Journal of Engineering Sciences, Assiut University, Vol. 39, No 5, pp. 1129-1146, September 2011

PERFORMANCE IMPROVEMENT OF A PHOTOVOLTAIC
GENERATOR POWERED DC MOTOR-PUMP SYSTEM BASED

ON ARTIFICIAL NEURAL NETWORKS

Ahmed. M. Kassem
Control Technology Dep., Beni-Suef University, Egypt,

Email: Kassem ahmed53@hotmail.com

(Received July 2, 2011 Accepted August 2, 2011)

This paper presents the optimization of a photovoltaic (PV) water
pumping System using maximum power point tracking technique
(MPPT). The optimization is suspended to reference optimal power. This
optimization technique is developed to assure the optimum chopping
ratio of buck-boost converter. The presented MPPT technique is used in
photovoltaic water pumping systemin order to optimize its efficiency. An
adaptive controller with emphasis on Nonlinear Autoregressive Moving
Average (NARMA) based on artificial neural networks approach is
applied in order to optimize the duty ratio for PV maximum power at any
irradiation level. In this application, an indirect data-based technique is
taken, where a model of the plant is identified on the basis of input-
output data and then used in the model-based design of a neural network
controller. The proposed controller has the advantages of robusthess,
fast response and good performance. The PV generator DC motor pump
system with the proposed controller has been tested through a step
changeinirradiation level. Smulation results show that accurate MPPT
tracking performance of the proposed system has been achieved.
Further, the performance of the proposed artificial neural network
(ANN) controller is compared with a PID controller through simulation
studies. Obtained results demonstrate the effectiveness and superiority of
the proposed approach.

KEYWORDS: photovoltaic; maximum power point tracking; drive
systems; artificial neural network controller.

NOMENCLATURE
Duty ratio K¢ Torgue constant
Maximum duty ratio L, Armature inductance
DC motor armature voltage Pmot  Motor input power
Back emf voltage R, Armature resistance
Maximum back emf voltage Ry PV generator series resistance
DC motor armature current Vy, PV generator voltage
PV generator current Vgm PV generator maximum voltage

PV generator maximum current T, Load torque
Insulation photo current of the PV

generator Greek Symboal

PV generator reverse saturation current3  friction coefficient
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J  moment of inertia w Rotor shaft speed
Ky, back emf constant & Load torque constant

1. INTRODUCTION

Photovoltaic (PV) energy has increased interestentrical power applications. It is
crucial to operate the PV energy conversion systaas the maximum power point
to increase the efficiency of the PV system. Theent and power of the PV array
depends on the array terminal operating voltageaddition, the maximum power
operating point varies with insolation level anthpeerature. Therefore, the tracking
control of the maximum power point is a complicapgdblem. To overcome these
problems, many tracking control strategies havenl@eposed such as perturb and
observe [1,2], incremental conductance [3], pamstapacitance [4], constant
voltage [5], neural network [6-11] and fuzzy logiontroller (FLC) [12-17]. Some
applications need constant output voltage withabli MPPT or constant output
current [18-19]. These strategies have some disdadyges such as high cost,
difficulty, complexity and instability. Also, In [8] and [11] the neural networks are
used only for maximum power estimation while a eliint controller is used to
adjust the inverter output. But in this proposestaym the adaptive artificial neural
network controller is used to adjust the invertatpot and there is no any more
controller else needed.

The general requirements for maximum power poiatking (MPPT) are
simplicity and low cost, quick tracking under chamgconditions, and small output
power fluctuation. A more efficient method to sohés problem becomes crucially
important.

In photovoltaic pumping system, maximum power tfands expected
between photovoltaic solar panel (PV) and pump matevide irradiance interval. If
not, performance may drop to low values to be rexdo¥f the load voltage and or
current are controlled to be constant these leadaiximum power decreases [18].

This paper proposes a method to operate the motoping system at the high
available efficiency. That is by tracking the mawmm power point using adaptive
neural NARMA-L2 controller. The NARMA L2 neuroconptter was first trained to
cancel both the nonlinearity and dynamic of théesys Then, it was reconfigured to
become a controller. Once the NARMA L2 neurocomgrosuppresses both the
nonlinearlity and dynamic behaviour, the closedplasystem becomes implicit
algebraic relation between the input and the outpahsequently, the system is able
to perfectly follow a smooth reference trajectovgm it is generated in real-time. A
photo sensor and maximum power point tracker algoriare used to generate the
controller reference power. Also, the principle feliént between the proposed
method and any other tracking method is that tlepgsed method attempts to track
and compute the maximum power and controls direb#yextracted power from the
PV to that computed value through ANN controllerhil, any other method
attempts to reach the maximum point by the knowdealgthe voltage or the current
corresponding to that optimum point.

In this work, The feasibility and effectivenesstioé PV generator, pumping
system together with the proposed ANN controllerehbeen demonstrated through
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computer simulations. Moreover, the proposed ctletras compared with a
conventional PID controller. Simulation results @aproved that the proposed
controller can give better overall performance.

2. SYSTEM DYNAMICS

The proposed isolated generation system mainlyistsnef PV generator, DC-DC
buck-boost converter and a DC motor coupled tondriéegal pump as shown in Fig.
1. In the following subsections, a mathematical ediddr each device is developed
and they combined together to form the completeahadhich is to be used in the
controller design and simulation studies.
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Fig. 1. The proposed PV-generator DC motor pumpesys
2.1PV Generator Model

The PV generator consists of solar cells conneictestries and parallel fashion to
provide the desired voltage and current requiredhieyDC motor system. This PV
generator exhibits a nonlinear voltage-current ati@ristic that depends on the
insulation (solar radiation), as given by (1) [20].

Gl g =14 +1
Vg:i|n|:—phgl g Og}—IgRSg )
og

whereV is the PV generator voltagk;is the PV generator currentg\/Ns s the
PV generator constank=g/(e¢xZxU), is the solar cell constarg=1.602x10° C. is
the electron chargez=1.38x10" J/K is Boltzman constant)= 298.15 °C is the
absoluteemperature; € =1.1 is the completion factoNs=360 is the series-connected
solar cells;Ny=3 is the parallel paths; Rg=R*(NJ/N,) is the PV generator series
resistanceRe= 0.0152 Q is the series resistance per cell; lng=lnXN, is the insulation-
dependent photo current of the PV generdtg¥4.8 A is the photo current per cell;
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log=1oXN, is the PV generator reverse saturation currgnP.58€ A is the reverse
saturation current per cefg is the solar insulation in per unit, and 1.0 pet ohG
= 1000 W/n.

The PV generator Voltage-Current and Voltage-Paharacteristics at five
different values o are shown in Fig. 2. and Fig. 3 respectively. Franich, at any
particular value ofG, there is only one point at which the PV genergtower is
maximum. This point is called the Maximum Power RRdiMPP). To locate its
position, the corresponding voltagé,f) and currentl(,) must be determined first
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Fig. 2. I-V characteristics of the PV generatofiva different values 06.
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2.2DC Motor Model

The dynamics of the separately excited DC motoriemnibad are represented by the
following set of differential equations with constaoefficients:

Ea = Ra|a+|-a d(;ta +wa (2)
Kila = A+ g 980, ©
The Load (pump) torque can be represented by:

T = A +éw'® (4)

where the name-plate parameters are: Voltagel 10 volt; Current I, = 7.3 A,;
InertiaJ = 0.02365 Kg.rﬁ Resistancd®,=1.5 Q; Inductance La=0.2 H; Torque &
back emf constari =0.67609 Nm.A:; Motor friction A;=0.2 Nm; Load friction A,
= 0.3 Nm; damping coefficient B=0.002387 Nm.s.rafj Load torque constarif =
0.00059 Nm.s.rati

2.3DC-DC Converter Model

The most important parameter of the buck-boost edevis its chopping ratig that
depends on the duty ratidthrough a nonlinear relation given by:
D
“1°p ®)
This converter is inserted between the PV generator the DC motor to

match the PV generator output characteristics@édxt@ motor input characteristics.
Assuming the converter is ideal, then its input antput powers are equal resulting
in the following relation [21]:

B _lom_ D (6)

2.4 Power Regulator Model and MPPT Algorithm

There is a unique point on the PV voltage-curréit)(and voltage-power (V-P)
characteristic curves as shown in figures (2) a8y respectively, called the
maximum power point (MPP), at which the array prEiimaximum output power
for each G. In general, when the load is directpbed, the operation point is not at
the PV array’'s MPP, resulting an oversized PV arrbywever, because of the small
scale of a PV array (less than 200 W), the ovengis cheaper than a commercial
MPPT. But if the PV scale became more than 200tWilli be preferable to operate
it at the MPPT and with an economical method.

In this paper we chose a very simple method for MBPeration, that by
on-line estimating the PV maximum power output feach insulation level.
However, we measure on-line the insulation levehgigphoto sensor. Then we
estimate the maximum power for each insulation lleeéated to the following
reference power equation:

Py =205-1429167G +720833G2 -9270833G* +416667G* (7)
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The power output of the PV generator (deliverethtomotor pump system)
can be adjusted via controlling the duty ratiole# DC-DC converter according to
the following differential equation:
db
E =Re¢ ~ Pro (8)

Where P, =1,E,

2.5 Complete System Model

The subsystem models can be interfaced to fornuthiged nonlinear model. The
complete nonlinear dynamic model of the PV generatotor pump system can be
described as:

dl R K
d_a:iEa__ala__bw (9)
t L, L, ¢ L,
dw _ K, A B 1 18
- = |, —— - w-=\A, + & 10
d  J % 3 3 J(zf) (10)
dD
E: ref_Pmot (11)
Where

_1-D

la =51

£ = D V. = D iln[GlthIIQ+log}

®1-D ° 1-D *

2.6 Linearized Model

Small signal linear model of the solar motor-pumggdtem is formed around an
operating point to study the system dynamics whexested to small perturbations.
The linearized model can be described by the faligwequation:

px = AX + Bu + od (12)
Where

x=[al, Aw AD], p=|P«],d=[6] ,and

A isa 3 x 3 matrix containing the system paramse

3. MPPT CONDITION

For tracking maximum power points of PV with dc omwtsystem uses a dc/dc
converter. This converter may be buck, boost okingost type in respect of normal
(direct coupled) operating characteristic of PVmpumotor. In this work, a buck-

boost DC-DC converter is used. Assuming power caawés ideal, all of PV power

is delivered to motor. Under MPPT conditions, magodriven by maximum power

of PV.

Eala :ng I gm (13)
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Motor input characteristics are defined by choppatio (D) of dc/dc
converter. For maximum power tracking, there isitical value of D with respect to
a given irradiance level (D=[). Hence motor input voltage and current expression
E,=_Cn y (14)

a gm

1-D,,
1-D,,

Ia: Dm gm (15)
In order to determine D) the steady-state equations of DC motor-Pump

system can be written as follows:

E.=I,R +Kw (16)
E, =Kw a7
T=KIl,=A, +fw™ (18)
P.=E Il -12R =Tw (19)

For a given G, the maximum power,fAs equal to maximum of y*l4m
values. At maximum power condition, the currenkjs voltage is . Hence as a
function of G, R, is;

Pn(G) =Vgm(G) I gm(G) (20)

Using equations (14-20) firstly shaft speggand back emf £ at maximum
power are calculated for a given G (irradiance)esenvalues also depend on pump

load.
When motor input values (current and voltage) esesformed to PV side

by use of D, the following equation is obtained:
(ng_Ra) Dr%]+(|nga+Ra)D_(|nga+Ebm):O (21)

The positive root of equation (21) is equal tg DHence using equations
(14,15) motor input values are obtained. And therfggmance can be analyzed
under MPPT condition. For normal system without MIPPV output current and
voltage values are equal to those of motor input.

For analysis, PV pumping system is simulated bagedatlab/Simulink
program environment. These results are shown by figh. For the average
mechanical power at sampled irradiance levels, ¥ with MPPT improves the
system performance compared to normal system. Mamrt power (Ro=Eala )
matches to PV maximum power point for overall ifaate levels.

Also using MPPT, higher speed and torque are peovit same irradiance
conditions. Assuming least operating torque of eaysis equal to 2 Nm, normal
system must wait until irradiance gets to 0.4 plnevéas for system with MPPT,
approximately 0.2 pu irradiance level is sufficieatactively operate the system.
Thus active operating region of pumping systenxgaaded by MPPT.
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4. NONLINEAR AUTOREGRESSIVE MOVING AVERAGE
(NARMA-L2) CONTROLLER

NARMA-L2 is one of the popular neural network atelstures for prediction and
control. The principle idea of this control scheiseto apply the input output
linearization method where the output becomes eafirfunction of a new control
input [22].

Basically, there are two steps involved when usiRMA L2 control:
system identification and control design. In thetsyn identification stage design, a
neural network of the plant that needs to be cdetiois developed using two
subnetworks for the model approximation. The nekwisrthen trained offline in
batch form using data collected from the operatibthe plant. Next, the controller
Is simply the rearrangement of two subnetworkshefgilant model. Computation of
the next control input to force the plant outputfédow a reference signal is
materialized through simple mathematical equation.

4 1NARMA-L2 Plant Model Identification

In this work, the ANN architecture is applied wittie aid of the Neural Network
Toolbox of MATLAB software. The identification cabe summarized by the
flowing:

The model structure used is the standard NARMA 2§ adapted to the
feedback linearization of affine system. A comparfiarm system (control affine) is
used as the identification model, i.e.:

y(k+1):f[y(k)’y(k_]) ..... y(k—n+1),u(k—1)}+g[y(k),y(k—]) ..... y(k—n+1),u(k—1)}'u(k) (22)

In essence, the NARMA-L2 approximate model will p@rameterized by
two neural networksf and g that will be used to identify the system of EqR)(2
ie..

Ik +16) = ]:[y(k),y(k—l) ----- y(k—n+1),U(k—1)}+g{y(k),y(k—1) ----- y(k—n+D,U(k—1)}u(k) (23)

The two subnetworks are used for the model appratkim; the first
multilayer neural network (MLNN1) and the second ltitayer neural network
(MLNN2) , which are used to approximate nonlintarctions f and g respectively.

The plant model identification in NARMA-L2 Contrdtarts off with a
dataset of input output data pairs collected ushey plant mathematical model.
Then, the neural nets model is trained and valiidtere, the MLNN1 subnetwork
is a feedforward neural network with five hiddegdawith p neurons of hyperbolic
tangent (tanh) activation function and an outpyetaof one neuron with linear
activation function. Also, the MLNN2 subnetworkasfeedforward neural network
with g tanh hidden layer neurons and one outputareu

For each subnetwork, the number of past outputdhtha past input m;
which compose the input vector and the number afores (p and q) of the hidden
layer are determined. Subsequently, the selectechiheetwork structure is trained
using the input pattern and the desired output fiteendataset. Here, the parameters
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(weights and biases) of the two MLNN subnetworlat fbroperly approximate the
nonlinear modeling representing the optimized PVtangump system power
regulator is estimated.

Finally, to measure the success at approximatiagiyimamical system plant
model using the neural network model, the predicéoor ¢ should be uncorrelated
with all linear and nonlinear combination of pasputs and outputs. Thus, the
validation and cross validation tests are carristito ascertain the validity of the
obtained neural network model [23-24].

4.2. NARMA-L2 Controller Design

There are two neural networks are used which dledchand g. Each one is a feed
forward with three layers, i.e., an input, a hiddem an output layers. The input
layer of f network has two nodes for the output ppand a bias signal of 1.0. The
input layer of g network has two nodes for the datyo and a bias signal of 1.0. The
hidden layer has three nodes. The output layephBsone node. The output signal
represents the duty ratio signal for the maximunvgrgpoint.

The NARMA-L2 controller design is uncomplicated.elTbontrol action can
be simply implemented using the obtained NARMA-L2dal based on Eq. 23 in
which the functions f and g are defined. In ordeatta system output, y(k+1), to
follow a reference trajectory,(k+1), we set: y(k+1) = yk+1). The NARMA-L2
controller is designed through substituting y(kwiidh y,(k+1) in Eq. 23. Then the
resolving controller output would have the form of:

yr(k+1)—f[y(k),y(k—]) ..... y(k=-n+2,u(k - 2,..., u(k—m+l)] (24)
aly(k),y(k - D,...y(k —=n+1),u(k - J,...,.u(k - m+1)]

Figure 7 shows the block diagram of NARMA-L2 cotisowhich clearly a
rearrangement of the NARMA-L2 plant approximatedieio

u(k) =

Fr

reference

mmultilayer Meural
Metworks

()

rmultilayer Meural

Metwotks g_.,®—

(g)

FARMA-LY controller

Delay |

Delay |4

Fig. 7: NARMA-L2 controller schematic.



PERFORMANCE IMPROVEMENT OF A PHOTOVOLTAIC ... 1139

5. SYSTEM CONFIGURATION

The main objectives of the proposed NARMA contnoliee to track and extract the
maximum available power from PV generator feedirganpump system. That is
done by adjusting the suitable value of the dutiorto give the maximum power.
The NARMA controller output signab is given by:

P (k+D~f[P (K).P, (k=1),....P (k=n+1,D(K), D(k~D),... D(k -m+)]

D(k) =— (25)
§|P, (),P, (k=1),...P_(k-n+1),D(k), D(k -1),....D(k -m+1)| D(k +1)

The block diagram of the PV generator motor-pungiesy with the MPPT
algorithm and the proposed NARMA controller is simaw Fig. 8. The entire system
has been simulated on the digital computer usiegnigural networks tool box in
Matlab/Simulink [25] software package.
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%
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Fig. (8): Block diagram of the PV generator mgtamp system with the MPPT
algorithm and the proposed ANN controller.

6. SIMULATION RESULTS

Computer simulations have been carried out in oraerlidate the effectiveness of
the proposed scheme. As mentioned previously therallenetworks are trained

offline and in batch form. We have used 5 hiddegreda and 10000 sample data,
which are generated to train the network. 100 imgiepochs and employing training
as a training function were enough to get goodlt&siihe training, validation and

testing data of the ANN controller are shown insF8g 10 and 11 respectively. The
performance of the proposed system has been testeda step change in solar



1140 Ahmed. M. Kassem

insulation level. Thus, the solar insulation leasbumed to vary abruptly between
400 W/nt and 800 W/rh as shown in fig. 12, which mean that the reference
maximum power vary also abruptly between 480 watis 635 as shown in fig. 13.
Figs. 13-17 illustrate the dynamic responses of dhtial and reference power,
armature current, shaft speed, duty ratio and am@atoltage respectively for both
PID controller and the proposed ANN controller.

It has been noticed in the figs 13-17 that as thlarsinsulation level
increases from 600 W/mto 800 W/m, the power output of the PV-generator
(reference power) will increase related to the mmaxn power algorithm, the duty
ratio will increase such that the output powerhaf DC-DC converter equal the PV-
generator maximum power, also both armature cuaedtvoltage will increase to
meet the increasing in power and by the way theomshaft speed will increase.
And vice versa if the solar insulation level dese=a The response of the ANN
controller is compared with the PID one for the sasanditions. Tuning of the PID
controller was done by trial and error. In addititrese figures show that the power
delivered to the motor-pump system follow the PVxmmaum output power with
small settling time and with zero steady statererdso these figures indicate that
the dynamic responses based on the proposed ANMNoten is better than the
conventional PID controller in terms of fast resp@@and small maximum overshoot.

Simulation results show also that a motor pumpesgstan be supplied from
a PV-generator with the maximum available powerictvlis needed by the load.

7. CONCLUSIONS

In this study, the ANN controller has been usedrier to design a state feedback
static controller for a PV pumping system. The coligd system consists of a PV
generator that supplies a DC motor pump systemugtrobuck-boost DC-DC
converter. The control objective aims to track apdrate the motor-pump system at
the MPPT of the PV generator. This is carried eatcontrolling the duty ratio of the
DC-DC converter. The results show that the MPPhnapes add about 38% more
performance than at normal condition. The resulé® ahow that the maximum
power tracker is achieved with zero steady stata @and with settling time less than
one second and accurate tracking performance optbposed system has been
achieved. Also the results show that the propositll Aontroller has significantly
better performance than the classical PID controlle
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