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Abstract 
 Backpropagation (BP) algorithm is one of the most popular training algorithms for 
multilayer neural networks. The convergence of backpropagation learning is 
analyzed so as to explain common phenomenon observed by specialists. The 
performance of the backpropagation algorithm is studied, analysed and evaluated in 
this paper. A method for accelerating the convergence rate is presented. It provides 
useful guidelines for thinking about how to accelerate the convergence through 
learning rate adaptation. This work has been implemented through computer 
simulated using C# with different activation functions and different methods for 
representing the learning rates. The obtained results are encourage and promising. 
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1. Introduction: 
 
Artificial neural network ( ANNs ) are mathematical models developed to imitate  
information storing and processing capabilities of the human brain.  These models 
are developed with a quit different philosophy of information processing from that 
of conventional computers. It is hoped that they will overcome the conventional 
computer's limitation on "intelligent" information processing capability. They are 
assumed to be assembled from neuron-like cells that are connected by links with 
adjustable strengths/weights. The most attractive characteristic of ANNs is that 
they can be trained to perform computational tasks using some learning algorithm 
and few examples[14].  
    Neural networks, also known as connectionist systems, or parallel distributed 
processing models, are computer-based, self-adaptive models of Artificial 
intelligence. The intelligence of Artificial Neural Network and its capability to 
solve hard problems emerges from the high degree of connectivity that gives 
neurons its high computational power through its massive parallel-distributed 
structure [12, 17]. 

 



Journal of the ACS , Vol. 1 , June  2007 

 64 

    Backpropagation algorithm [1,4,5,9,13,16] is used for training artificial neural 
networks. Training is usually carried out by iterative updating of weights based on 
minimizing the mean square error. In the output layer, the error signal is the 
difference between the desired and the output values. Then the error signal is fed 
back through the steepest descent algorithm to the lower layers to update the 
weights of the network.  The weights of the network are adjusted by the algorithm 
such that the error is decreased along a descent direction. Traditionally, two 
parameters, called learning rate and momentum factor, are used for controlling the 
weight adjustment along the descent direction and for dampening oscillations. 
However, the convergence rate of the BP algorithm is relatively slow, especially 
for networks with more than one hidden layer. The reason for this is the saturation 
behavior of the activation function used for the hidden and output layers. Since the 
output of a unit exists in the saturation area, the corresponding descent gradient 
takes a very small value, even if the output error is large, leading to very little 
progress in the weight adjustment.  
    The selection of the learning rate and momentum factor is arbitrary, because the 
error surface usually consists of many flat and steep regions and behaves 
differently from application to application. Large values of the learning rate and 
momentum factor are helpful to accelerate learning. However, this increases the 
possibility of the weight search jumping over steep regions and moving out of the 
desired regions [18].  
    The organization of the paper presented in the following sections. In the next 
section, the algorithm of the ANN Learning is presented. A modification of the 
original backpropagation algorithm is presented in section 4. the simulated results 
and other aspects are discussed in section 5,6,7 and finally in section 8, conclusions 
and future work are outlined.  
 
2- Models of a neoron 
 
A basic model of a neuron is depicted in Figure(1). Artificial neuron is a device 
with many inputs and one output. It is the information processing unit, which forms 
the basis for designing artificial networks [2, 7]. 
Three basic neural elements are identified: 

• A set of weights, which characterize the strength of the synapse linking a 
neuron to another. Synaptic weight linking a neuron 'j' to a neuron 'i' could 
be identified either by Wji or by Wij. 

• An adder for summing the input neuron's inputs modulated by the 
respective connection weights. 

• An activation function, which is applied on the input summation for 
limiting the amplitude of the neuron's output. 
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                         Figure (1) Nonlinear model of a neuron. 
 
Mathematically, the neural model is described by the following equations 
         uk = ∑

=

m

j
jkj xW

1
                                                                                       (1) 

         yk = F(uk + bk)                                                                                       (2)    
 
where x1, x2, …, xm represent the input features; Wk1, Wk2, …, Wkm are the synaptic 
weights of the neuron k; 
uk is the linear summation of the input features; 
bk is the bias;  
F(.) is the activation function which can take several forms discussed later. 
yk is the neuron output. 
By including the bias in the linear summation of the input features, the combination 
could be reformulated as follows: 

vk = ∑
=

m

j
jkj xW

0
 , and yk = F(vk)                                                          (3) 

where x0 = +1, and Wk0 = bk.                                                             (4)      
 
3- Algorithm of the ANN Learning:  
 
Learning of the ANN denotes changes in the system that are adaptive in the sense 
that they enable the system to do the same task or tasks drawn from the same 
population more efficiently and more effectively the next time [8]. Learning can 
refer to either acquiring new knowledge or enhancing or refining skills. Learning 
new knowledge include acquisition of significant concepts, understanding of their 
meanings and relationships to each other and to the domain concerned. The new 
knowledge should be assigned and put in a mentally usable form before it can be 
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called "learned." Thus, knowledge acquisition is designed as learning new 
symbolic information combined with the ability to use that information effectively. 
     
Backpropagation (BP) Algorithm  
 
The BP algorithm for multi-layer neural networks is a gradient desent procedure 
used to minimize the mean square error. Using the PB algorithms is summarized as 
[1, 3, 5, 9]:   
  
Training process: 

Step 1: Choose the structure of neural network and input parameter of the 
network. 

Step 2: Set up initial values for both the initial weight W and the bias elements 
θ . 

Step 3: Input training observation data matrix X and Target output matrix T. 
Step 4: Compute the output vector of each neural units 

a) Compute the output vector H of the hidden layer  
            netk = ∑ −

i
kiik XW θ                                                             (5) 

            Hk = F(netk)                                                                           (6) 
b) Compute the output vector Y of the output layer  
            netj = ∑ −

k
jkkj HW θ                                                             (7) 

            Yj = F(netj)                                                                             (8) 
Step 5: Compute the errors 

a) Compute the errors δj of the output layer  
            δj = (Tj - Yj).F'(netj)                                                               (9) 
           where F'(netj) is the derivation of the activation function.                                                              
b) Compute the errors δk of the hidden layer 

            δK = 



∑

j
kjjWδ .F'(netj)                                                      (10) 

Step 6: Compute the modification of W and θ (η is the learning rate) 
a) Compute the modification of W and θ of the output layer 

       ∆Wkj = ηδjHk                                                                          (11) 
       ∆θj = -ηδj                                                                                (12) 

b) Compute the modification of W and θ of the hidden layer 
∆Wik = ηδkXi                                                                           (13) 
∆θk = -ηδk                                                                               (14) 

Step 7: Renew W and θ 
a) Renew W and θ of the output layer 

       Wkj = Wkj + ∆Wkj                                                                    (15) 
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        θj = θj + ∆θj                                                                           (16) 
b) Renew W and θ of the hidden layer 

Wik = Wik + ∆Wik                                                                    (17) 
        θk = θk + ∆θk                                                                         (18) 
Step 8: Repeat step 3 to step 7 until convergence  

 
Testing process: 

Step 1: Input the parameters of the network. 
Step 2: Input the W and θ. 
Step 3: Input an unknown data matrix X. 
Step 4: Compute the output vector. 

 
a) Compute the output vector H of hidden layer  
            netk = ∑ −

i
kiik XW θ                                                              (19) 

            Hk = F(netk)                                                                            (20) 
b) Compute the output vector Y of the output layer 
       netj = ∑ −

k
jkkj HW θ                                                              (21) 

      Yj = F(netj)                                                                              (22) 
 
4- Modification of the original backpropagation Algorithm. 
 
The standard backpropagation learning algorithm is called vanilla 
backpropagation[10]. It is also called online backpropagation because it updates 
the weights after every training pattern. The modification of that algorithm is 
discussed as follows:- 
 
Enhanced backpropagation. The momentum strategy can be considered as an 
approximation to the conjugate gradient method[14], because in both the present 
gradient direction is modified using a term that takes the previous direction into 
account. The equation for weight change is given by: 
 

Wij(t + 1) = Wij(t) + ηδjOi  + α [Wij(t) - Wij(t - 1)]                          (23) 
 
where  0< α <1 is a momentum coefficient. 
Batch backpropagation. Batch BP has a similar formula as the original (vanilla) 
BP. The difference lies in the time when the update of the links take place. While 
in the original BP an update step is performed after each single pattern, in batch BP 
all weight changes are summed over a full presentation of all training patterns (one 
epoch). Only then, an update with the accumulated weight changes is performed.  
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backpropagation with Weight Decay. Weight Decay decreases the weights of the 
links while training them with BP. In addition to each update of a weight by BP, 
the weight is decreased by a part d of its old value. The resulting formula is: 
 
           ∆ Wij(t + 1) =  ηδjOi  - d Wij(t)                                                                   (24)  
 
5- Simulated results for different activation functions: 
The behavior of an artificial neural network depends on both the weights and the 
input-output function (energy function or activation function) that is specified for 
the units. Because the standard BP algorithm descends along the gradient of the 
error surface, the use of any activation function that has a larger gradient than that 
of the sum of the squared error at higher energy values would make for faster 
training. There are many kinds of activation functions such as the sigmoid function, 
the Cauchy energy function, the polynomial energy function, and the exponential 
energy  function [2, 14].  
    Activation functions for the hidden units are needed to introduce nonlinearity 
into the network. Without nonlinearity, hidden units would not make nets more 
powerful than just plain perceptrons. The reason is that a linear function of linear 
functions is again a linear function. However, it is the nonlinearity that makes 
multilayer networks so powerful. Almost any nonlinear function does the job, 
except for polynomials. For BP learning, the activation function must be 
differentiable, and it helps if the function is bounded; the sigmoidal functions such 
as logistic, tanh and the Gaussian function are the most common choices. Functions 
such as tanh or arctan that produce both positive and negative values tend to yield 
faster training than functions that produce only positive values such as logistic, 
because of better numerical conditioning. In this section I discuss the category of 
the activation functions in the following subsections: 
5.1 The sigmoid function. The sigmoid function can be written in the form: 
F(v)     = ve −−1

1                    -∞ < v < ∞                                                   ( 25 ) 

F’(v)   = 2]1[ v

v

e
e

−
−

+
 

            = F(v) (1 – F(v)) 
using this energy function, the activation level is between 0 and 1.  
For a neuron j located in the output layer  

δj = Oj (1 - Oj) (Tj - Oj)                                                                   ( 26 ) 
For a neuron j located in the hidden layer 

δj = Oj (1 - Oj) ∑
k

ikkWδ                                                                  ( 27 ) 
where neuron j is hidden 
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Running the program on a simulated data set and a fixed learning rate, figure(2) 
shows a comparison of the output using the sigmoid function and tanch function. 
 

 
               
              
 
 
 
 
 
 
 
 
 
 
 
 
 
      Figure (2 ) Comparing the output using the sigmoid & tanch function for a fixed 
                        learning rate. 
 
5.2 It has been found that if the activation level is restricted to the range from –1/2 
to  1/2, convergence time may be reduced by half compared with the 0 to 1 range. 
This improvement proceeds from the fact that a weight coming from a neuron of 
zero activation will not be modified. This idea is implemented by changing the 
input range to –1/2 and 1/2 and using the following activation function: 
         - 2

1  + ve −+1
1                                                                                     (28) 

where v is the argument of the function. Equation (22) and (23) are also applied 
here for a neuron j located in the output and hidden layers respectively. 
           
 
 
 
 
 
 
 
 

-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2

cell
1

cell
3

cell
5

cell
7

cell
9

cell
11

cell
13

Iteration No. 70

Ac
tu

al 
ou

tp
ut

Sigmoid Fn
Tanch Fn



Journal of the ACS , Vol. 1 , June  2007 

 70 

(-1/2 + Sigmoid fn)

0.636
0.638
0.64

0.642
0.644

cell
1

cell
3

cell
5

cell
7

cell
9

cell
11

cell
13

Iteration No. 69

Ac
tu

al 
ou

tp
ut

(-1/2 + Sigmoid fn)

 
 
 
 
 
 
 
 
   
 
 
 
      Figure (3) part of the output using the function -1/2 + 1 / (1 + e-v). 
    
 When using the same data set and the same learning rate, we obtain the same 
results as in Figure(2), but the difference in this case is the convergence time is 
accelerated. In Figure(3) an enhancement occurs by decreasing the learning rate by 
a certain factor at each iteration. 
 
5.3 The hyperbolic tangent function. A multilayer perception trained with the BP 
algorithm may, in general, learn faster (in terms of the numbers of training 
iterations required) when the sigmoid activation function built into the neuron 
model of the network is antisymmetric than when it is nonsymmetric. We say that 
an activation function F(v) is antisymmetric (i.e., odd function of its argument) if  
     F(-v) = - F(v) 
A popular example of an antisymmetric activation function is a sigmoidal 
nonlinearity in the form of a hyperbolic target, defined by: 
    F(v) = )exp(1

)exp(1
v
v
−+
−−  

            = tanh(v)                                                                                          (29) 
The limiting values of this function are -1 and +1. 
The derivative of F(v) with respect to v is :  
    F(v) = sech2(v) 
            = [1 – tanh2(v)] 
            = 1 – F2(v)] 
            = [1 – F(v)][1 + F(v)] 
For a neuron j located in the output layer  
      δj = (1 - Oj) (1 + Oj) (Tj - Oj)                                                                  (30) 
For a neuron j located in the hidden layer  
      δj = (1 - Oj) (1 + Oj) ∑

k
jkkWδ                                                                (31) 
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   Figure (4) part of the output using the tanh function for the same learning rate. 
 
     Figure(4) shows part of the output using the same weights and the same learning 
rate used previously in the sigmoid function. The tanh function accelerates the 
convergence than the sigmoid function as shown from Figures (2), (4). This shows 
that the antisymmetric function is faster than the sigmoid function. 
 
5.4 Algebraic sigmoid function. This is another odd signed function that has the 
following formula:  
         F(v) = 

21 v
v
+

                                                                                    (32) 

Whose limiting values are -1 and +1. 
         F’(v)  = 

32 )1(
1
v+

 

                     = 
323

3

)1( vv
v
+

 

                     = 3

3 )(
v
vF  

For a neuron j located in the output layer  
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          δj = 3

3

v
O j  (Tj - Oj)                                                                               (33) 

For a neuron j located in the hidden layer 

           δj = 3

3

v
O j  ∑

k
jkkWδ                                                                            (34) 

where neuron j is hidden. 
 
6- Simulated results for  learning rates 
 
All neurons in the multilayer perception should ideally learn at the same rate. The 
last layers usually have layer local gradients that the layers at the front end of the 
networks. Hence, the learning-rate parameter should be assigned a smaller value in 
the last layers than in the front layers. Neurons with many inputs should have a 
smaller learning-rate parameter than neurons with few inputs so as to maintain a 
similar learning time for all neurons in the network. It is suggested that for a given 
neuron, the learning rate should be inversely proportional to the square root of 
synaptic connection made to that neuron. On the other hand, many schemes have 
been proposed to automatically adjust the learning rate. Most of those schemes 
decrease the learning rate when the weight vector "oscillates", and increase it when 
the weight vector follows a relatively steady direction. The main problem with 
these methods is that they are not appropriate for stochastic gradient or on-line 
learning because the weight vector fluctuates all the time.  
    Beyond choosing a single global learning rate, it is clear that picking a different 
learning rate for each weight can improve the convergence [11]. A well-principled 
way of doing this, based on computing second derivatives. The main philosophy is 
to make sure that all the weights in the network converge roughly at the same 
speed.         
    Depending upon the curvature of the error surface, some weights may require a 
small learning rate in order to avoid divergence, while others may require a large 
learning rate in order to converge at a reasonable speed. Because of this, learning 
rates in the lower layers should generally be large than in the higher layers. This 
corrects for the fact that in most neural net architectures, the second derivative of 
the cost function with respect to weights in the lower layers is generally smaller 
than that of the higher layers [6]. In the following subsections, I discuss some 
heuristics that provide useful guidelines for thinking about how to accelerate the 
convergence of BP learning through learning rate adaptation. 
 
6.1 Fixed calculating of the learning rate one way to optimize the learning rate 
automatically. A calculation of the learning rate for BP using batched updates is 
based on the assumption that similar training patterns result in similar gradients. So 
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it is desirable to reduce the learning rate if there are many similar training patterns. 
Therefore the training set must be divided in m subsets of similar patterns. Let N1, 
N2. …, Nm be the sizes of these subsets. Learning rate and momentum can now be 
set in the following manner [15]: 
           η =

22
2

2
1 ...

5.1
mNNN +++

                                                                  (35) 

momentum = 0.9 
 
6.2 Every adjustable network parameter of the cost function should have its own 
individual learning rate parameter. The BP algorithm may be slow to coverage 
because the use of a fixed learning rate parameter may not suit all portions of the 
error surface. In other words, a learning rate parameter appropriation for the 
adjustment of one synaptic weight is not necessarily appropriate for the adjustment 
of other synaptic weights in the network. Thus assigning a different learning rate 
parameter to each adjustable synaptic weight in the network is preferred. 
 

 
 

 
          
 
 
 
 
 
 
 
 
 
 
 
     Figure (5) part of the output using tanh function for different learning rates for 
                          Each cell in Iteration No. 69. 
                       
6.3 Every learning rate parameter should be allowed to vary from one iteration to 
the next. The error surface, typically behaves differently along different regions of 
a single weight dimension. In order to match this variation the learning rate 
parameter needs to vary from iteration to iteration. 
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          Figure (6) A figure of the output using  tanh function  for different learning  
                               rates in different iterations. 
 
The learning rate parameter is time-varying. The particular time-varying form most 
commonly used is described by: 
      
                            c / (1 +n)                                                                          (36) 
 
where n is the number of iteration, c is a constant. 
     
 
 
 
 
     
 
 
 
 
 
 
 
 
 
Figure (7) comparing the actual output for iteration No. 69 using the sigmoid and 

Tanch functions for different learning rates in the same iteration. 
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To decrease the learning rate during the training, a method called "Search-Then-
Converge" strategy is suggested for BP using updates for every training pattern. 
Starting with a big learning rate η(0) the value is decreased during the training 
to[5] : 

 
η(n) = η(0) / ( 1 + n / r)                                                   (37) 

 
The constant parameter r can be used to adjust this learning rate schedule with 
respect to the total training period. After the first r learning steps the learning rate is 
halved by this update rule. A good r can only be found by trial and error. 
 
With respect to the tanch function, Figures(5) illustrates the output using different 
learning rates for each pattern. Figure(6)  shows part of the output using tanch 
function for the same learning rates in each pattern, but it differ from iteration to 
iteration. Figure(7) compares the actual output for each of the sigmoid and tanch 
functions for iteration no. 70 using the same learning rates in each cell. Figure(8) 
shows part of the output using the  sigmoid function for the same learning rates 
within the same iteration. These learning rates differ from iteration to iteration. 
Figure(9) shows part of the output for different learning rates in the cells of each 
iteration using the sigmoid function. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (8) This figure shows part of the output for different learning rates for each 
iteration using the sigmoid function. 
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6.4 When the derivation of the cost function with respect to a synaptic weight has 
the same algebraic sign for several consecutive iteration of the algorithm, the 
learning rate parameter for that particular weight should be increased. The current 
operating point in weight space may be on a relatively flat portion of the error 
surface along a particular weight dimension. This may in turn account for the 
derivative of the cost function (i.e., the gradient of the error surface) with respect to 
the weight maintaining the same algebraic sign, and therefore pointing in the same 
direction, for several consecutive iteration of the algorithm. Therefore in such a 
situation the number of iteration required to more a cross the flat portion of the 
error surface may be reduced by appropriately increasing the learning rate 
parameter. 
 
6.5 When the algebraic sign of the derivative of the cost function with respect to a 
particular synaptic weight alternates for several consecutive iteration of the 
algorithm, the learning rate parameter for that weight should be decreased. When 
the current operating point in weight space lies on a portion of the error surface 
along a weight dimension of interest that exhibits peals and valleys (i.e., the surface 
is highly curved), then it is possible for the derivative of the cost function with 
respect to that weight to change its algebraic sign from one iteration to the next. In 
order to prevent the weight adjustment from oscillating, the learning rate parameter 
for that particular weight should be decreased appropriately. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       Figure (9) this part of the output using the sigmoid function for different  
                                learning rates in iteration No. 69. 
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7- Other aspects 
 
In this section, I discuss some other aspects that affects the performance of the BP 
neural network algorithm. These aspects are: maximizing information content, 
target values, normalizing the inputs and initialization.  
 
Maximizing information content. As a general rule, every training example 
presented to the BP algorithm should be chosen on the basis that its information 
content is the largest possible for the task at hand. Two ways of achieving this aim 
are: 

• The use of an example that results in the largest training error. 
• The use of an example that is radically different from all those previously 

used. 
These two heuristics are motivated by a desire to search more of the weight 
space[5]. 
  
Target values. It is important that the target values (desired response) be chosen 
within the range of the sigmoid activation function. More specifically, the desired 
response Tj  for neuron j in the output layer of the multilayer perceptron should be 
offset by some amount ө away from the limiting value of the sigmoid activation 
function, depending on whether the limiting value is positive or negative. 
Otherwise the BP algorithm tends to drive the free parameters of the network to 
infinity, and thereby slow down the learning process by driving the hidden neurons 
into saturation. 
 
 Normalizing the inputs. Each input variable should be preprocessed so that its 
mean value, averaged over the entire training set, is close to zero, or else it is small 
compared to its standard deviation. To appreciate the practical significance of this 
rule, consider the extreme case where the input variables are consistently positive. 
In this situation, the synaptic weights of a neuron in the first hidden layer can only 
increase together or decrease together. Accordingly, if the weight vector of that 
neuron is to change direction, it can only do so by zigzagging its way through the 
error surface, which is typically slow and  should therefore be avoided. 
  
 Initialization. A good choice for the initial values of the synaptic weights and 
thresholds of the network can be of tremendous help in a successful network 
design. When the synaptic weights are assigned large initial values, it is highly 
likely that the neurons in the network will be driven into saturation. If this happens, 
the local gradients in the BP algorithm assume small values, which in turn will 
cause the learning process to slow down. However, if the synaptic weights are 
assigned small initial values, the BP algorithm may operate on a very flat area 
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around the origin of the error surface. Therefore, the use of both large and small 
values for initializing the synaptic weights should be avoided. The proper choice of 
initialization lies somewhere between these two extreme cases. 
 
8- Conclusions  
 
    The backpropagtion algorithm has emerged as the most popular algorithm for 
the supervised training of multilayer perceptrons. Therefore it has a lot of research 
attention. In this paper a set of different approaches are developed and introduced 
to improve the learning rate and a different activation functions are proposed. We  
conclude that the tanh function as an activation function accelerates the 
convergence than the sigmoid function. Subtracting half from the sigmoid function, 
convergence time nearly reduced by half. Also we conclude that choosing a 
different learning rate for each weight improve the convergence. Varying the 
learning rate from one iteration to iteration is preferred than choosing a constant 
learning rate. These conclusions and others, contribute for enhancing the  
Backpropagation neural networks. 
      As a future work, the entropy techniques can be used, tested, evaluated and 
compared with the least square error as a stopping criteria. Other activation 
functions, different learning rate algorithms and statistical analysis can be adopted 
to enhance the capability of the Backpropagation neural networks. 
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