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ABSTRACT 

     This paper introduces a new ECG signal compression algorithm based on modulating 

the ECG signal DWT coefficients with a proper mask constructed using the foveation 

principle. The constructed mask is a selective mask that gives a high resolution at a certain 

point (fovea) and falls down away from this point. The wavelet foveation of the ECG 

signal leads to decreasing the amount of information contained in the signal. So, the value 

of the foveated ECG signal Entropy will be decreased which by turn will increase the 

Compression Ratio (CR).The ECG signal after wavelet foveation is coded using Huffman 

codes; namely optimal selective Huffman coding, adaptive Huffman coding and modified 

adaptive Huffman coding. The performance of each coding technique is measured based 

on the CR, time cost and computational complexity. 

Keywords: Wavelet Foveation; Optimal selective Huffman Coding; Adaptive Huffman Coding; 

Modified Adaptive Huffman Coding and Lossless compression. 

1. Introduction 

ECG signal has an important role in diagnosis of heart diseases. ECG compression has 

a great importance to reduce storage requirements and/or the transmission rate for ECG 

data transmission over telephone lines or digital telecommunication networks. The desired 

objective is to provide a high-quality reconstruction of electrocardiogram signals at low bit 

rates and acceptable distortion levels. Many algorithms for ECG data compression have 

been proposed in the last three decades [1] – [18] to achieve high compression ratios and 

good signal quality without affecting the diagnostic features in the reconstructed signal. 

The current technologies provide sufficient space to store or transmit data, so now it is no 

more a big problem. However the continuous effort to reduce the time requirement has 

made the ECG data compression more focused and thus has received much attention. 

Lossless compression schemes [12]-[14], are preferable than lossy compression 

schemes in biomedical applications where even the slight distortion of the signal may 

result in erroneous diagnosis. The application of lossless compression for ECG signals is 

motivated by the following factors; 

 A lossy compression scheme is likely to yield a poor reconstruction for a specific 

portion of the ECG signal, which may be important for a specific diagnostic 

application. Furthermore, lossy compression methods may not yield diagnostically 

acceptable results for the records of different arrhythmia conditions. It is also difficult 

to identify the error range, which can be tolerated for a specific diagnostic application.  
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 In many countries, from the legal point of view, reconstructed biomedical signal after 

lossy compression cannot be used for diagnosis [15]. 

  Hence, there is a need for effective methods to perform lossless or near lossless 

compression of ECG signals. The near lossless compression schemes proposed in this 

paper can be applied to a wide variety of biomedical signals including ECG and they yield 

good signal quality at reduced compression efficiency compared to the known lossy 

compression methods. In this paper it is proposed to compress the ECG signal using the 

wavelet foveation criteria [16]-[17]. The wavelet foveated ECG signal can be obtained by 

a space variant smoothing process where the width of the smoothing function used is small 

near the fovea point and gradually expanded as the distance from the fovea point increases. 

Then the foveated ECG wavelet coefficients are coded using different coding schemes, 

which all are based on Huffman coding [18]-[19]. The basic idea in Huffman coding is to 

assign short code-words to those input symbols with high probabilities and long code-

words to those with low probabilities [20]. 

The block diagram of the proposed approach is indicated in Figure (1). It shows that 

firstly the ECG signal is preprocessed and split into beats segments by detecting the QRS-

complex. Based on the characteristics points provided by the first stage a separate module 

computes the foveation mask, which its parameters are mainly influenced by the width of 

region-of-interest. Then subsequently the DWT of each separate ECG beat is performed 

and modulate the resulted coefficients by multiplying those with the corresponding 

foveation mask. The number of the resulted (masked) DWT coefficients will decrease 

considerably. Lastly one of the listed coding schemes is used to code these masked DWT 

coefficients. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig1. The Proposed Compression Algorithm 

2. QRS Detection 

There are many schemes that have been introduced in literature for QRS-complex 

detection which is the most significant features of the ECG signal. The difference between 

these schemes is in the used QRS detection method and the ability of the scheme to deal 

with all ECG signals without any human control. Here, the proposed scheme was tested on 

records from the MIT-BIH arrhythmia database. Numerical results show that the used 
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detection process is excellent. Figure (2) illustrates an example of detecting the QRS-

complexes of record number 103 extracted from MIT-BIH database. 
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Fig. 2. An example of detecting the QRS-complexes of record number 103 

extracted from MIT-BIH database. 

3. Foveation Criteria 

The spatial resolution of the human visual system is highest at the center of the retina 

(fovea), and decreases rapidly away from it. Formation of signals that resemble this 

spatially variant property is called foveation. In space-variant foveation systems, the Area 

Of Interest (AOI) is maintained at high resolution, while areas away from it where precise 

detail may be less critical, are coded at lower resolution. With this structure, the average 

resolution is considerably lower than that obtained using standard uniformly sampled high-

resolution structure. Thus, considerable increase in compression ratio can be achieved. A 

wavelet foveated ECG signal is obtained from a uniform resolution signal through a space-

variant smoothing process where the width of the smoothing function is small near the 

fovea but gradually increases towards the peripheral. In one dimension, the foveation of a 

function  RRf :  is determined by a smoothing function RRg : , and a weighting 

function 0: RR . Foveation of a signal has been modeled as space-variant 

smoothing as defined in [16] according to:  
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where, )(tf  is the foveated signal,   xx)(  is the weighting function and g(x) 

is the smoothing function. Both α and ȕ are non-negative parameters. α is called the rate as 

it determines how fast resolution falls off, Ȗ is called the fovea as it determines the point of 

highest resolution, and ȕ is called the foveal resolution as it determines the resolution at the 

fovea. In this paper ȕ is chosen to be unity and α is determined by the width of the QRS 
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region and Ȗ is the position of the R point of the ECG period. The weighting function g(x) 

is formulated as 

     
2
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where, a  is the height of the smoothing curve's peak, b is the position of the center of the 

peak, and c controls the width of the "bell". The foveation operator can be treated as an 

integral operator 

  dttftxkxTf 

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                                               (3) 

where, ),( txk  is the kernel of  t or the wavelet foveation mask. This mask is a 2D matrix 

as shown in Figure (3). Figures (4) and (5) show the 1'st, 120'th and 480'th rows of the 

mask matrix and the contour plot of the mask kernel, where the fovea point at sample 120 

of the ECG signal. To have a wavelet foveated ECG signal in time domain a certain ECG 

beat is multiplied by the accompanied mask as:  

  SkY                                                                              (4) 

where k is the foveation mask and S is the ECG signal to be foveated. The ECG signal and 

the resulted foveated ECG signal are shown in Figure (6). We subsequently perform DWT 

decomposition of the ECG segments and modulate the resulted coefficients by multiplying 

them by the corresponding mask. 
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Fig. 3. The mask matrix in time domain 
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Fig. 4. The 1'st, 120th and 480th rows of the mask matrix. 
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Fig. 5. The kernel plotted as an image (darker pixel corresponds to a larger value) 

together with its contour plot. Observe that it is smooth except at the origin. 
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Fig. 6. The original and time domain foveation of the 1'st beat of record 100. 
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4. The Effect of Foveation on The Entropy of The ECG Signal 

To explore the effect of foveation on the ECG signal entropy the following example is 

considered. Consider random symbols levels of signal source S as Nsss .....,, 21  and the 

self-information for each level is  as  

i

i

i p
p

sI log
1

log)(                                   (5) 

where, ip  denotes the probability of occurrence of level is . Entropy is the average self-

information of all levels and is defined as:  

ii

i
p

pSH
1

log)( 2                     (6) 

The entropy )(SH  of the mean normalized ECG signal is calculated considering the 

variation of α, and ȕ parameters of the function   xx)( . Figures (7) and (8) 

show the effect of α and ȕ parameters on )(SH  and PRD of the foveated ECG signal. It is 

cleared from the two figures that α and ȕ have high effect on )(SH  and PRD of the 

foveated ECG signal. 

 

 
Fig. 7. The Entropy of the foveated signal versus α and ȕ. 
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Fig. 8. The %PRD of the foveated signal versus α and ȕ. 

5. Coding Algorithms 

Three coding methods, based on Huffman coding scheme, are adopted for coding the 

foveated ECG signal. These coding methods are optimal selective Huffman coding, 

adaptive Huffman coding and modified adaptive Huffman coding. Here, we present and 

analyze the performance of the listed coding methods. The performance of each method is 

measured based on the compression ratio CR and the compression time. The CR is 

calculated using the following equation.  

  

streamoutputoflength

nxofLength
CR

11*)(
                              (7) 

where, )(nx  is the original signal sample and each sample is represented by 11 bits. The 

compression time is the time consumed in compressing the ECG signal. Considering 

practical applications, ECG compression algorithm should have an adequate compression 

rate and must be operated in real-time. So the compression time is considered here as a 

performance factor. 

5.1. Optimal selective Huffman coding 

     Huffman code is the statistical code that provably provides the shortest average 

codeword length. It is closer than that of any other statistical code to the theoretical 

entropy bound. Thus, it offers the best compression performance. Moreover, Huffman code 

is prefix-free (i.e., no codeword is the prefix of another one) and, therefore, its decoding 

process is simple and easy to implement. The major problem that comes out when 

Huffman coding is used in compression is the large hardware overhead of the required de-

compressor. Specifically, the increase in the number of coded symbols causes an 

exponential increase in the number of code-words that should be decoded. For that reason, 

the approaches described in [18]-[19] and [21] encode only a few of the distinct symbols. 
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Specifically, among the k symbols ksss ....,, 21 , only the m most frequently occurring 

ones, msss ....,, 21  (m < k), are Huffman encoded, while the rest, kmm sss ....,, 21  , 

remain uuencoded. Specifically, according to the optimal selective Huffman approach, 

m+1 Huffman code-words are used, m for encoding the m most frequently occurring 

symbols and 1 for indicating the unencoded symbols. The occurrence frequency of the 

latter codeword is equal to the sum of the occurrence frequencies of all the uuencoded 

symbols. An example of constructing Huffman codes and optimal Huffman codes are 

shown in Table (1) and Figure (9). Table (1) includes the compressed data, the frequency 

of occurrence of each of the possible symbols and the code-words of symbols based on 

Huffman coding and optimal Huffman coding. Figure (9) illustrates the full Huffman tree 

and the optimal selective Huffman tree.  

Table 1.  

Data, occurrence frequency, code-words and compressed data of Huffman 

coding and optimal selective Huffman coding 

Data symbols 
Occurrence 

frequency 

Code words 

Huffman 

codes 

Optimal selective 

Huffman codes 

1111 0101 0000 0101 0101 9/20 1 1 

001 0101 0000 1111 0000 5/20 01 01 

0000 0101 0101 0000 1111 3/20 001 001 

0101 0010 0000 0101 0001 2/20 0001 000 001 

0001 0101 1111 0101 0010 1/20 0000 000 010 

Compressed data using 

Huffman coding 

001 1 01 1 0001 1 01 001 01 1 1 01 1 0000 01 1 0001 1 001 

1 

(40 bit) 

Compressed data using 

optimal selective 

Huffman coding 

001 1 01 1 0000001 1 01 001 01 1 1 01 1 000010 01 1 

000001 1 001 1 (47 bit) 
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(a)                                                                                         (b) 
 

Fig. 9. (a) The full Huffman tree   (b) the optimal selective Huffman tree 

5.2. Adaptive Huffman coding 

      In this section a dynamic Huffman coding called adaptive Huffman coding technique 

has been introduced. It permits modifying the code as the symbols are being transmitted, 

with equal initial values of probabilities. This allows one-pass encoding and adaptation to 

changing conditions in data. The benefit of one-pass procedure is that the source can be 

encoded in real time, though it becomes more sensitive to transmission errors, since just a 

single loss ruins the whole code. For example, suppose we have 4 symbols a, b, c and d 

which occur as “abbbccdccc". Initially all the symbols will be having a frequency count of 
1 and initial tree will be built as show in Figure (10-a), symbol 'a' will be encoded as 01 

and its frequency count will be incremented to 2. The tree is updated as in Figure (10-b) 

and this time we will encode 'b' as 101. This process continues until all the symbols are 

encoded. As the frequency count of a symbol increases, bits needed to encode the symbol 

decreases. So, in adaptive Huffman coding bits needed to encode a symbol increase or 

decrease dynamically and hence the name Dynamic Huffman Encoding arises. The codes 

for the 4 symbols a, b, c and d of the sequence “abbbccdccc" are 

 

a b b b c c d c c c 

 

01 101 00 1 111 000 011 01 00 1 

 

As a result, the final bit stream will be 0110100111100001101001. 

6. Modified Huffman Encoding 

In some cases the number of symbols S is too much, that should be coded using 11-

bits for ECG signal or 8-bits for Alphabet messages. For coding such signal using adaptive 
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Huffman coding, the initial code for each symbol will be 11-bits or 8-bits for ECG signal 

and Alphabet messages respectively. That means there is no reduction in bits required to 

code the signals. Add to that, the decrease in symbol code length is reduced slowly with 

the increase in a certain symbol occurrence because of the long initial code for symbols. 

Last challenge appears in using adaptive Huffman coding is that, in case a certain symbol 

appears lately, adaptive Huffman coding use a long code to represent that symbol longer 

than the initial code.  

     To overcome all these challenges a new and a qualified coding algorithm called 

Modified Huffman Coding is proposed in this work for compressing the ECG signal. In 

this technique the initial code for all symbols will be fixed whenever the symbol appears. 

Simply the Modified Huffman Coding system is explained in the flow chart shown in 

Figure (11). Here, a new symbol will be the first symbol appears in the transmitted 

symbols, called N_SYM which declare the appearance of a new symbol. This symbol code 

will send each time a new symbol appear, followed by a standard representation of the new 

appeared symbol (i.e.  ASCII code for Alphabet messages or 11 bit PCM for ECG signal). 

Table (2) shows the sequence of symbol coding using the modified Huffman coding 

applied the sequence “abbbccdccc”. The codes for the 4 symbols a, b, c and d of the 

sequence “abbbccdccc" are 

  a   b  b  b  c  c  d  c  c  c 

100 101 01 11 110 001 111 001 01 10 

As a result, the final bit stream will be 1001010111110001111001001001. 

2. Experiments and Results 

      In this section, we study the performance of the presented three coding systems. The 

MIT-BIH normal Sinus Rhythm Database [22] was used to study the proposed coding 

systems. In our experiments a 10-min ECG recordings (record MIT100) which is a normal 

ECG record was applied in the coding experiments as a test signal. The sampling 

frequency is 360 Hz with resolution 12 bit per sample. In all experiments the signal is 

wavelet transformed using bior3.9 mother wavelet and the decomposition process is 

carried out up to the third level. The ECG, after wavelet foveation is coded using optimal 

selective Huffman coding, adaptive Huffman coding and modified adaptive Huffman coding. 

     The first experiment is adopted to explore the performance of the optimal selective 

Huffman coding. Figure (12) shows the first 2048 samples of record MIT100 compressed 

by optimal selective Huffman coding system. The figure contains the original ECG signal, 

reconstructed ECG signal and the error signal. The second experiment discusses the effect 

of number of the selected Huffman codeword optimal selective Huffman coding system 

over the compression rate and compression time. Table (3) illustrates the resulted CR, 

coding time and computational speed at different number of the selected Huffman code 

words. The computational speed is calculated using the following equation. 

Comp. speed = No. of coded samples / Computation time                 (8) 

It is observed from the results stated in Table (3) that computation time is significantly 

increased with the increase in the number of the selected Huffman code words. Figure (13) 

shows the relation between the compression ratio, the compression time and the number of 

the selected Huffman code words. 
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Table 2.  

The coding sequence using modified Huffman coding for the example of Figure (11). 

Stream 

Symbols 

New symbol a b C d 

Prob. Code Prob. Code Prob. Code Prob. Code Prob. Code 

Standard    "00"  "01"  "10"  "11" 

a 1 "1" 1 "0" 0 "" 0 "" 0 "" 

b 2 "1" 1 "00" 1 "01" 0 "" 0 "" 

b 2 "0" 1 "10" 2 "11" 0 "" 0 "" 

b 2 "01" 1 "00" 3 "1" 0 "" 0 "" 

c 3 "1" 1 "000" 3 "01" 1 "001" 0 "" 

c 3 "1" 1 "000" 3 "01" 2 "001" 0 "" 

d 4 "1" 1 "0101" 3 "00" 2 "001" 1 "0100" 

c 4 "11" 1 "001" 3 "10" 3 "01" 1 "000" 

c 4 "11" 1 "001" 3 "01" 3 "10" 1 "000" 

Table 3.  

The resulted CR, coding time and computational speed at different number 

of the selected Huffman code words. 

Number  selected  code words coding time Computational  Speed CR 

4 4.9 897.4 4.32 

12 10.6 415.5 4.55 

20 21.8 201.2 4.71 

28 38.5 114.0 4.80 

36 61.0 71.9 4.89 

60 160.2 27.4 4.95 

100 436.0 10.1 4.99 

140 856.3 5.1 5.01 

180 1427.8 3.1 5.01 

     The third experiment is to explore the performance of the adaptive Huffman coding 

system and the modified adaptive Huffman coding system. Figures (14) and (15) show the 

first 2048 samples of record MIT100 compressed by adaptive Huffman coding system. The 

figures contain the original ECG signal, reconstructed ECG signal and the error signal 

using the two coding systems respectively. 

     The fourth experiment is a comparative analysis between optimal selective Huffman 

coding algorithm, adaptive Huffman coding algorithm and modified adaptive Huffman 

coding algorithms with and without wavelet foveation, the results are shown in Table (4). 
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     The fifth experiment is a compression results using optimal selective Huffman coding 

algorithm, adaptive Huffman coding algorithm and modified adaptive Huffman coding 

algorithms based on optimal EPE thresholding, the results are shown in Table (5). 

 

 
Fig. 10. Adaptive Huffman coding system 
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Fig. 11. Modified Huffman coding system flow chart. 
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Fig. 12. Compression of Record 100 using optimal selective Huffman coding, a) 

Original signal. b) Reconstructed signal. c) Error signal. 
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Fig. 13. performance of Compression using optimal selective Huffman coding. 
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Fig. 14. Record 100 Compression using adaptive Huffman coding, a) Original 

signal. b) Reconstructed signal. c) Error signal. 
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Fig. 15. Record 100 Compression using modified adaptive Huffman coding, a) 

Original signal. b) Reconstructed signal. c) Error signal. 
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Table 4.  

Comparison between the coding systems with foveation of record 100 

 CR PRD PSNR 
Comp. Speed 

(Sample / sec.) 

With 

Foveation 

OHSC 4.99 0.273 53.3 146 

AHC 5.25 0.266 53.5 1.2833 

MAHC 4.84 0.266 53.5 3.8437 

Without 

Foveation 

OHSC 3.42 0.114 60.8 430 

AHC 3.58 0.076 64.4 4.2 

MAHC 3.36 0.079 64.1 16.2 

Table 5.  

The coding systems based on optimal EPE thresholding for record 

MIT100 

 CR PRD PSNR 

Foveation  and 

optimal EPE 

thresholding 

OHSC 7.66 0.482 48.4 

AHC 8 0.502 48 

MAHC 6.87 0.699 45.1 

3. Conclusions 

In this paper a three coding systems for compressing ECG signals based on wavelet 

foveation principle. The idea of utilizing the foveation principle is the reduction in the 

amount of data contained in the foveated ECG signal. There are many advantages of the 

proposed approach, such as the approximation error (resulted from foveation mask) is 

spread non-uniformly along the beat waveform, exhibiting lower values around critical 

clinical importance points. The experiments show that the modified adaptive Huffman 

coding which is proposed in this paper achieved the best performance over the other 

coding systems. The work presented, in this paper may be helpful for designing efficient 

ECG compressor. A future work of this paper, the foveation operator may be realized 

using lookup tables which can be simplified by binary approximations, thus greatly smooth 

the implementation method. 
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 ΔنيΒم ΔبائيήϬب الكϠرسم الق Γلضغط إشار Γجديد Δميίخوار 
ϥاϤتكويد هوف Εتقنياϭ ΕاΠويϤال ήى أساس تنقيϠع 

 ϡ. أحϤد ίكήيا  –أ. Ω. صΒاΡ محϤد أحϤد    –أ. Ω. محϤد أبوίهاΩ أبوίيد  
 ΔئيΎبήϬϜل΍ ΔدسϨϬل΍ سقسم  ΔدسϨϬل΍ ΔيϠسك  ρϮأسي ΔمعΎسج  ήμم 

 الΨϠϤص العήبى
خίέ΍ϮميΔ جديدΓ لπغط ·شέ ΓέΎسم ΍لقϠب ΍لήϬϜبΎئيΔ مϨΒيΔ عϰϠ أسαΎ تϨقي΍ ήلϮϤيجΕΎ يعνή ه΍ ϩάلΒحث 

ΓέΎإش΍ .ϥΎϤفϮيد هϮϜت ΕΎيϨتقϭ هي ϩήقϨϤل΍ ΓέΎش· ΓحدϮم ήلدقه غي΍ دϨلدقه ع΍ من ϯϮمست ϰϠبأع ΰيϤتتϭ 
ΓήقϨل΍ Δلدق΍ من ϱϮأقل مستϭ ،عن Ύبعدن ΎϤϠك .ΓήقϨل΍ ϱήμΒل΍ ϡΎظϨل΍ ϥΎيعي لإنسΒلط΍ (NVS) ΔيعΒρ ΎϬل 

ήتغيϤل΍ ϝΎجϤل΍ حيث Δلدق΍ ϱϮمست Ϯي هϠأع΍ في  ΰكήϤل΍))ΓήقϨل΍  Δلدق΍ من ϱϮأقل مستϭ Ϯنح ΎϨϬتج΍ ΎϤϠك
دϥϭ ب ΍لϤج΍ ϝΎل΍ ϱήμΒلϤعϮϠمΕΎ في لϠحد من سήيعϭ ΔبسيطΔ يϮفήρ ήيقΔ في ΍لدقΔ ه΍ ΍άلتίϮيع .΍أ΍ήρف
Δحيπلت΍ بϱدϤل΍ حجم Δلدق΍ ϱϮمست ϭأ ϱήμΒل΍ ΰكήϤل΍ ϝϮح. ήقيϨلت΍ ب  فيϠلق΍ سمέ ΓέΎش·  ϱΩΆي ΔئيΎبήϬϜل΍

ϰض ·لϔخ ΕΎمϮϠعϤل΍ ΔيϤفي ك ΓΩέ΍Ϯل΍ ΓέΎإش΍. يϨعϤب  ήسآخ ( ΕΎمϮϠعϤل΍ ΔيϤكEntropy)  ΔصΎΨل΍ب ΓέΎإش
ت΍ ΩϮϜاشΓέΎ بعد ΍لتϨقيή  .نس΍ ΔΒلπغط سϮف يΰيد من έسم ΍لقϠب ΍لήϬϜبΎئي΍ ΔلϨϤقϩή سϮف تقل ϭبΎلتΎلي

΍لϤتϜيف  هϮفϥΎϤ تϮϜيدϭ  (Optimal Selective Huffman Coding) هϮفϥΎϤ بΎإنتقΎء ΍أمثل لتϮϜيد
((Adaptive Huffman Coding ϭيدϮϜت ϥΎϤفϮه  ϝعدϤل΍ يفϜتϤل΍(Modified Adaptive Huffman 

Coding .)αΎيد تم قيϮϜء ت΍Ωأ ΔيϨكل تق ϰل· ΍ΩΎϨست΍ ΔيϨمΰل΍ Γήتϔل΍ϭ غطπل΍ ΔΒغط نسπϠل. ϰل· ΓέΎإش΍ έتجدϭ 
, لάلك فإ΍ ϥلافΎقدπ Γغط΍ ΕΎلأقΏή مΎ يϥϮϜ ·لي تقϨي هي ΍لتϮϜيد ΍لϤعتϤد΍ ΓلتϨقيή متϮΒعΔ بتقϨيΔ ΕΎأϥ عϠϤي

έάلج ΔيϮΌϤل΍ ΔΒسϨل΍ سطϮمت  ΕΎبعήمϕήϔل΍  ΔتجΎϨل΍  (PRD)΍يل جدΌض. ΔيϤقήل΍ ئجΎتϨل΍ ϥين أΒيد تϮϜت 
ϥΎϤفϮه ϝعدϤل΍ يفϜتϤل΍ ل يعطيπء أف΍Ωبين أ Δلثاث΍ ΔϤأنظ΍ يدϮϜتϠل. 

 

 ΍لϤتϜيف ΍لϤعدϝ , هϮفϥΎϤ , تϮϜيد΍لϤتϜيف هϮفϥΎϤ تϮϜيد, ΍إنتقΎء ΍أمثل لتϮϜيد هϮفϥΎϤ ,تϨقي΍ ήلϮϤيجΕΎ : كϤϠاΕ الΒحث
 .΍لافΎقدπ Γغط΍ ΕΎلتقϨي


