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Abstract  

The problem of non-preemptively scheduling a set of m tasks on n processors 
with communication overhead subject to precedence, memory and deadline 
constraints is considered. A new heuristic with the time complexity of 0(m2n), 
Augmented Least Space-Time First (LSTF), is proposed to minimize the maximum 
tardiness. The efficiency of the augmented LSTF using a large number of 
randomly-generated graphs and three real-world structures is compared with that of 
the augmented Earliest Deadline First- Earliest Task First (EDF-E) that schedules 
each ready task on the processor at which it can be scheduled at the earliest time 
and with that of EDF-R that select the processor at random. The result of the 
comparisons, which are based on the maximum tardiness and the number of tasks 
that miss their deadlines, indicates that the augmented LSTF   outperforms both 
EDF-E and EDF-R. 
1. Introduction 

Much research has been done on the allocation of tasks in a parallel or 
distributed processor computer with respect to different models and performance 
criteria [1, 2, 3, 4]. In this paper, we consider the problem of scheduling and 
allocating the tasks of a precedence, memory and timing-constrained task graph 
with communication delays onto a set of processors in a way that minimizes 
maximum tardiness τ, defined as τ = maxm

i=1 {max{0, (γi – Di)}} where  γi  is the 
completion time and  Di  is the deadline of task  i  respectively. 

There are two advantages of using  τ  to evaluate scheduling performance. 
First, a scheduling algorithm which minimizes tardiness will necessarily satisfy all 
deadlines for any schedulable set of tasks (since “schedulable” is equivalent to 
“tardiness equals zero”). Secondly, in practical systems, engineers may need 
information on how late the tasks may be, and how much penalty each should pay 
if it misses its deadline. 

When all task deadlines are 0, the problem of minimizing tardiness reduces to the 
problem of minimizing the make-span, which is known to be a NP-complete [5]. 
Therefore, the general problem of scheduling to minimize tardiness is NP-hard [6]. 
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Now, we specify the task and hardware model formally. Suppose that we have 
a number of n processors and a set T = { T1, T2 .……, Tm } of m non-preemptive 
tasks with each task Ti being characterized by an ordered pair      (Di – Xi)  where 
Xi is the CPU execution requirement and Di is the deadline of task Ti. There exist 
precedence constraints “→” on T. Each edge, Ti,→ Tj, ands for a precedence 
relationship between predecessor Ti and successor Tj. Task Ti is defined to be ready 
when all its predecessor have completed execution. A non-negative integer λij, the 
data volume sent from Ti to Tj, is associated with each edge. This task model is 
called the enhanced directed acyclic graph (EDAG) [7] and represented as G = 
G(T, →, X, D, λ). Fig. 1-a shows an example of an EDAG. In addition, a task 
assignment vector A is defined to be  A:T→P, where A(i) =j if task Ti is assigned 
to processor pj, 1≤ i ≤ m, 1≤ j ≤ n. For a certain assignment, the Task Set  (TSj) of a 
processor j can now be defined as the set of tasks allocated to that processor [8, 9]: 
  TSj= {i |     A(i)=j}                j =1, ...,n                       

Also, a vector B  is defined to be a vector whose elements bi denote the amount 
of memory needed to process task Ti and Q is a vector whose elements qj represent 
the maximum capacity of local memory associated with processor pj. In cases 
where memory is constrained, the following inequality must hold at each 
processing node of the system [10, 11 ,12] 

                                       (1)                       
 

 
Let к(α, β) donate the time to transfer a data unit from processor α to β. We 

assumed that communication is contention-free between the processors, so к(α, β) 
is constant and equal to к; and that communication within a processor incurs no 
delays; i.e., when α = β, к(α, β) = 0. The communication delay between Ti and Tj, 
Cij, is then equal к* λij time units if Ti and Tj are assigned to different processors. 
2. Augmented LSTF Heuristic 

The Earliest Task First (ETF) heuristic [7]  schedules each ready task on the 
processor at which it can be scheduled at the earliest time. Without deadline 
constraints, the make-span  (ωETF)  generated by this heuristic satisfies 

ωETF ≤ (2 – 1/n) ωiopt + η 
where ωiopt is the optimal schedule length ignoring the communication delay 

and η is the maximum communication requirement along all paths in G. The basic 
Least Space-Time First (LSTF) algorithm works well to minimize the maximum 
tardiness, τ, in the absence of costs for communication [13]. 

To enhance the basic LSTF scheduler to handle interprocessor communication 
delays, we have integrated LSTF with ETF and we added the memory constraints as 
well as the precedence and deadline constrained. This is done by selecting the task to 
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be  executed  by  the  basic  LSTF  algorithm  and  then  assigning  the  chosen  task  to 
a processor by ETF. The LSTF scheduler consists of two phases as illustrated blew: 
Phase one: 

(a) Compute modified deadlines in the standard way, using precedence 
relationships and CPU execution requirements, by Equation 2. Figure 1-
b shows the result of this step on the task graph of Figure 1-a. 

    Di = minj (Di, Dj – Xj)             (2) 
Where  j  ranges over all of  i’s successors. 

(b) Assign static space-time (Di – Xi) to each task, where  Di s the new 
modified deadline of task i. Unlike the conventional slack, calculated as 
the difference of old deadline and execution requirement, space-time is a 
priority measurement that depends upon the precedence relation in 
addition to deadline and execution requirement. 

(c) Construct a ready node priority queue, R, based on space-time (with least 
space-time having highest priority and the head of R having least space-
time). 

Phase two: 
execute the worklist algorithm shown below. It should be noted that,  the 

function earliest_start() returns the identifier of the processor on which a task 
would be able to begin execution at the earliest time. 

(1) While   R ≠ Ø 
(2) begin 
(3)  Let  Ti be the task at the head of  R 
(4)  Pj  =  earliest_start(Ti) such that  equation 1 holds 
(5)  assign  Ti  to run on  Pj  i.e  Ti Є  TSj 

(6)  delete  Ti  from  R 
(7)  insert all ready children of  Ti  into  R 
(8) End 
Augmented LSTF Scheduler algorithm 
It takes 0 (m) time to create the priority queue R, and each insert and delete 

operation can be performed in 0 (log m) time. Hence, the bottleneck of LSTF 
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schedule is in Line (4), whose time complexity is 0 (m2n)  [6] per instance. Since 
Line (4) is executed n times, the complexity of LSTF is 0(n2m). 

Before we illustrate the function earliest_start(), we define a number of 
terms. Let γ(Ti ) be the completion time of task Ti. R (Ti, P) denotes the earliest 
time at which task Ti on processor P will have received all messages from all its 
predecessors: 

R (Ti, P) = maxTj {γ(Tj) + Cji}               (3) 
Where Tj  ranges over all of  Ti’s predecessors. 

Let ε(Ti, P) denote the earliest time at which task Ti may being executing 
on processor P – this is the earliest time ť ≥ R (Ti, P) such that processor P is free 
over [t’, t’ + Xi]. The function earliest_start() chooses the processor P which has 
minimum of ε(Ti, P) among the n processors. 

Figure 2 shows the schedule generated by LSTF when scheduling the task 
set shown in Figure 1 upon 2 processors, P1 and P2, with communication delay 
к(P1, P2) = к(P2, P1) = 1. Let us see how earliest_start() works for T6. 

R (T6, P1) = max {γ(T3) + 1 * 2, γ(T4) + 0 * 2,  γ(T5) + 1 * 3)} 
   = max {15, 12, 14} = 15                  (4) 

R (T6, P2) = max {γ(T3) + 0 * 2, γ(T4) + 1 * 2, γ(T5) + 0 * 3)} 
   = max {13, 14, 11} = 14                    (5) 

From Equations 4 and 5, we derive that ε(T6, P1) = 15 and ε(T6, P2) = 14, so the 
function earliest_start() returns  P2  to LSTF scheduler. 
3. Empirical analysis for random systems 

For a preliminary evaluation of the augmented LSTF’s performance, we 
compared its allocation results with respect to two other approaches allocations, 
EDF-E and EDF-R after augmenting them to take into account the memory 
constraints. In either case, the next task to be executed is a ready task with the 
earliest deadline [14,15]. For EDF-E, the task is assigned to a processor according 
to ETF; for EDF-R, a processor is selected at random. The comparison is based on 
two parameters, the number of tasks missing their deadline ( Ψ ) and  tardiness (τ).  

For empirical evaluation, nine categories of randomly generated graphs were 
created in a manner to represent programs of varying structure and sparsity. The 
method of generating random task graphs used in this research is based upon the 
probabilistic construction of a module graph’s boolean adjacency matrix. The 
adjacency matrix for such graphs is a (m × m) matrix whose elements, aij ( where 
1≤ i<m and 1≤ j<m ) are defined to be: aij=1 if there is a data/control dependency 
directed from task Ti to task Tj, and aij=0 if no dependency exists between task Ti 
and task Tj. 
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To generate random structures, the adjacency matrix is first constructed with 
all its diagonal elements being set to zero (aij=0 for all i=j). Then each of the 
remaining elements of the matrix are determined individually as part of a Bernoulli 
process with the parameter, ρ, representing the probability of a “success”. For each 
ordered pair, (i,j), where i<j when the Bernoulli trial is a success, then aij=1 and 
aji=1, in case of a failure aij=0 and aji=0. The parameter ρ can also be considered to 
be the sparsity of the task graph where the sparsity is defined to be the expected 
portion of the possible m(m-1)/2 data/control dependencies represented by the 
edges of the task graph. If the sparsity=1 then the random graph generation routine 
creates fully connected program graphs, and if it is set equal to zero it creates an  
embarrassingly parallel one, values of  the sparsity that lie between these two 
extremes generally produce program graphs that possess intermediate structures.  

In the empirical analysis which follows, nine categories of 100 node random 
graphs (with each category representing a distinct graph sparsity, ρ , which ranges 
from 0.01 to 0.09 in increments of 0.01) were constructed with 50 program graphs 
being generated for each category. The  random graphs  were  created with  
module/task execution  times, Xi, being  picked randomly (from a uniform 
distribution) within the interval from 1 to 500, and the  λij data volume between Ti 
and Tj  being chosen in a similar manner in the range from 1 to 20. Each task is 
assigned a deadline, defined by:  

Di = min((Li + ((W-Li) / n0.4), (W(1/n)0.5)))                   (6) 
Where  W  is the total weight of all tasks, and 
            Li  is the weight of the longest path of  Ti. 

Table 1 illustrates the non-constrained case where all processors are assumed 
to be identical and there are sufficient processor resources (memory) available to 
allow any number of tasks to be assigned to any given processing element. Table 2 
represents the case where all processors  memory resource limits, qj (1≤ j ≤ n), are 
equal to ceil(E[(              )/n]  ) = ceil(1050/16) = 66, where bi is the amount of   
memory needed by module/task Ti and it is randomly generated using the uniform 
distribution in the range from 1 to 20. Table 3 shows the case where resource 
constraints are applied in a nonuniform manner in which each processor is assigned 
a unique resource limit qj defined in  this  case to be qj = | χj - 0.5| k + C, where 0≤ 
χj ≤ 1 is a uniformly  generated  random number, k = ceil(E[(       )/n]) (which is  
66 in this case) and C is chosen to be the smallest integer constant that allows 
feasible allocations (which was found to be 10 in this application). 

From these tables, it can be observed that the proposed augmented LSTF 
algorithm produce allocations which are consistently better than the two other 
algorithms.  
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4. Analysis for real-world structures 
The ultimate usefulness of any task allocation heuristic is how well it performs 

when applied to a representable set of real-world problems. With this in mind, the 
aforementioned heuristics were also applied to three large-scale real-world structures.  

The first structure which was considered is based upon a simulation of NASA's 
proposed National Launch System (NLS) [16]. The NLS simulation is a real-time 
guidance and control type simulation of the U.S. heavy launch vehicle which was 
proposed in the early 1990’s. It is made up of 586 communicating modules which 
can be represented by a program graph which has a sparsity of  0.0031. 

The second structure is a simulation of a Space Shuttle Main Rocket  Engine 
(SSME). The SSME simulation [17] is a complex continuous simulation that 
produces the flow rates, pressures, thrusts, and temperatures of ten subsystem 
components associated with SSME operation. The simulation is designed to 
operate in real-time and respond to appropriate commands issued by the shuttle’s 
main computer system. It is composed of 131 communicating modules with a 
module graph sparsity of 0.0195.  

The third structure is a simulation of a 6-degree-of-freedom robot system [18]. 
This system consists of rigid bodies connected by ideal revolute joints. Every joint 
is driven by a torque, produced by the electro-magnetic field of a current-controlled 
DC-motor and transformed by gear-boxes. The motors are controlled by 
decentralized cascade controllers. This simulation is composed of 677 
communicating modules and has a sparsity of 0.0071. 

Table 4 reflects the results of applying the proposed augmented LSTF 
algorithm and EDF-E and EDF-R algorithms to the three real-world structures 
using the task and communication timings which were derived from actual 
execution time profiles made on a SGS Thompson Transputer system. The 
superiority of the augmented LSTF algorithm is evident.  
5. Conclusions and Future Work 

The efficiency of the augmented LSTF using a large number of randomly-
generated graphs and three real-world structures is compared with that of the 
augmented EDF-E and EDF-R. The result of the comparisons, based on the 
maximum tardiness and the number of tasks that miss their deadlines, indicate that 
the augmented LSTF   outperforms both EDF-E and EDF-R.  
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 (a)   The  EDAG  Model (b)   Modified  Deadlines  
Figure 1.      An example Task System. 
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Figure 2.      LSTF generated schedule on 2 processors. 
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Table 1: measured performance on a 16 processor 
 non-constrained system 

Augmented LSTF Augmented EDF-E Augmented EDF-R 
p 

(sparse) 

τ Ψ τ Ψ τ Ψ 
0.01 26 3 42 4 76 6 
0.02 31 3 53 5 89 7 
0.03 39 4 63 5 113 8 
0.04 54 4 79 6 126 9 
0.05 71 5 97 6 147 9 
0.06 94 5 133 6 164 10 
0.07 127 6 163 7 192 11 
0.08 154 6 182 7 223 12 
0.09 178 7 211 9 289 13 

Table 2: measured performance on a highly constrained uniform16  processor system 

Augmented LSTF Augmented EDF-E Augmented EDF-R 
p 

(sparsity) 

τ Ψ τ Ψ τ Ψ 
0.01 30 4 45 4 79 5 
0.02 36 5 60 7 97 9 
0.03 43 5 70 8 118 11 
0.04 61 5 88 8 134 12 
0.05 80 7 113 9 156 14 
0.06 101 7 142 11 181 17 
0.07 138 8 176 11 213 17 
0.08 173 8 203 13 254 19 
0.09 194 9 247 15 313 21 
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Table 3: measured performance on a highly constrained non-uniform 16 processor system 

Augmented LSTF Augmented EDF-E Augmented EDF-R 
p 

(sparsity) 

τ Ψ τ Ψ τ Ψ 
0.01 30 4 45 4 79 5 
0.02 36 5 60 7 97 9 
0.03 43 5 70 8 118 11 
0.04 61 5 88 8 134 12 
0.05 80 7 113 9 156 14 
0.06 101 7 142 11 181 17 
0.07 138 8 176 11 213 17 
0.08 173 8 203 13 254 19 
0.09 194 9 247 15 313 21 

Table 4: measured 16 processor speedup for original real-world applications 

Augmented LSTF Augmented EDF-E Augmented EDF-R 
 
 

Application 
 

τ Ψ τ Ψ τ Ψ 

NLS 38 14 54 35 89 82 

SSME 21 8 53 19 67 31 

6-D Robot 
 41 18 63 41 103 84 
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