
Different Aspects for Enhancing The Backpropagation Neural Networks

 63

Different Aspects for Enhancing The Backpropagation Neural Networks

Hussein Rady
El-Shorouk Academy, Higher Institute for Computer & Information Technology,

Tel.: 0106093311
E-mail: dr_hussein_rady@yahoo.com

Abstract
 Backpropagation (BP) algorithm is one of the most popular training algorithms for
multilayer neural networks. The convergence of backpropagation learning is
analyzed so as to explain common phenomenon observed by specialists. The
performance of the backpropagation algorithm is studied, analysed and evaluated in
this paper. A method for accelerating the convergence rate is presented. It provides
useful guidelines for thinking about how to accelerate the convergence through
learning rate adaptation. This work has been implemented through computer
simulated using C# with different activation functions and different methods for
representing the learning rates. The obtained results are encourage and promising.

Keywords: Artificial Neural Network, Backpropagation, Activation
Functions, Learning Rates, Momentum.

1. Introduction:

Artificial neural network (ANNs) are mathematical models developed to imitate
information storing and processing capabilities of the human brain. These models
are developed with a quit different philosophy of information processing from that
of conventional computers. It is hoped that they will overcome the conventional
computer's limitation on "intelligent" information processing capability. They are
assumed to be assembled from neuron-like cells that are connected by links with
adjustable strengths/weights. The most attractive characteristic of ANNs is that
they can be trained to perform computational tasks using some learning algorithm
and few examples[14].
 Neural networks, also known as connectionist systems, or parallel distributed
processing models, are computer-based, self-adaptive models of Artificial
intelligence. The intelligence of Artificial Neural Network and its capability to
solve hard problems emerges from the high degree of connectivity that gives
neurons its high computational power through its massive parallel-distributed
structure [12, 17].

Journal of the ACS , Vol. 1 , June 2007

 64

 Backpropagation algorithm [1,4,5,9,13,16] is used for training artificial neural
networks. Training is usually carried out by iterative updating of weights based on
minimizing the mean square error. In the output layer, the error signal is the
difference between the desired and the output values. Then the error signal is fed
back through the steepest descent algorithm to the lower layers to update the
weights of the network. The weights of the network are adjusted by the algorithm
such that the error is decreased along a descent direction. Traditionally, two
parameters, called learning rate and momentum factor, are used for controlling the
weight adjustment along the descent direction and for dampening oscillations.
However, the convergence rate of the BP algorithm is relatively slow, especially
for networks with more than one hidden layer. The reason for this is the saturation
behavior of the activation function used for the hidden and output layers. Since the
output of a unit exists in the saturation area, the corresponding descent gradient
takes a very small value, even if the output error is large, leading to very little
progress in the weight adjustment.
 The selection of the learning rate and momentum factor is arbitrary, because the
error surface usually consists of many flat and steep regions and behaves
differently from application to application. Large values of the learning rate and
momentum factor are helpful to accelerate learning. However, this increases the
possibility of the weight search jumping over steep regions and moving out of the
desired regions [18].
 The organization of the paper presented in the following sections. In the next
section, the algorithm of the ANN Learning is presented. A modification of the
original backpropagation algorithm is presented in section 4. the simulated results
and other aspects are discussed in section 5,6,7 and finally in section 8, conclusions
and future work are outlined.

2- Models of a neoron

A basic model of a neuron is depicted in Figure(1). Artificial neuron is a device
with many inputs and one output. It is the information processing unit, which forms
the basis for designing artificial networks [2, 7].
Three basic neural elements are identified:

• A set of weights, which characterize the strength of the synapse linking a
neuron to another. Synaptic weight linking a neuron 'j' to a neuron 'i' could
be identified either by Wji or by Wij.

• An adder for summing the input neuron's inputs modulated by the
respective connection weights.

• An activation function, which is applied on the input summation for
limiting the amplitude of the neuron's output.

Different Aspects for Enhancing The Backpropagation Neural Networks

 65

 Figure (1) Nonlinear model of a neuron.

Mathematically, the neural model is described by the following equations
 uk = ∑

=

m

j
jkj xW

1
 (1)

 yk = F(uk + bk) (2)

where x1, x2, …, xm represent the input features; Wk1, Wk2, …, Wkm are the synaptic
weights of the neuron k;
uk is the linear summation of the input features;
bk is the bias;
F(.) is the activation function which can take several forms discussed later.
yk is the neuron output.
By including the bias in the linear summation of the input features, the combination
could be reformulated as follows:

vk = ∑
=

m

j
jkj xW

0
 , and yk = F(vk) (3)

where x0 = +1, and Wk0 = bk. (4)

3- Algorithm of the ANN Learning:

Learning of the ANN denotes changes in the system that are adaptive in the sense
that they enable the system to do the same task or tasks drawn from the same
population more efficiently and more effectively the next time [8]. Learning can
refer to either acquiring new knowledge or enhancing or refining skills. Learning
new knowledge include acquisition of significant concepts, understanding of their
meanings and relationships to each other and to the domain concerned. The new
knowledge should be assigned and put in a mentally usable form before it can be

Journal of the ACS , Vol. 1 , June 2007

 66

called "learned." Thus, knowledge acquisition is designed as learning new
symbolic information combined with the ability to use that information effectively.

Backpropagation (BP) Algorithm

The BP algorithm for multi-layer neural networks is a gradient desent procedure
used to minimize the mean square error. Using the PB algorithms is summarized as
[1, 3, 5, 9]:

Training process:

Step 1: Choose the structure of neural network and input parameter of the
network.

Step 2: Set up initial values for both the initial weight W and the bias elements
θ .

Step 3: Input training observation data matrix X and Target output matrix T.
Step 4: Compute the output vector of each neural units

a) Compute the output vector H of the hidden layer
 netk = ∑ −

i
kiik XW θ (5)

 Hk = F(netk) (6)
b) Compute the output vector Y of the output layer
 netj = ∑ −

k
jkkj HW θ (7)

 Yj = F(netj) (8)
Step 5: Compute the errors

a) Compute the errors δj of the output layer
 δj = (Tj - Yj).F'(netj) (9)
 where F'(netj) is the derivation of the activation function.
b) Compute the errors δk of the hidden layer

 δK = 



∑

j
kjjWδ .F'(netj) (10)

Step 6: Compute the modification of W and θ (η is the learning rate)
a) Compute the modification of W and θ of the output layer

 ∆Wkj = ηδjHk (11)
 ∆θj = -ηδj (12)

b) Compute the modification of W and θ of the hidden layer
∆Wik = ηδkXi (13)
∆θk = -ηδk (14)

Step 7: Renew W and θ
a) Renew W and θ of the output layer

 Wkj = Wkj + ∆Wkj (15)

Different Aspects for Enhancing The Backpropagation Neural Networks

 67

 θj = θj + ∆θj (16)
b) Renew W and θ of the hidden layer

Wik = Wik + ∆Wik (17)
 θk = θk + ∆θk (18)
Step 8: Repeat step 3 to step 7 until convergence

Testing process:

Step 1: Input the parameters of the network.
Step 2: Input the W and θ.
Step 3: Input an unknown data matrix X.
Step 4: Compute the output vector.

a) Compute the output vector H of hidden layer
 netk = ∑ −

i
kiik XW θ (19)

 Hk = F(netk) (20)
b) Compute the output vector Y of the output layer
 netj = ∑ −

k
jkkj HW θ (21)

 Yj = F(netj) (22)

4- Modification of the original backpropagation Algorithm.

The standard backpropagation learning algorithm is called vanilla
backpropagation[10]. It is also called online backpropagation because it updates
the weights after every training pattern. The modification of that algorithm is
discussed as follows:-

Enhanced backpropagation. The momentum strategy can be considered as an
approximation to the conjugate gradient method[14], because in both the present
gradient direction is modified using a term that takes the previous direction into
account. The equation for weight change is given by:

Wij(t + 1) = Wij(t) + ηδjOi + α [Wij(t) - Wij(t - 1)] (23)

where 0< α <1 is a momentum coefficient.
Batch backpropagation. Batch BP has a similar formula as the original (vanilla)
BP. The difference lies in the time when the update of the links take place. While
in the original BP an update step is performed after each single pattern, in batch BP
all weight changes are summed over a full presentation of all training patterns (one
epoch). Only then, an update with the accumulated weight changes is performed.

Journal of the ACS , Vol. 1 , June 2007

 68

backpropagation with Weight Decay. Weight Decay decreases the weights of the
links while training them with BP. In addition to each update of a weight by BP,
the weight is decreased by a part d of its old value. The resulting formula is:

 ∆ Wij(t + 1) = ηδjOi - d Wij(t) (24)

5- Simulated results for different activation functions:
The behavior of an artificial neural network depends on both the weights and the
input-output function (energy function or activation function) that is specified for
the units. Because the standard BP algorithm descends along the gradient of the
error surface, the use of any activation function that has a larger gradient than that
of the sum of the squared error at higher energy values would make for faster
training. There are many kinds of activation functions such as the sigmoid function,
the Cauchy energy function, the polynomial energy function, and the exponential
energy function [2, 14].
 Activation functions for the hidden units are needed to introduce nonlinearity
into the network. Without nonlinearity, hidden units would not make nets more
powerful than just plain perceptrons. The reason is that a linear function of linear
functions is again a linear function. However, it is the nonlinearity that makes
multilayer networks so powerful. Almost any nonlinear function does the job,
except for polynomials. For BP learning, the activation function must be
differentiable, and it helps if the function is bounded; the sigmoidal functions such
as logistic, tanh and the Gaussian function are the most common choices. Functions
such as tanh or arctan that produce both positive and negative values tend to yield
faster training than functions that produce only positive values such as logistic,
because of better numerical conditioning. In this section I discuss the category of
the activation functions in the following subsections:
5.1 The sigmoid function. The sigmoid function can be written in the form:
F(v) = ve −−1

1 -∞ < v < ∞ (25)

F’(v) = 2]1[v

v

e
e

−
−

+

 = F(v) (1 – F(v))
using this energy function, the activation level is between 0 and 1.
For a neuron j located in the output layer

δj = Oj (1 - Oj) (Tj - Oj) (26)
For a neuron j located in the hidden layer

δj = Oj (1 - Oj) ∑
k

ikkWδ (27)
where neuron j is hidden

Different Aspects for Enhancing The Backpropagation Neural Networks

 69

Running the program on a simulated data set and a fixed learning rate, figure(2)
shows a comparison of the output using the sigmoid function and tanch function.

 Figure (2) Comparing the output using the sigmoid & tanch function for a fixed
 learning rate.

5.2 It has been found that if the activation level is restricted to the range from –1/2
to 1/2, convergence time may be reduced by half compared with the 0 to 1 range.
This improvement proceeds from the fact that a weight coming from a neuron of
zero activation will not be modified. This idea is implemented by changing the
input range to –1/2 and 1/2 and using the following activation function:
 - 2

1 + ve −+1
1 (28)

where v is the argument of the function. Equation (22) and (23) are also applied
here for a neuron j located in the output and hidden layers respectively.

-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2

cell
1

cell
3

cell
5

cell
7

cell
9

cell
11

cell
13

Iteration No. 70

Ac
tu

al
ou

tp
ut

Sigmoid Fn
Tanch Fn

Journal of the ACS , Vol. 1 , June 2007

 70

(-1/2 + Sigmoid fn)

0.636
0.638
0.64

0.642
0.644

cell
1

cell
3

cell
5

cell
7

cell
9

cell
11

cell
13

Iteration No. 69

Ac
tu

al
ou

tp
ut

(-1/2 + Sigmoid fn)

 Figure (3) part of the output using the function -1/2 + 1 / (1 + e-v).

 When using the same data set and the same learning rate, we obtain the same
results as in Figure(2), but the difference in this case is the convergence time is
accelerated. In Figure(3) an enhancement occurs by decreasing the learning rate by
a certain factor at each iteration.

5.3 The hyperbolic tangent function. A multilayer perception trained with the BP
algorithm may, in general, learn faster (in terms of the numbers of training
iterations required) when the sigmoid activation function built into the neuron
model of the network is antisymmetric than when it is nonsymmetric. We say that
an activation function F(v) is antisymmetric (i.e., odd function of its argument) if
 F(-v) = - F(v)
A popular example of an antisymmetric activation function is a sigmoidal
nonlinearity in the form of a hyperbolic target, defined by:
 F(v) =)exp(1

)exp(1
v
v
−+
−−

 = tanh(v) (29)
The limiting values of this function are -1 and +1.
The derivative of F(v) with respect to v is :
 F(v) = sech2(v)
 = [1 – tanh2(v)]
 = 1 – F2(v)]
 = [1 – F(v)][1 + F(v)]
For a neuron j located in the output layer
 δj = (1 - Oj) (1 + Oj) (Tj - Oj) (30)
For a neuron j located in the hidden layer
 δj = (1 - Oj) (1 + Oj) ∑

k
jkkWδ (31)

Different Aspects for Enhancing The Backpropagation Neural Networks

 71

A.output

-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2

cell
1

cell
2

cell
3

cell
4

cell
5

cell
6

cell
7

cell
8

cell
9

cell
10

cell
11

cell
12

cell
13

cell
14

Iteration No. 69

Ac
tu

al
ou

tp
ut

A.output

 Figure (4) part of the output using the tanh function for the same learning rate.

 Figure(4) shows part of the output using the same weights and the same learning
rate used previously in the sigmoid function. The tanh function accelerates the
convergence than the sigmoid function as shown from Figures (2), (4). This shows
that the antisymmetric function is faster than the sigmoid function.

5.4 Algebraic sigmoid function. This is another odd signed function that has the
following formula:
 F(v) =

21 v
v
+

 (32)

Whose limiting values are -1 and +1.
 F’(v) =

32)1(
1
v+

 =
323

3

)1(vv
v
+

 = 3

3)(
v
vF

For a neuron j located in the output layer

Journal of the ACS , Vol. 1 , June 2007

 72

 δj = 3

3

v
O j (Tj - Oj) (33)

For a neuron j located in the hidden layer

 δj = 3

3

v
O j ∑

k
jkkWδ (34)

where neuron j is hidden.

6- Simulated results for learning rates

All neurons in the multilayer perception should ideally learn at the same rate. The
last layers usually have layer local gradients that the layers at the front end of the
networks. Hence, the learning-rate parameter should be assigned a smaller value in
the last layers than in the front layers. Neurons with many inputs should have a
smaller learning-rate parameter than neurons with few inputs so as to maintain a
similar learning time for all neurons in the network. It is suggested that for a given
neuron, the learning rate should be inversely proportional to the square root of
synaptic connection made to that neuron. On the other hand, many schemes have
been proposed to automatically adjust the learning rate. Most of those schemes
decrease the learning rate when the weight vector "oscillates", and increase it when
the weight vector follows a relatively steady direction. The main problem with
these methods is that they are not appropriate for stochastic gradient or on-line
learning because the weight vector fluctuates all the time.
 Beyond choosing a single global learning rate, it is clear that picking a different
learning rate for each weight can improve the convergence [11]. A well-principled
way of doing this, based on computing second derivatives. The main philosophy is
to make sure that all the weights in the network converge roughly at the same
speed.
 Depending upon the curvature of the error surface, some weights may require a
small learning rate in order to avoid divergence, while others may require a large
learning rate in order to converge at a reasonable speed. Because of this, learning
rates in the lower layers should generally be large than in the higher layers. This
corrects for the fact that in most neural net architectures, the second derivative of
the cost function with respect to weights in the lower layers is generally smaller
than that of the higher layers [6]. In the following subsections, I discuss some
heuristics that provide useful guidelines for thinking about how to accelerate the
convergence of BP learning through learning rate adaptation.

6.1 Fixed calculating of the learning rate one way to optimize the learning rate
automatically. A calculation of the learning rate for BP using batched updates is
based on the assumption that similar training patterns result in similar gradients. So

Different Aspects for Enhancing The Backpropagation Neural Networks

 73

it is desirable to reduce the learning rate if there are many similar training patterns.
Therefore the training set must be divided in m subsets of similar patterns. Let N1,
N2. …, Nm be the sizes of these subsets. Learning rate and momentum can now be
set in the following manner [15]:
 η =

22
2

2
1 ...

5.1
mNNN +++

 (35)

momentum = 0.9

6.2 Every adjustable network parameter of the cost function should have its own
individual learning rate parameter. The BP algorithm may be slow to coverage
because the use of a fixed learning rate parameter may not suit all portions of the
error surface. In other words, a learning rate parameter appropriation for the
adjustment of one synaptic weight is not necessarily appropriate for the adjustment
of other synaptic weights in the network. Thus assigning a different learning rate
parameter to each adjustable synaptic weight in the network is preferred.

 Figure (5) part of the output using tanh function for different learning rates for
 Each cell in Iteration No. 69.

6.3 Every learning rate parameter should be allowed to vary from one iteration to
the next. The error surface, typically behaves differently along different regions of
a single weight dimension. In order to match this variation the learning rate
parameter needs to vary from iteration to iteration.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

cell
1

cell
2

cell
3

cell
4

cell
5

cell
6

cell
7

cell
8

cell
9

cell
10

cell
11

cell
12

cell
13

cell
14

Actual output
Target output
Learning Rate

Journal of the ACS , Vol. 1 , June 2007

 74

 Figure (6) A figure of the output using tanh function for different learning
 rates in different iterations.

The learning rate parameter is time-varying. The particular time-varying form most
commonly used is described by:

 c / (1 +n) (36)

where n is the number of iteration, c is a constant.

Figure (7) comparing the actual output for iteration No. 69 using the sigmoid and

Tanch functions for different learning rates in the same iteration.

0.5
0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

cell
1

cell
3

cell
5

cell
7

cell
9

cell
11

cell
13

Ac
tu

al
ou

tp
ut

Iteration No.69
Iteration No.70

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

cell
1

cell
3

cell
5

cell
7

cell
9

cell
11

cell
13

A.Output (sigmoid)
A.Output (tanch)
Learning Rate

Different Aspects for Enhancing The Backpropagation Neural Networks

 75

To decrease the learning rate during the training, a method called "Search-Then-
Converge" strategy is suggested for BP using updates for every training pattern.
Starting with a big learning rate η(0) the value is decreased during the training
to[5] :

η(n) = η(0) / (1 + n / r) (37)

The constant parameter r can be used to adjust this learning rate schedule with
respect to the total training period. After the first r learning steps the learning rate is
halved by this update rule. A good r can only be found by trial and error.

With respect to the tanch function, Figures(5) illustrates the output using different
learning rates for each pattern. Figure(6) shows part of the output using tanch
function for the same learning rates in each pattern, but it differ from iteration to
iteration. Figure(7) compares the actual output for each of the sigmoid and tanch
functions for iteration no. 70 using the same learning rates in each cell. Figure(8)
shows part of the output using the sigmoid function for the same learning rates
within the same iteration. These learning rates differ from iteration to iteration.
Figure(9) shows part of the output for different learning rates in the cells of each
iteration using the sigmoid function.

Figure (8) This figure shows part of the output for different learning rates for each
iteration using the sigmoid function.

0

0.2

0.4

0.6

0.8

1

1.2

cel
l1

cel
l3

cel
l5

cel
l7

cel
l9

cel
l11

cel
l13

A.Output for It 69
A.Output for it 70
Target output

Journal of the ACS , Vol. 1 , June 2007

 76

6.4 When the derivation of the cost function with respect to a synaptic weight has
the same algebraic sign for several consecutive iteration of the algorithm, the
learning rate parameter for that particular weight should be increased. The current
operating point in weight space may be on a relatively flat portion of the error
surface along a particular weight dimension. This may in turn account for the
derivative of the cost function (i.e., the gradient of the error surface) with respect to
the weight maintaining the same algebraic sign, and therefore pointing in the same
direction, for several consecutive iteration of the algorithm. Therefore in such a
situation the number of iteration required to more a cross the flat portion of the
error surface may be reduced by appropriately increasing the learning rate
parameter.

6.5 When the algebraic sign of the derivative of the cost function with respect to a
particular synaptic weight alternates for several consecutive iteration of the
algorithm, the learning rate parameter for that weight should be decreased. When
the current operating point in weight space lies on a portion of the error surface
along a weight dimension of interest that exhibits peals and valleys (i.e., the surface
is highly curved), then it is possible for the derivative of the cost function with
respect to that weight to change its algebraic sign from one iteration to the next. In
order to prevent the weight adjustment from oscillating, the learning rate parameter
for that particular weight should be decreased appropriately.

 Figure (9) this part of the output using the sigmoid function for different
 learning rates in iteration No. 69.

0

0.2

0.4

0.6

0.8

1

1.2

cell
1

cell
2

cell
3

cell
4

cell
5

cell
6

cell
7

cell
8

cell
9

cell
10

cell
11

cell
12

cell
13

cell
14

Actual output
Target output
Learning Rate

Different Aspects for Enhancing The Backpropagation Neural Networks

 77

7- Other aspects

In this section, I discuss some other aspects that affects the performance of the BP
neural network algorithm. These aspects are: maximizing information content,
target values, normalizing the inputs and initialization.

Maximizing information content. As a general rule, every training example
presented to the BP algorithm should be chosen on the basis that its information
content is the largest possible for the task at hand. Two ways of achieving this aim
are:

• The use of an example that results in the largest training error.
• The use of an example that is radically different from all those previously

used.
These two heuristics are motivated by a desire to search more of the weight
space[5].

Target values. It is important that the target values (desired response) be chosen
within the range of the sigmoid activation function. More specifically, the desired
response Tj for neuron j in the output layer of the multilayer perceptron should be
offset by some amount ө away from the limiting value of the sigmoid activation
function, depending on whether the limiting value is positive or negative.
Otherwise the BP algorithm tends to drive the free parameters of the network to
infinity, and thereby slow down the learning process by driving the hidden neurons
into saturation.

 Normalizing the inputs. Each input variable should be preprocessed so that its
mean value, averaged over the entire training set, is close to zero, or else it is small
compared to its standard deviation. To appreciate the practical significance of this
rule, consider the extreme case where the input variables are consistently positive.
In this situation, the synaptic weights of a neuron in the first hidden layer can only
increase together or decrease together. Accordingly, if the weight vector of that
neuron is to change direction, it can only do so by zigzagging its way through the
error surface, which is typically slow and should therefore be avoided.

 Initialization. A good choice for the initial values of the synaptic weights and
thresholds of the network can be of tremendous help in a successful network
design. When the synaptic weights are assigned large initial values, it is highly
likely that the neurons in the network will be driven into saturation. If this happens,
the local gradients in the BP algorithm assume small values, which in turn will
cause the learning process to slow down. However, if the synaptic weights are
assigned small initial values, the BP algorithm may operate on a very flat area

Journal of the ACS , Vol. 1 , June 2007

 78

around the origin of the error surface. Therefore, the use of both large and small
values for initializing the synaptic weights should be avoided. The proper choice of
initialization lies somewhere between these two extreme cases.

8- Conclusions

 The backpropagtion algorithm has emerged as the most popular algorithm for
the supervised training of multilayer perceptrons. Therefore it has a lot of research
attention. In this paper a set of different approaches are developed and introduced
to improve the learning rate and a different activation functions are proposed. We
conclude that the tanh function as an activation function accelerates the
convergence than the sigmoid function. Subtracting half from the sigmoid function,
convergence time nearly reduced by half. Also we conclude that choosing a
different learning rate for each weight improve the convergence. Varying the
learning rate from one iteration to iteration is preferred than choosing a constant
learning rate. These conclusions and others, contribute for enhancing the
Backpropagation neural networks.
 As a future work, the entropy techniques can be used, tested, evaluated and
compared with the least square error as a stopping criteria. Other activation
functions, different learning rate algorithms and statistical analysis can be adopted
to enhance the capability of the Backpropagation neural networks.

Acknowledgment

The author would like to thank Prof. Dr. Ahmed Gaber and Dr. Farouk Shabaan for
the completely support to this work.

References:

1- Abraham A., and Nath B.: "Hybrid Heuristics for Optimal Design of
Artificial Neural Networks."

2- Brown A. (2004): "Analysing a Neural Network trained by
backpropagation."

3- Chang P., and Shih J. (2002): "The Application of Backpropagation
Neural Network of Multi-channel Piezoelectric Quartze Crystal Sensor for
Mixed Organic Vapours."

4- Ellingsen B.: "A Comparative Analysis of Backpropagation and
Counterpropagation Neural Networks."

5- Hybin S. (1999): "Neural Networks, A Comprehensive Foundation."
6- Lecun y., Botton L., OvviG, and Muller K.R (1998): "Efficient BackProp."
7- Lefley M., and Kinsellla T. (2000): "Investigating neural network

efficiency and structure by weight investigation."

Different Aspects for Enhancing The Backpropagation Neural Networks

 79

8- LiMin F. (2003): "Neural Networks in Computer Intelligence"
9- Luger G. (2002): "Artificial Intelligence, Structure and Strategies for

Complex Problem Solving."
10- Mache N. (1995): "Backpropagation Networks."
11- Magoulas G. D., Vrahatis M. N., and Androulakis G. S. (1999):

"Imporving the Convergence of the Backpropagation Algorithm using
Learning Rate Adaptation Methods."

12- Malik N. (2005): "Artificial Neural Networks and their applications."
13- Ruiz M., and Srinivason (1998): "Automatic Text Categorization Using

Neural Networks."
14- Sarkar D. (1995): "Methods to speed up Error Backpropagation Learning

Algorithm.
15- Schiffmann W. Joost M., and Werner R. (1994): "Optimization of the

Backpropagation Algorithm for Training Multilayer Perceptrons."
16- Sher B., and Hseih W. (1999): "Fault Tolerant Training of Feedforward

Neural Networks."
17- Torresen J., and Tomita S.: "A review of Parallel Implementation of

Backpropagation Neural Networks."
18- Zweiri Y. (2006): "Optimization of a three- term Backpropagation

Algorithm used for Neural Network Learning". International Journal of
Computational Intelligence, volume 4.

