―A Neural Network Model Based on Graph Matching and 
Annealing : Application to Hand-Written Digits Recognition‖. 
International Journal of Mathematics and Computers in Simulation. Issue 
4, Volume 1, 2007. 

24. Strausz G.: ―Mean-field approximation with neural network‖. IEEE 
International Conference on Intelligent Engineering Systems, 1997. 

25. Agra R., Wijland F., and Trizac C.: ―On the free energy within the mean-
field approximation‖. European Journal of Physics, 27 (2006) 407-412. 

26. Vedral V.: ―Mean-field approximations and multipartite thermal 
correlations‖. New Journal of physics 6 (2004). 

27. Nair T and Sooda K. ―Comparison of Genetic Algorithm and Simulated 
Annealing Technique for Optimal Path Selection in Network Routing‖. 
NCVN-09 octobar 2009 KCG College of Technology. 

28. Elhadded Y and Sallabi O. ―A New Hybrid Genetic and Simulated 
Annealing Algorithm to Solve the Travelling Salesman Problem‖. 
Proceedings of the World Congress on Engineering 2010 Vol1. 

29. Manconi A., Tizzani P., Zeni G., Pepe S and Solaro G. ―Simulated 
Annealing and Genetic Algorithm Optimization using COMSOL 
Multiphysics: Applications to the Analysis of Ground Deformation in 
Active Volcanic Areas‖. Proceedings of the COMSOL Conference 2009 
Milan. 



Mean Field Annealing for Pattern Classification using different response functions: A Comparative Approach. 

 

 

 

 

 

 

 

 

 

31 

30. Alan R., McKendall J, Shang J., and Kuppususamy S.: ―Simulated 
annealing heuristics for the dynamic facility layout problem‖. Computers 
& Operations Research 33 (2006). 

31. Bisht S.: ―Hybrid Genetic-simulated Annealing for Optimal Weapon 
Allocation in Multilayer Defence Scenario‖. Defence  Science Journal, Vol 
54, No. 3, 2004. 

32. Ho S., Yang S., Wong H., and Ni G.: ― A Simulated Annealing Algorithm 
for Multiobjective Optimizations of Electromagnetic Devices‖. IEEE 
Transactions on Magnetics, Vol. 39, No. 3, 2003. 

33. Simopoulos D., Kavatza S., Vournas C. : ― Unit Commitment by an 
Enhanced Simulated Annealing Algorithm‖. Paper no. TPWRS- 00234-
2005. PSCE, 2006. 

34. Haidine A., and Lehnert R. : ―Multi-Case Multi-Objective Simulated 
Annealing ( MC-MOSA): New Approach to Adapt Simulated Annealing to 
Multi-objective Optimization‖. International Journal of Information 
Technology 4:3 2008. 

35. Duda R., Hart P., and Stork D. : ―Simulated Annealing‖ PATTERN 
CLASSIFICATION, Second Edition, 2001. 

36. Chen D., Lee C., Park C., and Mendes P.: ―Parallelizing simulated 
annealing algorithms based on high-performance computer‖. Journal of 
Global Optimization, 20007. 

37. Shi H., and Li W.‖Evolving Artificial Neural Networks Using Simulated 
Annealing-based Hybrid Genetic Algorithms‖. JOURNAL OF 
SOFTWARE, VOL.5, NO.4, 2010. 
 

 

 

 

 

 

 

 

 

 

 

 

 


