
Highly Constrained Task Scheduling on Multiprocessing Systems

 51

Highly Constrained Task Scheduling

on Multiprocessing Systems
Abdelmageed Elsadek

The Cabinet Information and Decision Support Center
Mostafa A. Azim

Arab Academy for Science and Technology and Maritime Transpor
Abstract

The problem of non-preemptively scheduling a set of m tasks on n processors
with communication overhead subject to precedence, memory and deadline
constraints is considered. A new heuristic with the time complexity of 0(m2n),
Augmented Least Space-Time First (LSTF), is proposed to minimize the maximum
tardiness. The efficiency of the augmented LSTF using a large number of
randomly-generated graphs and three real-world structures is compared with that of
the augmented Earliest Deadline First- Earliest Task First (EDF-E) that schedules
each ready task on the processor at which it can be scheduled at the earliest time
and with that of EDF-R that select the processor at random. The result of the
comparisons, which are based on the maximum tardiness and the number of tasks
that miss their deadlines, indicates that the augmented LSTF outperforms both
EDF-E and EDF-R.
1. Introduction

Much research has been done on the allocation of tasks in a parallel or
distributed processor computer with respect to different models and performance
criteria [1, 2, 3, 4]. In this paper, we consider the problem of scheduling and
allocating the tasks of a precedence, memory and timing-constrained task graph
with communication delays onto a set of processors in a way that minimizes
maximum tardiness τ, defined as τ = maxm

i=1 {max{0, (γi – Di)}} where γi is the
completion time and Di is the deadline of task i respectively.

There are two advantages of using τ to evaluate scheduling performance.
First, a scheduling algorithm which minimizes tardiness will necessarily satisfy all
deadlines for any schedulable set of tasks (since “schedulable” is equivalent to
“tardiness equals zero”). Secondly, in practical systems, engineers may need
information on how late the tasks may be, and how much penalty each should pay
if it misses its deadline.

When all task deadlines are 0, the problem of minimizing tardiness reduces to the
problem of minimizing the make-span, which is known to be a NP-complete [5].
Therefore, the general problem of scheduling to minimize tardiness is NP-hard [6].

Journal of the ACS , Vol. 1 , June 2007

 52

∑
∈

≤≤
≤

TS ji
mi ji qb

1

Now, we specify the task and hardware model formally. Suppose that we have
a number of n processors and a set T = { T1, T2 .……, Tm } of m non-preemptive
tasks with each task Ti being characterized by an ordered pair (Di – Xi) where
Xi is the CPU execution requirement and Di is the deadline of task Ti. There exist
precedence constraints “→” on T. Each edge, Ti,→ Tj, ands for a precedence
relationship between predecessor Ti and successor Tj. Task Ti is defined to be ready
when all its predecessor have completed execution. A non-negative integer λij, the
data volume sent from Ti to Tj, is associated with each edge. This task model is
called the enhanced directed acyclic graph (EDAG) [7] and represented as G =
G(T, →, X, D, λ). Fig. 1-a shows an example of an EDAG. In addition, a task
assignment vector A is defined to be A:T→P, where A(i) =j if task Ti is assigned
to processor pj, 1≤ i ≤ m, 1≤ j ≤ n. For a certain assignment, the Task Set (TSj) of a
processor j can now be defined as the set of tasks allocated to that processor [8, 9]:
 TSj= {i | A(i)=j} j =1, ...,n

Also, a vector B is defined to be a vector whose elements bi denote the amount
of memory needed to process task Ti and Q is a vector whose elements qj represent
the maximum capacity of local memory associated with processor pj. In cases
where memory is constrained, the following inequality must hold at each
processing node of the system [10, 11 ,12]

 (1)

Let к(α, β) donate the time to transfer a data unit from processor α to β. We

assumed that communication is contention-free between the processors, so к(α, β)
is constant and equal to к; and that communication within a processor incurs no
delays; i.e., when α = β, к(α, β) = 0. The communication delay between Ti and Tj,
Cij, is then equal к* λij time units if Ti and Tj are assigned to different processors.
2. Augmented LSTF Heuristic

The Earliest Task First (ETF) heuristic [7] schedules each ready task on the
processor at which it can be scheduled at the earliest time. Without deadline
constraints, the make-span (ωETF) generated by this heuristic satisfies

ωETF ≤ (2 – 1/n) ωiopt + η
where ωiopt is the optimal schedule length ignoring the communication delay

and η is the maximum communication requirement along all paths in G. The basic
Least Space-Time First (LSTF) algorithm works well to minimize the maximum
tardiness, τ, in the absence of costs for communication [13].

To enhance the basic LSTF scheduler to handle interprocessor communication
delays, we have integrated LSTF with ETF and we added the memory constraints as
well as the precedence and deadline constrained. This is done by selecting the task to

Highly Constrained Task Scheduling on Multiprocessing Systems

 53

be executed by the basic LSTF algorithm and then assigning the chosen task to
a processor by ETF. The LSTF scheduler consists of two phases as illustrated blew:
Phase one:

(a) Compute modified deadlines in the standard way, using precedence
relationships and CPU execution requirements, by Equation 2. Figure 1-
b shows the result of this step on the task graph of Figure 1-a.

 Di = minj (Di, Dj – Xj) (2)
Where j ranges over all of i’s successors.

(b) Assign static space-time (Di – Xi) to each task, where Di s the new
modified deadline of task i. Unlike the conventional slack, calculated as
the difference of old deadline and execution requirement, space-time is a
priority measurement that depends upon the precedence relation in
addition to deadline and execution requirement.

(c) Construct a ready node priority queue, R, based on space-time (with least
space-time having highest priority and the head of R having least space-
time).

Phase two:
execute the worklist algorithm shown below. It should be noted that, the

function earliest_start() returns the identifier of the processor on which a task
would be able to begin execution at the earliest time.

(1) While R ≠ Ø
(2) begin
(3) Let Ti be the task at the head of R
(4) Pj = earliest_start(Ti) such that equation 1 holds
(5) assign Ti to run on Pj i.e Ti Є TSj

(6) delete Ti from R
(7) insert all ready children of Ti into R
(8) End
Augmented LSTF Scheduler algorithm
It takes 0 (m) time to create the priority queue R, and each insert and delete

operation can be performed in 0 (log m) time. Hence, the bottleneck of LSTF

Journal of the ACS , Vol. 1 , June 2007

 54

schedule is in Line (4), whose time complexity is 0 (m2n) [6] per instance. Since
Line (4) is executed n times, the complexity of LSTF is 0(n2m).

Before we illustrate the function earliest_start(), we define a number of
terms. Let γ(Ti) be the completion time of task Ti. R (Ti, P) denotes the earliest
time at which task Ti on processor P will have received all messages from all its
predecessors:

R (Ti, P) = maxTj {γ(Tj) + Cji} (3)
Where Tj ranges over all of Ti’s predecessors.

Let ε(Ti, P) denote the earliest time at which task Ti may being executing
on processor P – this is the earliest time ť ≥ R (Ti, P) such that processor P is free
over [t’, t’ + Xi]. The function earliest_start() chooses the processor P which has
minimum of ε(Ti, P) among the n processors.

Figure 2 shows the schedule generated by LSTF when scheduling the task
set shown in Figure 1 upon 2 processors, P1 and P2, with communication delay
к(P1, P2) = к(P2, P1) = 1. Let us see how earliest_start() works for T6.

R (T6, P1) = max {γ(T3) + 1 * 2, γ(T4) + 0 * 2, γ(T5) + 1 * 3)}
 = max {15, 12, 14} = 15 (4)

R (T6, P2) = max {γ(T3) + 0 * 2, γ(T4) + 1 * 2, γ(T5) + 0 * 3)}
 = max {13, 14, 11} = 14 (5)

From Equations 4 and 5, we derive that ε(T6, P1) = 15 and ε(T6, P2) = 14, so the
function earliest_start() returns P2 to LSTF scheduler.
3. Empirical analysis for random systems

For a preliminary evaluation of the augmented LSTF’s performance, we
compared its allocation results with respect to two other approaches allocations,
EDF-E and EDF-R after augmenting them to take into account the memory
constraints. In either case, the next task to be executed is a ready task with the
earliest deadline [14,15]. For EDF-E, the task is assigned to a processor according
to ETF; for EDF-R, a processor is selected at random. The comparison is based on
two parameters, the number of tasks missing their deadline (Ψ) and tardiness (τ).

For empirical evaluation, nine categories of randomly generated graphs were
created in a manner to represent programs of varying structure and sparsity. The
method of generating random task graphs used in this research is based upon the
probabilistic construction of a module graph’s boolean adjacency matrix. The
adjacency matrix for such graphs is a (m × m) matrix whose elements, aij (where
1≤ i<m and 1≤ j<m) are defined to be: aij=1 if there is a data/control dependency
directed from task Ti to task Tj, and aij=0 if no dependency exists between task Ti
and task Tj.

Highly Constrained Task Scheduling on Multiprocessing Systems

 55

∑
≤≤ mi

ib
1

∑
≤≤ mi

ib
1

To generate random structures, the adjacency matrix is first constructed with
all its diagonal elements being set to zero (aij=0 for all i=j). Then each of the
remaining elements of the matrix are determined individually as part of a Bernoulli
process with the parameter, ρ, representing the probability of a “success”. For each
ordered pair, (i,j), where i<j when the Bernoulli trial is a success, then aij=1 and
aji=1, in case of a failure aij=0 and aji=0. The parameter ρ can also be considered to
be the sparsity of the task graph where the sparsity is defined to be the expected
portion of the possible m(m-1)/2 data/control dependencies represented by the
edges of the task graph. If the sparsity=1 then the random graph generation routine
creates fully connected program graphs, and if it is set equal to zero it creates an
embarrassingly parallel one, values of the sparsity that lie between these two
extremes generally produce program graphs that possess intermediate structures.

In the empirical analysis which follows, nine categories of 100 node random
graphs (with each category representing a distinct graph sparsity, ρ , which ranges
from 0.01 to 0.09 in increments of 0.01) were constructed with 50 program graphs
being generated for each category. The random graphs were created with
module/task execution times, Xi, being picked randomly (from a uniform
distribution) within the interval from 1 to 500, and the λij data volume between Ti
and Tj being chosen in a similar manner in the range from 1 to 20. Each task is
assigned a deadline, defined by:

Di = min((Li + ((W-Li) / n0.4), (W(1/n)0.5))) (6)
Where W is the total weight of all tasks, and
 Li is the weight of the longest path of Ti.

Table 1 illustrates the non-constrained case where all processors are assumed
to be identical and there are sufficient processor resources (memory) available to
allow any number of tasks to be assigned to any given processing element. Table 2
represents the case where all processors memory resource limits, qj (1≤ j ≤ n), are
equal to ceil(E[()/n]) = ceil(1050/16) = 66, where bi is the amount of
memory needed by module/task Ti and it is randomly generated using the uniform
distribution in the range from 1 to 20. Table 3 shows the case where resource
constraints are applied in a nonuniform manner in which each processor is assigned
a unique resource limit qj defined in this case to be qj = | χj - 0.5| k + C, where 0≤
χj ≤ 1 is a uniformly generated random number, k = ceil(E[()/n]) (which is
66 in this case) and C is chosen to be the smallest integer constant that allows
feasible allocations (which was found to be 10 in this application).

From these tables, it can be observed that the proposed augmented LSTF
algorithm produce allocations which are consistently better than the two other
algorithms.

Journal of the ACS , Vol. 1 , June 2007

 56

4. Analysis for real-world structures
The ultimate usefulness of any task allocation heuristic is how well it performs

when applied to a representable set of real-world problems. With this in mind, the
aforementioned heuristics were also applied to three large-scale real-world structures.

The first structure which was considered is based upon a simulation of NASA's
proposed National Launch System (NLS) [16]. The NLS simulation is a real-time
guidance and control type simulation of the U.S. heavy launch vehicle which was
proposed in the early 1990’s. It is made up of 586 communicating modules which
can be represented by a program graph which has a sparsity of 0.0031.

The second structure is a simulation of a Space Shuttle Main Rocket Engine
(SSME). The SSME simulation [17] is a complex continuous simulation that
produces the flow rates, pressures, thrusts, and temperatures of ten subsystem
components associated with SSME operation. The simulation is designed to
operate in real-time and respond to appropriate commands issued by the shuttle’s
main computer system. It is composed of 131 communicating modules with a
module graph sparsity of 0.0195.

The third structure is a simulation of a 6-degree-of-freedom robot system [18].
This system consists of rigid bodies connected by ideal revolute joints. Every joint
is driven by a torque, produced by the electro-magnetic field of a current-controlled
DC-motor and transformed by gear-boxes. The motors are controlled by
decentralized cascade controllers. This simulation is composed of 677
communicating modules and has a sparsity of 0.0071.

Table 4 reflects the results of applying the proposed augmented LSTF
algorithm and EDF-E and EDF-R algorithms to the three real-world structures
using the task and communication timings which were derived from actual
execution time profiles made on a SGS Thompson Transputer system. The
superiority of the augmented LSTF algorithm is evident.
5. Conclusions and Future Work

The efficiency of the augmented LSTF using a large number of randomly-
generated graphs and three real-world structures is compared with that of the
augmented EDF-E and EDF-R. The result of the comparisons, based on the
maximum tardiness and the number of tasks that miss their deadlines, indicate that
the augmented LSTF outperforms both EDF-E and EDF-R.

Highly Constrained Task Scheduling on Multiprocessing Systems

 57

 (a) The EDAG Model (b) Modified Deadlines
Figure 1. An example Task System.

 P2 T1 T5 T3 T6

 P1 T2 T4

 5 10 15 20

Figure 2. LSTF generated schedule on 2 processors.

T2 T1

(3,10)

(2,14)

(5,19)

(8,20) (7,19)

(5,20)

3
T4 T3 T5

T6

1 1 4

3 2 2

(3,7)

(2,14)

(5,8)

(8,15) (7,15)

(5,20)

3
T4 T3 T5

T6

1 1 4

3 2 2

T1 T2

Journal of the ACS , Vol. 1 , June 2007

 58

Table 1: measured performance on a 16 processor
 non-constrained system

Augmented LSTF Augmented EDF-E Augmented EDF-R
p

(sparse)

τ Ψ τ Ψ τ Ψ
0.01 26 3 42 4 76 6
0.02 31 3 53 5 89 7
0.03 39 4 63 5 113 8
0.04 54 4 79 6 126 9
0.05 71 5 97 6 147 9
0.06 94 5 133 6 164 10
0.07 127 6 163 7 192 11
0.08 154 6 182 7 223 12
0.09 178 7 211 9 289 13

Table 2: measured performance on a highly constrained uniform16 processor system

Augmented LSTF Augmented EDF-E Augmented EDF-R
p

(sparsity)

τ Ψ τ Ψ τ Ψ
0.01 30 4 45 4 79 5
0.02 36 5 60 7 97 9
0.03 43 5 70 8 118 11
0.04 61 5 88 8 134 12
0.05 80 7 113 9 156 14
0.06 101 7 142 11 181 17
0.07 138 8 176 11 213 17
0.08 173 8 203 13 254 19
0.09 194 9 247 15 313 21

Highly Constrained Task Scheduling on Multiprocessing Systems

 59

Table 3: measured performance on a highly constrained non-uniform 16 processor system

Augmented LSTF Augmented EDF-E Augmented EDF-R
p

(sparsity)

τ Ψ τ Ψ τ Ψ
0.01 30 4 45 4 79 5
0.02 36 5 60 7 97 9
0.03 43 5 70 8 118 11
0.04 61 5 88 8 134 12
0.05 80 7 113 9 156 14
0.06 101 7 142 11 181 17
0.07 138 8 176 11 213 17
0.08 173 8 203 13 254 19
0.09 194 9 247 15 313 21

Table 4: measured 16 processor speedup for original real-world applications

Augmented LSTF Augmented EDF-E Augmented EDF-R

Application

τ Ψ τ Ψ τ Ψ

NLS 38 14 54 35 89 82

SSME 21 8 53 19 67 31

6-D Robot
 41 18 63 41 103 84

Journal of the ACS , Vol. 1 , June 2007

 60

References
[1] M. Al-Mouhamed and A. Al-Maasarani. “Performance evaluation of scheduling

precedence-constrained computations on message-passing systems”. IEEE
transactions on Parallel and Distributed Systems, 5(12_:1317-1322, 1994.

[2] P.-Y. Ma, E. Lee, and M. Tsuchiya. “A task allocation model for distributed
computing systems”. IEEE Transactions on Computers, 31(1):41-47, 1982.

[3] K. Ramamritham. “Allocation and scheduling of precedence-related periodic tasks”.
IEEE Transactions on Parallel and Distributed Systems, 5(4):412-420, 1995.

[4] T. Yang and A. Gerasoulis. “Scheduling parallel tasks on an unbounded number of
processors”. IEEE Transactions on Parallel and Distributed Systems, 5(9):951-967, 1994.

[5] J. Hoogeveen, J. Lenstra and B. Veltman. “Three, four, five, six, or the complexity
of scheduling with communication delays”. Operations Research Letters, 16(3):129-
137, 1994.

[6] M. Garey and D. Johnson. “Computers and Intractability: A Guide to the Theory of NP-
Completeness”. W. H. Freeman and Company., 1999.

[7] J.-J. Hwang and et. al. “Scheduling precedence graphs in systems with interprocessor
communication times”. SIAM J. of Comput., 18(2):244-257, 1989.

[8] Farzad Ghannadian, Cecil O. Alford, and Ron Shonkwiler, “Application of the
genetic algorithm to multiprocessor scheduling”, Int. Conf. on Parallel and
Distributed Processing Techniques and Applications (PDPTA 95).

[9] Gylys, V. B., and Edwards, J. A., "Optimal partitioning of work load for distributed
system", Procs. Compcon Fall 76, pp. 353-357.

[10] Abdelmageed Elsadek Abdelrazek “Task Allocation and Reallocation for Fault
Tolerance in Heterogeneous Distributed Computing Systems”, Ain Shams
University, Faculty of Engineering, Vol. 37, No. 2, June 30, 2002, Egypt.

[11] Abdelmageed Elsadek, Gamal I. Selim, and B Earl Wells,“Task Allocation and
Reallocation for Fault Tolerance in Distributed Computing Systems” Ain Shams
University, Faculty of Engineering, Vol. 36, No. 4, Dec 31, 2001, , Egypt.

[12] Abdelmageed Elsadek, B. Earl Wells, “Heuristic Model for Task Allocation in a
Heterogeneous Distributed Computing Systems,” the International Journal of
Computers and their Applications (IJCA), Vol. 6, No. 1, pp. 1-13, March, 1999, USA.

[13] B.- C. Cheng, A. D. Stoyenko, T. J. Marlowe, and S. Baruah. Lstf: A new scheduling
policy for complex real-time tasks in multiple processor systems. SIAM J. of
Comput., 20(2), 1989.

[14] C. L. Liu and J. Layland. “Scheduling algorithm for multiprogramming in a hard
real-time environment”. J. ACM, 20(1):46-61, 1993.

Highly Constrained Task Scheduling on Multiprocessing Systems

 61

[15] C. C. Amaro and et. al. “Economics of resource allocation”. In 1994 Complex
Systems Engineering and Assessment Technology Workshop, 1994.

[16] John M. Hanson, M. Wade Shrader, H. P.Chang, and S. E. Freeman, “Guidance and
dispersion studies of National Launch System ascent trajectores”, AIAA paper 92-
4306, Proceedings of the 1992 AIAA Guidance and Control Conference.

[17] B. Earl Wells, Kenneth G. Ricks, and John M. Weir “Parallel simulation of a large
scale aerospace system in a multicomputer environment” to appear in IEEE
Transactions on Aerospace and Electronic systems, April 1997.

[18] M. Otter, H. Elmqvist, and F. E. Cellier, “ Modeling of multibody systems with the
object-oriented modeling language Dymola”, Proc. NATO/ASI, Computer-Aided
analysisof rigid and flexible mechanical systems, troia, Portugal, June 27-July 9,
1993. Also in Nonlinear Dynamics, 9:91-112, 1996, Kluwer Academic publis.

