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ABSTRACT 

This paper presents the robust optimal shifting of eigen values control design and application for 

load frequency control. A method for shifting the real parts of the open-loop poles to any desired 

positions while preserving the imaginary parts is constant. In each step of this approach, it is 

required to solve a first-order or a second-order linear matrix Lyapunov equation for shifting one 

real pole or two complex conjugate poles respectively. This presented method yields a solution, 

which is optimal with respect to a quadratic performance index. Load-frequency control (LFC) of a 

single and two area power systems is evaluated. The objective is to minimize transient deviation in 

frequency and tie-line power control and to achieve zero steady-state errors in these quantities.  The 

attractive feature of this method is that it enables solutions to complex problem to be easily found 

without solving any non-linear algebraic Riccati equation. The control law depends on finding the 

feedback gain matrix and then the control signal is synthesized by multiplying the state variables of 

the power system with determined gain matrix. The gain matrix is calculated one time only and it 

works over wide range of operating conditions. To validate the powerful of the proposed optimal 

pole shifting control, a linearized model of a single and two interconnected area load frequency 

control is simulated.  

Keywords: Optimal pole shifting controller; Load frequency control; Pole placement control. 

1. Introduction 

Design a feedback freedom may be used to achieve additional advantageous control 

properties. One of such desirable properties for feedback is the optimally for a quadratic 

performance index. Robustness properties of this optimal feedback gain have been 

presented. A problem has been considered for converted into reduced-order linear 

problems. In each of these problems, a first-order or a second-order linear Lyapunov 

equation is to be solved for shifting one real pole or two complex conjugate poles, 

respectively [1]. Power system oscillation is usually in the range between 0.1 Hz to 2 Hz. 

Improved dynamic, stability of power system can be achieved through utilization of 

supplementary excitation control signal [ 3. M.K. El-Sherbiny, G. El-Saady, A.M. Yousef, 

Robust controller for power system stabilization, MEPCON 2001, Helwan Unversity, 

Cairo, Egypt, 29–31 December 2001, pp. 287–291.2,3]. The method is based on the mirror-

image property. The problem of designing a feedback gain that shifts the poles of a given 

linear multivariable system to specified position has been studied extensively in the past 

decade [4 ,5]. Many control strategies have been proposed based on classical linear control 

theory. However, because of the inherent characteristics of the change loads, the operating 

point of a power system may change often during a daily cycle. The dynamic performance 

of power systems are usually affected by the influence of its control system [6-8]. It has 

been recognized that the complexity of a large electric power system has an adverse effect 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V30-48NKRDW-1&_user=1052409&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000051060&_version=1&_urlVersion=0&_userid=1052409&md5=3f7b33eb96802e4e15cb2571e648574d#bbib3
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V30-48NKRDW-1&_user=1052409&_coverDate=09%2F30%2F2003&_rdoc=1&_fmt=full&_orig=search&_cdi=5716&_sort=d&_docanchor=&view=c&_acct=C000051060&_version=1&_urlVersion=0&_userid=1052409&md5=6963270a859ce1d8f1e9601b56388f60#bib1
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on the systems dynamic and transient stability, and its stability can be enhanced by using 

optimal pole shifting control. Further, the two area power system, composed of steam 

turbines controlled by integral control only, is sufficient for all load disturbances, and it 

does not work well. Also, the non-linear eff ect due to governor deadzones and generation 

rate constraint (GRC) complicates the control system design. Further, if the two area power 

system contains hydro and steam turbines, the design of LFC systems is important. There 

are diff erent control strategies that have been applied, depending on linear or non-linear 

control methods [9-10].  

In this paper a comparison between pole placement control and proposed optimal pole 

shifting controller is presented in single and two-area load frequency control.  

No Eigenvalues should have a multiplicity greater than the number of inputs.           

Calculate the feedback gain matrix K such that the single and two input system  

                                                                                                                 (1) 

The feedback control law:   

                                                                                                             (2) 

Applied to Eqn.(1) a closed-loop system will be obtained in the form 

  

With                                                                                                         (3) 

Consider .to be a closed-loop pole of Eqn.(3). and 

  is open-loop poles of Eqn. (1) for any  and , which satisfy the 

optimality condition of,  [1] can be given : 

                                                                                             (4) 

Where   is a positive real constant scalar.  

R is a positive definite symmetric matrix.  Then, for the following matrix algebraic 

equation:  

  .                                              (5) 

There exists a positive semi-definite real symmetric solution   satisfying  

  
Therefore, according to[1]: 

  

With I = 1,2,……, n and . Further, the feedback control law  

   Minimizes the following quadratic performance index: 

          

     
 

With     Q=2αP       
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2. Load Frequency Control Models 

2. 1. Single area model 

The load-frequency control plays an important role in power system operation and 

control. It makes the generation unit supply sufficient and reliable electric power with good 

quality. Fig. 1 shows the block diagram of single area load frequency control. The model 

considered here can be written in state equations form as follows: 
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Fig. 1. Block diagram of single area load frequency control 

2. 2. Two-Area Model 

The system investigated comprises an interconnection of two areas load frequency 

control. The model is steam- hydraulic turbines. The linearized mathematical models of the 

first order system are represented by state variables equations as follows [4]: 

For steam turbine area : 

1d1p1ptie1p1p1g1p1p11p

.

1 PT/kPT/kPT/kfT/1f 
 

1E1t1r1t1r1r1r1g1r1g

.

XT/K]T/KT/1[PPT/1P 
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1r1t1E1t1r

.

PT/1XT/1P 
 

11111111

.

/1/1/1 pgEggE UTXTfTRX 
 

 

For hydro turbine area: 

2d2p2ptie2p2p2g2p2p22p

.

2 PT/kP*12a*T/kPT/kfT/1f 
 

2221R2w2E21R2w2g2g

.

fRTT5./T]T5./1T5./1[X)]TT5./TT5./1(T5./1[PP 
 

2221R21R22r2E22E

.

fRTT/T]TT/TT/1[PXT/1X   
 

11212212

.

/1/1/1 prr UTfTRPTP 
 

 

The tie line power as: 

][ 2112

.

ffTPtie   
 

 The overall system can be modeled as a multi-variable system in the form of  

)()()( tLdtButAxx 


                 (6) 

 

Where A is system matrix, B and L are the input and disturbance matrices. 

 

 
)( and )( ),( tdtutx

 are state, control  and load changes disturbance vectors, 

respectively. 

 

 TtierEgErg PPXPfXPPftx  22221111)(
                        (7) 

 Tuutu 21)(                                                 (8) 

 Tdd PPtd 21)( 
                                             (9) 
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Fig. 2. Two-Area (Steam-Hydraulic Turbines) load frequency control 

3.   Optimal Pole Shifting Control 

3.1. Shifting one real pole 

A real pole λ = γ is to be shifted to the new position [3] which satisfies the 

optimality condition . The first-order model to be used is defined by: 

  and                                                                                                

Where   is the left eigenvector of    associated with λ, if the positive scalar α is: 

                                                                                                              (10) 

Then an explicit solution for the above reduced-other problem can be obtained by 

solution of the first-order Lyapunov equation. 

                                                                                        (11)  

Is given by      where: 

                                                                                                                  (12)  

Then the required parameters  can be calculated as      

and    then, the parameter rewritten as: 

,          and                                         (13) 

3.2. Shifting a complex pole 
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A complex conjugate pair of poles λ,  of Eqn.(3) is to be shifted to the new 

positions S; , which satisfy the optimality condition:                 . 

 Let positive scalar α as:                                                                                      

The second- order model  to be used is defined as: 

 

                       and                                            (14) 

Where  is the left eigenvector of A associated with the pole     and 

the left eigenvector satisfied the equation: 

                                                                                                            (15) 

By solving the following second-order linear Lyapunov Equation of   Eqn. (11) 

 

                                                                                    (16) 

  

 The parameters    of the second-order optimal problem are obtained 

 

 ,             and                                                       (17) 

Therefore, the feedback controller   can be calculated from: 

 

                                                                                                            (18) 

Where: 

                                                                                                          (19) 

                                                                                                         (20) 

3.3. Shifting several poles 

Problem of shifting several poles may be solved by the recursive applications of the 

following reduced order optimal shifting problem 

                                                                                                            (21) 

                                                                                                                  (22) 

                                                                                      (23) 

 

With : 

                                                                                            (24) 

And 
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                                                                                           (25) 

From Eqn. (18), the feedback matrix  can be constructed by the summation of the 

optimal feedback matrix .  Also the resulting matrices Q and P can be constructed as 

shown by the summation of the matrices   and  , respectively.[1] 

  

      ,       , and                                                       (26) 

Where : 

  ,    ,   and         

4.  Pole Placement Control 

By using full-state feedback can shift the poles to the left hand side by (10-15)%. We 

could use the Matlab function  place to find the control vector gain K, which will give the 

desired poles.  

                                                                                               (27) 

Where: 

    A: system matrix. 

    B: input vector. 

    P: pole shifting vector. 

    K: control gain. 

A state feedback matrix K such that the Eigenvalues of    are those specified in 

vector P.  The feedback law of      has closed loop poles at the values specified in 

vector P. 

 

5. Digital Simulation Results  

5.1. Simulation of single area 

The normal parameters of single area power system are:  

         

.15,2,20/1.,5.12,25.1.,5.0.,2.0 SecTKRSecTKSecTSecT ppAAtg 
 

The A and B matrices of single area model are calculated as: 

 

 
The dominant poles can be rewrite as: 
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Where; 

 : damping coefficient 

: Frequency 

                                                                    (28)                                      

             

The settling time =72.7 sec. the desired value of the damping coefficient can be 

choosing as ζ = 0.82 to damping the oscillation of speed and constant imaginary part. The 
closed loop poles are specified as: 

ζ = 0.82 and   

From Eqn. (28) , calculate the  the new dominant eigenvalues can be 

calculated as follows 

  
The complete new poles are become as: 

  

  

  

And calculate the settling time decreased ( ) from 72.7 to 1 sec. 

 

Shifting complex poles  to , it can get:  

 

1.7040 

 

: left eigenvector which satisfy the Eqn (14) 

                  
 

Form Eq. (14)      

From Eqns. (15-16) 

   

   
Therefore, the solution of the corresponding second order Lyapunov equation is found  

From Eqn. (16) 

   
From Eq. (17) 
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From Eqns. (18-20), the feedback controller gain matrix can be calculated as: 

 

         
 

                   
 

            
Also, another shifting real pole from -0.0296  to -15 

Calculate K2, P2 and Q2 as last. 

                    

   From Eqn. (26) the   total, P total and Q total are calculated as follows: 

K =K1 +K2  , P=P1+P2   , Q=Q1+Q2 as follows: 

       
 

           1.0e+06 *  

The total control signal K is: 

              
Pole placement Control Design  
From Eqn.(27), desired vector P as:  P=[ -7.0811,  -0.6780 + 2.0534i,  -0.6780 - 2.0534i,  

-2.296]. The gain matrix K =place (   

  -27.4982   -1.1708   -0.7619  -95.9647] 

 Figure 3 shows the frequency deviation response due to 10% load disturbance of single 

area with and without controller. Fig. 4 depicts the frequency deviation response due to 

10% load disturbance of single area with pole-placement and proposed optimal pole-

shifting control. Fig. 5 displays the root-locus of the system without control. Fig. 6 shows 

the root-locus of the system with optimal pole-shifting control. Fig. 7 depicts the frequency 

 deviation response due to 10% load disturbance of single area with pole-placement and 

proposed optimal pole-shifting control at 50% increase in Tt and Tg.  Also, Fig. 8shows the 
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placement and proposed optimal pole-shifting control at 50% increase in Tp and Kp.  Table 

1 displays the eigenvalues calculation with and without controller. Table 2 depicts the 

settling time calculation at different load conditions. 

 

 

 

 

 

 

 

 

 

Fig. 3. Frequency deviation response due to 10% load disturbance of single area 

with and without controller. 

 

 

 

 

 

 

 

 

 

Fig. 4. Frequency deviation response due to 10% load disturbance of single area 

with pole-placement and proposed optimal pole-shifting control. 
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Fig. 5. Root-locus of the system without control 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Root-locus of the system with optimal pole-shifting  control  
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Fig. 7. Frequency deviation response due to 10% load disturbance of single area 

with pole-placement and proposed optimal pole-shifting control at 50% increase in 

Tt and Tg. 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Frequency deviation response due to 10% load disturbance of single area 

with pole-placement and proposed optimal pole-shifting control at 50% increase in 

Tp and Kp. 
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Table 1. 

 Eigenvalues calculation with and without controller. 

Operating 

point 

Without controller Pole-placement 

controller 

Optimal pole-

shifting 

Normal 

condition 

   -6.0811           

  -0.4780 + 2.0534i 

  -0.4780 - 2.0534i 

  -0.0296        

-7.0811           

  -0.6780 + 2.0534i 

  -0.6780 - 2.0534i 

  -2.2960         

-20.9998           

  -6.0811           

  -2.3821 + 1.8658i 

  -2.3821 - 1.8658i 

Increased 

50% of Tt, 

Tg 

-4.2808           

  -0.2115 + 1.6617i 

  -0.2115 - 1.6617i 

  -0.0296     

-5.3678           

  -0.7661 + 1.9001i 

  -0.7661 - 1.9001i 

  -1.4996         

-20.1695           

  -5.0664           

  -2.1407 + 0.7094i 

  -2.1407 - 0.7094i 

Increased 

50% of Tp, 

kp 

-6.1699           

  -0.4252 + 2.1711i 

  -0.4252 - 2.1711i 

  -0.0298      

-7.3832           

  -0.7409 + 2.1134i 

  -0.7409 - 2.1134i 

  -2.3099   

- -23.4841           

  -5.9806           

  -2.4271 + 1.8637i 

  -2.4271 - 1.8637i 

Table 2. 

Settling time calculation at different conditions. 

  

Case 

 

Without 

Control 

Pole-

placement 

controller 

Optimal 

pole-shifting 

Settling Time Normal 

condition 
  7 Sec. 1.3 Sec. 

Increased 50% 

of Tt, Tg 
  6 Sec. 2 Sec. 

Increased 50% 

of Tp, kp 
  5 Sec. 2 Sec. 

5. 2. Simulation of two-area model 

To validate the effectiveness of the proposed optimal pole shifting controller, the power 

system under study is simulated and subjected to different parameters changes. The power 

system frequency deviations are obtained. Further a various types of turbines (steam, and 

hydro) are simulated. Also a comparison between the power system responses using the 

conventional pole-placement control and the proposed optimal pole shifting controller is 

studied as follows and the system parameters are: 

Nominal parameters of the hydro-thermal system investigated [4], 

f=60 HZ  R1=R2=2.4HZ/per unit MW 

Tg1=0.08 s  Tr=10.0s      Tt=0.3s 

TR=10 s  D1=D2=0.00833 Mw/HZ 

T1=48.7s  T2=0.513s, Tg2=0.08s  

Tt1=Tt2=0.3s Kr1=Kr2=1/3,  Pd1=0.05p.u.MW,B1=B2=0.425 

 Pd2=0.0,Tr1=Tr2=20s, T12=0.0707s,  The integral control gain Ki=1 pu. 
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The A and B matrices of two- area model are calculated as: 

,      

 
Choosing ζ = 0.82 to damping the oscillation of speed and keep constant imaginary part. 

The closed loop poles are specified as: 

ζ = 0.82 and   

From Eqn. (28) , calculate the    

The new dominant eigenvalues can be calculated as follows 

  
 

1.878 

  
From Eqn. 18, the control signal calculated as follows: 

K1 = [  -0.5304    0.5748   -0.4447   -0.0179    0.3254    0.1813   -0.3899   -0.3712   -

1.1782 

             0.8987   -0.9871    0.7571    0.0294   -0.5506   -0.3046    0.6683    0.6279    

2.0182] 

 

Second complex pole (-2.0048 + 0.1867i)   shifted to (-3.0048 + 0.1867i), the control 

signal gain K2 can be calculated as in Eqn. 18 as follows: 

K2=[    0.1765   -3.7233    1.9848    0.0338    0.1275    0.1391    0.5495   -3.3969    

0.0123 

-0.7047   15.3609   -8.1609   -0.1318   -0.5098   -0.5542   -2.1648   13.8678   -0.031]  

Also, another shifting real pole from -0.0359 to 10 

  Control signal gain K3 is calculated as last. 

K3=  1000 *[   0.0002    0.1340   -0.0648    0.0006    0.0001    0.0001   -0.0002   -0.4154    

0.0060 

-0.0005   -0.3751    0.1815   -0.0016   -0.0004   -0.0002    0.0007    1.1630   -0.0167] 
 

   From Eqn. (26) the   total, P total and Q total are calculated as follows: 
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 =K1 +K2 +K3 , 

 P=P1+P2+p3 , 

 Q=Q1+Q2+Q3  as follows: 

The total control signal gain K from optimal pole-shifting controller  is:      

 
 

The pole-placement gain Kx as: 

 
Figure 9 shows the frequency deviation response of area-1 due to 5 % load disturbance 

with and without controller of two-area load frequency control model. Fig. 10 displays the 

frequency deviation response of area-2 due to 5 % load disturbance with and without 

controller of two-area load frequency control model. Fig. 11depicts the frequency deviation 

response of area-1 due to 5 % load disturbance with and without controller at 50% increase 

in Tt and Tg of two-area load frequency control model. Fig. 12 shows the frequency 

deviation response of area-2 due to 5 % load disturbance with and without controller at 

50% increase in Tt and Tg of two-area load frequency control model. Fig. 13 depicts the 

frequency deviation response of area-1 due to 5 % load disturbance with and without 

controller at 50% increase in Tp and Kp of two-area load frequency control model. Fig. 14 

shows the frequency deviation response of area-2 due to 5 % load disturbance with and 

without controller at 50% increase in Tp and Kp of two-area load frequency control model. 

Table 3 displays the Eigenvalues calculation with and without controller of two-area 

model. Table 4 describes the Settling time calculation at different load conditions of two-

area load frequency control model. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9. Frequency dev. Response of area-1 due to 5 % load disturbance with and 

without controller of two-area load frequency control model. 
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Fig. 10. Frequency dev. Response of area-2 due to 5 % load disturbance with and 

without controller of two-area load frequency control model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Frequency dev. Response of area-1 due to 5 % load disturbance with and 

without controller at 50% increase in Tt and Tg of two-area load frequency control 

model. 
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Fig. 12. Frequency dev. Response of area-2 due to 5 % load disturbance with and 

without controller at 50% increase in Tt and Tg of two-area load frequency control 

model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Frequency dev. Response of area-1 due to 5 % load disturbance with and 

without controller at 50% increase in Tp and Kp of two-area load frequency control 

model. 
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Fig. 14. Frequency dev. Response of area-2 due to 5 % load disturbance with and 

without controller at 50% increase in Tp and Kp of two-area load frequency control 

model. 

    Table 3.  

    Eigenvalues calculation with and without controller of two-area model. 

Operating 

point 

Without controller Pole-placement 

controller 

Optimal pole-shifting 

Normal 

condition 

-12.9116           

  -5.1552           

  -0.2571 + 2.7673i 

  -0.2571 - 2.7673i 

  -2.0048 + 0.1867i 

  -2.0048 - 0.1867i 

  -0.4375 + 0.0603i 

  -0.4375 - 0.0603i 

  -0.0359    

-14.0001           

  -7.1552           

  -0.4571 + 2.7675i 

  -0.4571 - 2.7675i 

  -2.5048 + 0.1866i 

  -2.5048 - 0.1866i 

  -0.3590           

  -0.6375 + 0.0604i 

  -0.6375 - 0.0604i 

-21.5740           

 -10.5404           

  -5.0341 + 1.1554i 

  -5.0341 - 1.1554i 

  -1.7651 + 2.1250i 

  -1.7651 - 2.1250i 

  -0.3938           

  -2.0065           

  -1.8743 

Increased 

50% of Tt, 

Tg 

-8.7231           

  -5.1547           

  -0.1299 + 2.7517i 

  -0.1299 - 2.7517i 

  -2.2448           

  -0.7321 + 0.3963i 

  -0.7321 - 0.3963i 

  -0.3412           

  -0.0358       

-9.7908           

  -7.1388           

  -0.2046 + 2.8483i 

  -0.2046 - 2.8483i 

  -2.3751 + 0.2174i 

  -2.3751 - 0.2174i 

  -0.3598 + 0.1749i 

  -0.3598 - 0.1749i 

  -0.6268 

-24.5457           

  -9.2482           

  -0.6510 + 5.5860i 

  -0.6510 - 5.5860i 

  -5.2643           

  -1.8383           

  -1.6392           

  -0.4360 + 0.2785i 

  -0.4360 - 0.2785i 

Increased 

50% of Tp, 

-12.9111           

  -5.1563           

-13.9984           

  -7.1501           

-21.5307           

 -10.5522           
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Operating 

point 

Without controller Pole-placement 

controller 

Optimal pole-shifting 

kp   -0.2477 + 2.7672i 

  -0.2477 - 2.7672i 

  -2.0111 + 0.1909i 

  -2.0111 - 0.1909i 

  -0.4236 + 0.1112i 

  -0.4236 - 0.1112i 

  -0.0361          

  -0.4441 + 2.7695i 

  -0.4441 - 2.7695i 

  -2.5038 + 0.1888i 

  -2.5038 - 0.1888i 

  -0.3570           

  -0.6392 + 0.0664i 

  -0.6392 - 0.0664i 

  -5.0214 + 1.1508i 

  -5.0214 - 1.1508i 

  -1.7744 + 2.1179i 

  -1.7744 - 2.1179i 

  -0.3703           

  -2.0126           

  -1.8965           

Table 4. 

 Settling time calculation at different conditions of two-area model. 

  

Case 

 

Without 

Control 

Pole-placement 

controller 

Optimal pole-

shifting 

 

 

Settling Time 

Normal condition 18 Sec. +SS 12 Sec. 6 Sec. 

Increased 50% of 

Tt, Tg 

20 Sec. +SS 18 Sec. 6.3 Sec. 

Increased 50% of 

Tp, kp 

18 Sec. +SS 14 Sec. 7 Sec. 

6.   Conclusions 

The present paper introduces a new controller for damping quickly the power system 

frequencies and tie line power error oscillation and reducing their errors to zero. The 

problem of shifting the real parts of the open-loop poles to desired locations, while 

preserving the imaginary parts has been constant. Load-frequency control (LFC) of a 

single and two area power systems is evaluated.  It has been shown that the shift can be 

achieved by an optimal feedback control law with respect to a quadratic performance 

index. However, this has been done without any solving non-linear algebraic Riccati 

equation. The merit of the presented approach is that it requires only the solution of a first-

order or a second-order linear algebraic Lyapunov equation for shifting one real pole or 

two complex conjugate poles respectively. Moreover, the power system is subjected to 

diff erent disturbances, and also, a comparison between the power system responses using 

the conventional pole-placement controller and the proposed optimal pole-shifting 

controller is presented and obtained. The digital simulation result shows the powerful of 

the proposed optimal pole shifting controller than conventional pole-placement controller 

in sense of fast damping oscillation and small settling time. Moreover, the optimal pole 

shifting controller has less overshoot and under shoot than pole-placement control.  
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 اإίاحة المثϠى أقطΏΎ النظϡΎ لϠتحكم فى تΩΩή الحمل

 المΨϠص العήبى

 Δيقήτال ,ΔبήϬك ΔمϮظϨϤل ΏΎτى لأقϤالعظ ΔاحίإΎل بϤالح ΩΩήم  فى تϜيق التحΒτت ϭ يمϤتص ΔقέϮال ϩάه ϡΪتق
ل تتϤثل فى إίاحΔ اأقΏΎτ الحقيقيΔ مع ااحتυΎϔ بΎلجزء التΨيϠى ثΎبت, خϮτاΕ هϩά الήτيقΔ تتϤثل فى ح

معΩΎلΔ ابϮϨف الτΨيΔ من الέΪجΔ اأϭلى ϭ الثΎنيΔ إίاحΔ قτب حقيقى أϭ قτب مήكب من حقيقى ϭ تΨيϠى 
 ΩΩήم فى تϜالتح ΔمϮظϨبيعى, مήاء التΩاأ ϝϭΪى جϠز عϜتήي Δيقήτال ϩάفى ه ϡΪقϤا الحل الάالى, هϮى التϠع

ήτيقΔ هϮ الϮصϝϮ إلى اقل اهتزاΓί الحϤل مϮϜنΔ من محϭ Δτاحϭ ΓΪ محτتين تم تقيΎϤϬϤ, الΪϬف من هϩά ال
 ΓΪعقϤكل الΎشϤالحل فى ال ΔنيΎϜهى إم Δيقήτال ϩάفى ه ΏΫΎالج ,ΔبيήϬϜال ΓέΪخط  نقل الق ϭ لϤالح ΩΩήفى ت
 ΩϭΩήϤسب الϜال ΩΎى إيجϠع ΪϤم يعتϜالتح ϥϮنΎق ,Δيτخ ήغي ΔيήΒج ΔلΩΎمع ϯحل أ ϥϭΪب Δτبسي ϭ ΔϠϬس Δيقήτب

حΪيΪ مصϮϔفΔ الϜسب, مصϮϔفΔ الϜسب تحسب مϭ Γήاحϭ ΓΪ تعϤل عϭ ΪϨ ضήبه فى متغيήاΕ الϨϤظϮمΔ لت
 ΓΪاحϭ Δτمن مح ΔنϮϜم ΔبيήϬك ΔمϮظϨثيل مϤتم ت ΔحήقتϤال Δيقήτال ΓέΪق ϭ ΓءΎϔك ϥΎيΒل ,ΔϔϠتΨتشغيل م ϕΎτن

 ϭ أيضΎ محτتين. 


