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ABSTRACT 

The area of multiphase variable-speed motor drives in general and multiphase induction Motor 

drives in particular have experienced a substantial growth since the beginning of this century. 

Research has been conducted worldwide and numerous interesting developments have been 

reported in the literature. An attempt is made to provide a detailed overview of the current state-of-

the-art in this area. The elaborated aspects include advantages of multiphase induction machines, 

modeling of multiphase induction machines. This paper also provides a detailed survey of the 

control strategies for five-phase and asymmetrical six-phase induction motor drives for the saturated 

model of the induction motor. However all the old researches in this field are obtained using the 

approximate linear model of the induction machine which is not exactly accurate because that we 

are not guarantee that the motor operation is not in the saturation region .  These results are also 

included for clarifying the behavior of the five and six phase using the saturated model of induction 

machine as an examples of the multi phase machine.  

Also this paper presents an approach to induction motor fault diagnosis and condition prognosis 

based on neural network and adaptive neuro-fuzzy inference systems (ANFIS). The ANFIS is a 

neural network structured upon fuzzy logic principles, which enables the neural fuzzy system to 

provide the motor condition and fault detection process. This knowledge is provided by the fuzzy 

parameters of member ship functions and fuzzy rules. By using the neural network and  (ANFIS) 

techniques, we can detect and locate the inter-turn short circuit fault in the stator winding of an 

induction motor. Simulation results are presented to demonstrate the effectiveness of the proposed 

method. 

Keywords: Induction motor, Fault detection, Neural network, ANFIS 

1. Introduction 

In the last decade, a tremendous development in the theory of nonlinear control has been 

achieved. This achievement was via applying differential geometric approaches to control 

problems. Because of the challenging control problem posed by induction motors, several 

feedback linearization based solutions were proposed. It is, by now, well known that the 

induction motor model with a linear magnetic circuit is not feedback linearizable by static 

feedback. However input-output linearization and decoupling can be achieved  in the (d, q) 

frame [1] and in the (a, b) frame [2] by static feedback. Furthermore, exact linearization is 

possible by simplifying the model and treating the speed as a time varying parameter by 

dynamic compensation as in [3] and by static state feedback as in [4]. Also, I:\also  exact 

linearization can be realized for the full model by dynamic feedback [5]. An adaptive 

version of [2] can be found in [6], where asymptotic tracking of the true values of the load 
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torque and rotor resistance are obtained assuming they are constant or slowly varying but 

unknown. The main drawback in [6] is the requirement of flux measurements, which was 

removed in [7]. A further improvement of [7], is presented in [8], where the requirement of 

speed measurement is removed. An adaptive improvement of [4] is given in [9]. In [10], it 

is shown that the approach of [5], presented in the (a, b) frame is greatly simplified by 

considering the model in the (d, q) frame. The common assumption made in the 

development of these control laws is the linearity of the magnetic circuit of the machine. 

This assumption is usually justified by including the flux magnitude in the outputs to be 

regulated by the controller and keeping this magnitude regulated at a value far from the 

saturation region [6]. However there are no guarantees that the flux magnitude remains in 

the linear magnetic region during machine transients. Moreover in many variable torque 

applications, it is desirable to operate the machine in the magnetic saturation region to 

allow the machine to develop higher torque  as illustrated in [11- 12]. Saturation effects are 

also known to be pronounced in drives operating in the field weakening region, or in drives 

that operate with varying flux levels to achieve optimally in a specified sense [13]. 

However,  the operation of the motor at various magnetization levels makes the nominal 

inductance a bad approximation. Recently, researchers have been attracted to induction 

motor control with magnetic saturation. Feedback input-output linearization schemes for 

induction motors with magnetic saturation were proposed in a fixed stator frame [14] and 

in a synchronously rotating frame [15]. While in [14] the control signal is the stator 

voltage, in [15] it is the stator current. Both papers treat the T-model of an induction motor. 

Unfortunately, due to the complicated nature of the T-model, drastic simplifications are 

required to facilitate the use of this model in nonlinear control synthesis. The major 

drawback in [14] (also present in the optimal flux reference selection of [15]) is the 

assumption that the stator and rotor leakage parameters σs and σr,  as defined in [16], are 
equal and constant. This assumption has the indirect effect of neglecting any cross-

saturation effect that might appear in the dynamics of the motor. On the other hand, the 

model in [15] is obtained by firstly simplifying the motor equations assuming a linear 

magnetic circuit and then including a mutual inductance that varies with mutual current. 

This approach does not include derivatives of the saturation function that should appear in 

a complete model [17]. A similar modeling approach can also be found in [18] for 

incorporating magnetic saturation in the passivity-based control design methodology of 

[19]. It is worth pointing out that, in [18] similar to [15], stator currents are used as the 

control signal. All the work presented so far is based on a T-model of the induction motor, 

contrary to the π-model  proposed in [11]. The π-model differs from the conventional T-

model in that it is more closely related to the physical structure of the machine, since its 

derivation is primarily based on the stator-rotor tooth pair magnetic circuit. Even though 

the work in [11] is based on a wound rotor motor, it is shown in the same paper how the 

modeling approach can be applied to a squirrel cage motor. It is not difficult to show that 

both models are equivalent when a linear magnetic circuit is assumed, this equivalence 

does not hold when main flux saturation is included. In the published work [20], It was 

shown that considering magnetic saturation explicitly in nonlinear control synthesis is of 

foremost importance especially when the machine is voltage actuated. Because the π-
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model was experimentally found in [11] to be better suited to capture the nonlinear 

magnetic effects.  

Many techniques are performed for detection of the motor faults [21-38]. The previous 

procedure are deal with the linear model of the induction motor and deal with the online 

diagnostics of the motor fault detection, from the previous work we find that many factors 

are lead to motor faults such that bearing faults induce 40% of the motor faults  , 38% are 

due to the stator winding , 10% are due to rotor faults and 12% other faults  .  

This paper is aimed to developing a mathematical model of multi phase induction motor 

taking the saturation in consideration.  

2. Characteristics of multiphase induction motors 

As all students of electrical engineering are aware, three phase induction motors will 
accelerate their loads from rest and will run without producing a twice line-frequency 
pulsating torque. Machines having more than three phases exhibit the same properties, but 
those with one or two phases do not. This was one of the clinching arguments that led to 
the universal adoption of three phases for electrical power systems, more than a century 
ago. However, increasing numbers of induction motors are not connected directly to three-
phase supplies. Instead, they derive their excitation from a power electronic converter, the 
input stage of which is connected to a three-phase supply. The output stage of the 
converter and the stator winding of the motor must have the same number of phases, but 
provided this simple requirement is met, any number of phases may be used. There is still 
the common choice, however, not only for the reasons given above, but also because the 
mass production of three-phase motors for main excitation keeps their unit cost low and 
standardization enables motors to be sourced from any manufacturer. Despite the above, 
there has been an upsurge of interest in multiphase machines , that is machines with more 
than three phases. There are several reasons for this, the principal ones being: 

(1). the stator excitation in a multiphase machine produces a field with a lower space-
harmonic content, so that the efficiency is higher than in a three-phase machine. 

(2).Multiphase machines have a greater fault tolerance than their three-phase 
counterparts. If one phase of a three-phase machine becomes open-circuited the 
machine becomes single-phase. It may continue to run but requires some external 
means for starting, and must be massively de-rated. If one phase of a 15-phase 
machine becomes open circuited, it will still self-start and will run with only 
minimal de-rating. 

(3).Multiphase machines are less susceptible than their three-phase counterparts to time-
harmonic components in the excitation waveform. Such excitation components 
produce pulsating torques at even multiples of the fundamental excitation frequency. 

It is to be noted that another important reason for employing multiphase motor variable-
speed drives is the possibility of reducing the required rating of power electronic 
components for the given motor output power, when compared to a three-phase motor 
drive, an aspect that becomes of huge significance in high power drives, such as those 
aimed at electric ship propulsion . Utilization of multiphase motor drives also enables 
improvement in the noise characteristics, when compared to three-phase motor drives, this 
being a consequence of the properties listed above.  



1615 

Mohamed Mahmoud Ismail, Predictive maintenance based on earlier fault detection on multi phase 

induction machines using neural network artificial intelligent techniques, pp. 1612 - 1636 

Journal of Engineering Sciences, Assiut University, Faculty of Engineering, Vol. 41, No. 4, July, 

2013, E-mail address: jes@aun.edu.eg 

3. Modeling of multiphase induction machines 

General theory of electric machines provides sufficient means for dealing with 

mathematical representation of an induction machine with an arbitrary number of phases 

on both stator and rotor. It can also effectively model machines with sinusoidally 

distributed windings and with concentrated windings, where one has to account for the 

higher spatial harmonics of the magneto-motive force. Probably, the most comprehensive 

treatment of the modeling procedure at a general level is available in [20]. More recently, 

detailed modeling of an n-phase induction machine, including the higher spatial harmonics, 

has been reported in [21], whereas specific case of a five-phase induction machine has 

been investigated in detail in [22, 23]. Transformations of the phase-variable model are 

performed using appropriate real or complex matrix transformations, resulting in 

corresponding real or space vector models of the multiphase machine. 

A slightly different approach to the multiphase machine modeling is discussed in [24–
25]. It is termed ‘ vectorial modeling’ and it represents a kind of generalization of the 
space vector theory, applicable to all types of AC machines. In principle, it leads to the 

same control schemes for multiphase machines as do the transformations of the general 

theory of electric machines. This modeling approach is therefore not discussed further on. 

In what follows, a brief summary of the modeling procedure based on the general theory of 

electric machines is provided. An n-phase symmetrical induction machine, such that the 

spatial displacement between any two consecutive stator phases equals α = 2/n, is 

considered. Both stator and rotor windings are treated as n-phase and it is assumed that the 

windings are sinusoidally distributed, so that all higher spatial harmonics of the magneto-

motive force can be neglected. The phase number n can be either odd or even. It is 

assumed that, regardless of the phase number, windings are connected in star with a single 

neutral point. The machine model in original form is transformed using decoupling 

(Clarke’sΨ transformation matrix [20], which replaces the original sets of n variables with 

new sets of n variables. Decoupling transformation matrix for an arbitrary phase number n 

can be given in power invariant. 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 1 Clarke’s decoupling transformation matrix for a symmetrical n-phase system 
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Form the Fig. 1 where =2/n. The first two rows of the matrix in Fig. 1 define 

variables that will lead to fundamental flux and torque production (α,  components; stator 

to rotor coupling appears only in the equations for α,   components). The last two rows 

define the two zero sequence components and the last row of the transformation matrix in 

Fig. 1 is omitted for all odd phase numbers n. In Between, there are (n - 4)/2 (or (n - 3)/2 

for n = odd) pairs of rows which define (n - 4)/2 (or (n - 3)/2 for n = odd) pairs of 

variables, termed further on x–y components. Equations for pairs of x–y components are 

completely decoupled from all the other components and stator to rotor coupling does not 

appear either [20]. These components do not contribute to torque production when 

sinusoidal distribution of the flux around the air-gap is assumed. A zero-sequence 

component does not exist in any star-connected multiphase system without neutral 

conductor for odd phase numbers, while only 0_ component can exist if the phase number 

is even. Since rotor winding is short circuited, neither x–y nor zero-sequence components 

can exist, and one only needs to consider further on α,   equations of the rotor winding. 

As stator to rotor coupling takes place only in α,   equations, rotational transformation is 

applied only to these two pairs of equations. Its form is identical as for a three-phase 

machine. Assuming that the machine equations are transformed into an arbitrary frame of 

reference rotating at angular speed o, the model of an n-phase induction machine with 

sinusoidal winding distribution is given with:  
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                                                                                    (1) 

Where; Vs is the stator phase voltage vector, Is is the stator phase current vector, Ir   is 

the rotor phase current vector, p is the number of pole pairs, ω is the rotor speed, Rs is the 
stator phase resistance, Rr is the rotor phase resistance, Ȍs and Ȍr are the stator and rotor 
flux linkage vectors respectively. Equation (1Ψ holds whether the induction motor magnetic 
circuit is considered linear or saturated and J2 is the 2 × 2 rotating matrix defined by  

                                                                                                                                   (2) 
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The mechanical equation can be expressed as: 
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dt
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   Where gl is defined as: 
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 Where Gs and Gr are the stator and rotor vector-valued nonlinear functions and defined 

as: 
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Where; Im and Ȍm are the mutual current and flux vector, respectively, and subscript (xΨ 
can be (s) for stator and (r) for rotor. Equation (4) can be  written as: 
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Where; I2 is the 2 × 2 identity matrix,  gl is defined as the reciprocal of the leakage 
inductance ( Ll), gs and gr are the stator and rotor vector-valued nonlinear saturation 

functions. The scalar saturation functions gs and gr only affect the magnitude, while 
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keeping the directions of the fluxes and currents the same. These functions are monotone 
increasing and are non zero at the origin. The saturation functions gs(x) and gr(x) have to 

be identified experimentally for each motor as shown in the next section. 

Finally, the generated torque (T) and P is the poles number is given by; 

)
r

(ψ
2

J
s

T )( T

l
gP

                                                                                         
(9) 

The model equations for equations (1) , (5) and (9) are identical for the three phase 
induction motor . This means that in principle, the same control schemes will apply to 
multiphase induction machine as for the three phase machines. However , existence of x-y 
equations means that utilization of a voltage source that creates stator voltage x-y 
components  will lead to a flow of potentially large stator x-y current components , since 
there are restricted only by stator leakage impedance. In essence, x-y components correspond 
to certain voltage and currents harmonics, the order of which depends on the machine 
number of the stator phases. Hence the inverter used to supply a multiphase induction 
machine must not create low voltage harmonics that will excite stator current  low – order 
harmonic flow in x-y circuit . Modeling of asymmetrical induction machines will again result 
in the same model equations (1)–(9), provided that an appropriate transformation matrix is 
applied. The decoupling transformation matrix for asymmetrical five and six-phase machine 
with two isolated neutral points is of the form In equation (10) and (11) respectively , where 
the first three elements in each row are related to the three phase model of induction motor  
with the assumption that in  (10) and (11) that neutral points of the two three-phase windings 
are not connected, in conjunction with the subsequent rotational transformation again results 
in model equations (1)–(9), where there is a single pair of x-y component equations (x1-y1) 
and zero-sequence equations do not exist.  

   (10)     

      (11)                    
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As the number of phases of an induction machine increases it becomes progressively 

difficult to achieve sinusoidal distribution of the magneto-motive force, because of the 

limited number of slots along the stator circumference. On the other hand, sinusoidal 

distribution is actually often not even a desirable feature of a multiphase machine.  

4. Fault detection identification  

The new in this paper is the online detection of the motor fault conditions using neural 

network and ANFIS techniques. The induction motor monitoring diagnosis techniques 

such that magnetic flux , vibration , stator currents , induced voltage , power and surge 

testing are used for detection of the motor faults . The stator current signal are contains 

potential fault information and is the   most suitable measurements for diagnosing the 

faults under consideration, in term of easy accessibility, reliability, and sensitivity. A 

simple construction using stator current for motor fault detection is indicated in figure2, 

the linguistic variables of the induction motor stator conditions are shown in figure 3 .   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2  Block diagram of induction motor condition monitoring system 
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Fig. 3  Linguistic variables of the induction motor stator condition 

5. Artificial intelligent techniques 

5. 1. Neuro fuzzy controller 

A list of industrial applications and home appliances based on FLC can be found in 

several recent references [39 to 45].  An adaptive neuro -Fuzzy Inference System (ANFIS) 

is a cross between an Artificial Neural Network (ANN) and a fuzzy inference system 

(FIS). An artificial neural network is designed to simulate the characteristics of the human 

brain and consists of a collection of artificial neurons. An adaptive network is a multi-layer 

feed-forward network in which each node (neuron) performs a particular function on 

incoming signals. The form of the node functions may vary from node to node. In an 

adaptive network, there are two types of nodes, adaptive and fixed. The function and the 

grouping of the neurons are dependent on the overall function of the network. Based on the 

ability of an ANFIS to learn from training data, it is possible to create an ANFIS structure 

from an extremely limited mathematical representation of the system. In sequel, the 

ANFIS architecture can identify the near-optimal membership functions of FLC for 

achieving desired input-output mappings. The network applies a combination of the least 

squares method and the back propagation gradient descent method for training FIS 

membership function parameters to emulate a given training data set. The system 

converges when the training and checking errors are within an acceptable bound. The 

ANFIS system generated by the fuzzy toolbox available in MATLAB allows for the 

generation of a standard Sugeno style fuzzy inference system or a fuzzy inference system 

based on sub-clustering of the data. Figure 2 shows a simple two-input ANFIS 

architecture. The above ANFIS architecture is based on a Sugeno fuzzy inference system. 
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The Sugeno FIS is similar to Mamadani format except the output memberships are 

singleton spikes rather than a distributed fuzzy set. Using singleton output simplifies the 

defuzzification step.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4  ANFIS Architecture for a Two-Input System 

The ANFIS network shown in Figure (4) is composed of five layers. Each node in the 

first layer is a square (adaptive) node with a node function. The basic diagram computation 

in ANFIS is sown in Figure (5). This structure contains the same components as the FIS, 

expect for the NNblock. The structure of the network is composed of a set of units (and 

connections) arranged into five connected network layers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Basic Diagram of ANFIS Computation 
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Layer 1 : This layer consists of input variables (membership functions), via., input 1 & 

input 2. Here, triangular or bell shaped MF can be used. This layer just supplies the input 

values x to the next layer, where i= 1 to n .Layer 2 : This layer (membership layer) checks 

for the weights of each MFs. It receives the input values x from the 1st layer and act as 

MFs to represent the fuzzy sets of the respective input variables. Further, it computes the 

membership values which specify the degree to which the input value x belongs to the 

fuzzy set, which acts as the inputs to the next layer. 

Layer 3 : This layer is called as the rule layer. Each node (each neuron) in this layer 

performs the pre-condition matching of the fuzzy rules, i.e., they compute the activation 

level of each rule, the number of layers being equal to the number of fuzzy rules. Each 

node of these layers calculates the weights which are normalized. 

Layer 4 : This layer is called as the defuzzification layer and provides the output values y 

resulting from the inference of rules. Connections between the layers l3 and  l4 are 

weighted by the fuzzy singletons that represent another set of parameters for the neuro 

fuzzy network. Layer 5 : This layer is called as the output layer which sums up all the 

inputs coming from the layer 4 and transforms the fuzzy classification results into a crisp 

(binary). The ANFIS structure is tuned automatically by least-square estimation as well as 

the back propagation algorithm. The algorithm shown above is used in the next section to 

develop the ANFIS technique to control the various parameters of the induction motor. 

Because of its flexibility, the ANFIS strategy can be used for a wide range of control 

applications. 

5. 2. ANFIS design for motor fault detection conditions 

The main purpose of using  ANFIS controller in this paper  is for identification of the fault 

occurrence in the  saturated model of induction motor.  The ANFIS controller structure is shown in 

Figure (6) . The fuzzy logic membership functions for the input and output are turned using neural 

network method which is well known in MATLAB program as ANFIS structure. The parameters 

are selected such that, optimization method is hybrid, the membership function is gbellmf , the 

membership function output is linear , error tolerance was chosen to be  0. 01 , the no of epochs are 

1000 , grid partitions  , the inputs of the grid partitions are  the number MFS  are 3 , MF   type is  

gbellmf , the outputs is  MF type defined to be constant  . The motor parameters that used in 

simulation are shown in table 1.  

                             Table 1. 

                             Motor parameters 

Parameters  - Model Unit 

Rs  8 ȍ 

Rr 6 ȍ 

Lσs NA H 

Lσr NA H 

Lm NA H 

LI 0.062 H 

J 0.06 Kgm2 

B 0.04 No / Rad 
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Fig. 6   Fault detection controller  using ANFIS  

5. 3.  Neural Network  

A neural network (NN) is a machine like human brain with properties of learning 

capability and generalization. It requires a lot of training to understand the model of plant. 

The basic property of this network is capability to learn the characteristic of nonlinear 

dynamic system mappings. The neural network consists  as shown in figure (7) of three 

layers, an input layer, one or more hidden layers and an output layer. Neurons of hidden 

and output layers have an activation functions. The knowledge of NN can be achieved 

through a learning algorithm process [46-50]. In this paper , the inputs to the ANN block is 

the stator currents Isa and Isb  while the output is the fault detection signals . 

To create the block ANN switching table we passed by this program MATLAB. The 

MATLAB  m file can be written as following :  

 

net10 = newff([0 1;0 1;1 6],[10 3],{'tansig' 'purelin'}); 

net10.trainParam.epochs = 1000; 

net10.trainParam.goal=0; 

net10 = train(net10,p,t); 

Y = sim(net10,p); e=t-Y; plot(p,t,p,Y,'o') 

 

In MATLAB command we generate the SIMULINK block ANN of switching table by 

‘’gensim 

(net10Ψ’’ , the model generated is shown in figure 8 
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Fig. 7 Structure of neural network 

 

 

 

 

 

 

Fig. 8 ANN block in MATLAB simulink 

6. Simulations 

Using MATLAB SIMULINK program have been performed for simulation the five and 

six phase saturated model of the induction machines .A comparison is illustrated between 

the saturated model of induction motor behavior between  of the three , five and six phase 

models . 

Using the saturated model of the three phase induction motor with the parameters in 

table 1 , the applied supply voltage are  :Ua =380 sin (2п 50 tΨ ,  Ub= 380 sin (2п 50 t - 
2п/3Ψ  , Uc= 380 sin (2п 50 t + 2п/3Ψ  the  simulation duration is 100 second .  
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6. 1. Simulation 1 

A comparison is performed between the three phase saturated model with the five and 

six phase saturated model in normal operation without faults, the results of the simulation 

are specified in figures (9) to figure (13) 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 9  Motor speed  for simulation 1 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Motor load torques for simulation 1 
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Fig. 11 Motor Stator current for simulation 1 

 

 

 

 
 

 

 

Fig. 12 Motor Stator flux Magnitude for simulation 1 

 

 

 

 

 

 

 
Fig. 13 Motor Rotor flux Magnitude for simulation 1 
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From the simulation results, the speed and load torque are the same using three and five 

and six phase saturated motor model for the same supply voltage and load torque and same 

motor parameters. But the stator currents and stator and rotor fluxes are decreases in the 

six phases more than five and three phases respectively. That indicate by using the 

multiphase induction machine give the same output of the three phase motor ( speed and 

load torque ) but we decrease the currents and fluxes in the motor winding which is more 

better for the motor life time and operating conditions . 

6. 2. Simulation 2 

Using the saturated model of the three phase induction motor with the parameters in 
table 1 , the applied supply voltage are  :Ua =380 sin (2п 50 tΨ ,  Ub= 380 sin (2п 50 t - 
2п/3Ψ  , Uc= 380 sin (2п 50 t + 2п/3Ψ  the  simulation duration is 20 second .  

Start the simulation on the three phase induction motor by performing the different fault 
conditions stated before and plotting the effect of the faults on the measured signals of the 
stator currents. The result of the simulation is indicated in figures 14 to 20 . 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.14  Stator current Isa in case of one phase is lost  or line to ground fault of the 

three phase  motor supply 

 

 

 

 
 

 

 
 

Fig. 15  Stator current Isb in case of one phase is lost or line to ground fault of the 

three phase motor supply 
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Fig.16   Stator current Isa in case of line to line fault of the three phase motor supply 

 

 

 

 

 

 

Fig. 17  Stator current Isb in case of line to line fault of the three phase motor supply 

 

 

 

 

 

 

 

Fig. 18   Stator current Isa in case short circuit in the stator windings of the three 

phase motor  
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Fig. 19. Stator current Isb in case short circuit in the stator windings of the three phase motor  

 

 

 

 

 

 

 
 

Fig. 20.  Stator current Isa in case short circuit in the rotor windings of the three phase motor 

 

 

 

 

 
Fig. 21.  Stator current Isb in case short circuit in the rotor windings of the three phase motor 
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6. 3. Simulation 3 

Using the saturated model of the five and six phase induction motor with the same 

parameters in table 1 , the applied supply voltage are  : Ua =380 sin (2п 50 tΨ ,  Ub= 380 
sin (2п 50 t - 2п/3Ψ  , Uc= 380 sin (2п 50 t + 2п/3Ψ  the  simulation duration is 100 second . 

Start the simulation on the three phase induction motor by performing the different fault 

conditions stated before and plotting the effect of the faults on the measured signals of the 

stator currents. The result of the simulation is indicated in figures 22 to 25 

 

 

 

 

 

 

 

 

Fig. 22.   Stator current Is in case of one phase is lost or line to ground fault of the 

motor supply for five and six phase saturated model of induction motor  

 

 

 

 

 

 

 

 

 

Fig. 23.   Stator current Is in case of line to line fault of the motor supply for five 

and six phase saturated model of induction motor  
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Fig. 24.   Stator current Is in case of short circuit of stator winding   for five and six 

phase saturated model of induction motor  

 

 

 

 

 

 

 

 

 

Fig. 25.   Stator current Is in case of short circuit in the rotor windings for five and 

six phase saturated model of induction motor  

6. 4. simulation 4 

Using ANFIS controller with neural network technique for online detection of the type 

of fault that occur to the induction motor as following , table 2 give the expected values 

that the ANFIS and neural network must expect . Table 3 gives the results of simulations in 

case of three phase induction motor. However table 4 and 5 give the results of simulations 

in case of five and six phase induction motor respectively.  
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 Table 2. 

Expected values for ANFIS and neural network of different operating 

conditions   

Item Type of fault ANFIS output Neural 

Network 

output 

1 Normal operating 

conditions 

0 0 

2 One phase loss or line to 

ground fault 

1 1 

3 Line to line fault 2 2 

4 Short circuit in the stator 

winding 

3 3 

5 Short circuit in the rotor 

winding 

4 4 

We start the simulation using ANFIS and neural network techniques for detecting the 

status of the motor during the motor operation which can be used for predictive 

maintenance of the induction motors in the industrial factories.  We are applying different 

operating conditions using simulations.  

Such that   

1- One phase lost of the motor power supply ( or line to ground fault )  

2- Line to line fault of the motor power supply 

3- Short circuit in the stator winding of induction motor  

4- Short circuit in the rotor winding of induction motor  

The test is applied on three types of the induction motor (three phase – five phase – six 

phase) induction motor. The tables below show the response of the ANFIS and neural 

network at different operating conditions.  

Table 3. 

 Fault detection for three phase induction motor  

Item Type of fault Expected  

Output  

ANFIS output Neural 

Network 

output 

1 The motor in normal 

operating condition  

0  0.03 0.1236 

1 One phase loss or line to 

ground fault 

1 1.022 0.864 

2 Line to line fault 2 2.067 1.8234 

3 Short circuit in the stator 

winding 

3 2.923 3.2398 

4 Short circuit in the rotor 

winding  

4 4.123 4.383 
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        Table 4. 

        Fault detection for five phase induction motor  

Item Type of fault Expected 

Output 

ANFIS output Neural 

Network 

output 

1 The motor in normal 

operating condition 

0 0.0678 0.278 

1 One phase loss or line to 

ground fault 

1 1.0987 0.78064 

2 Line to line fault 2 2.1345 2.2983 

3 Short circuit in the stator 

winding 

3 3.223 2.7189 

4 Short circuit in the rotor 

winding 

4 4.0145 4.2391 

Table 5. 

 Fault detection for six phase induction motor  

Item Type of fault Expected  

Output  

ANFIS output Neural 

Network 

output 

1 The motor in normal 

operating condition  

0  0.14507 0.36912 

1 One phase loss or line to 

ground fault 

1 1.10023 1.12345 

2 Line to line fault 2 1.8345 2.40082 

3 Short circuit in the stator 

winding 

3 3.453 2.9189 

4 Short circuit in the rotor 

winding  

4 4.23145 4.1223 

 

From the simulation results, we can see that using ANFIS and neural network techniques 

is effective for detection any sudden faults in the multi phase induction machines during 

the operation as well as can be used for predictive maintenance as in case of stator and 

rotor winding faults because of any short circuit in the stator or rotor windings does not 

occurred suddenly but if the stator or rotor resistance is decreased give an impression that a 

short circuit may be occurred. So the ANFIS and neural network can be used for predictive 

maintenance for three and multi phase induction machines. Also the simulations indicate 

that ANFIS technique is more accurate in the results than NN technique, however, both 

techniques are accepted from the point of accuracy.  

7. Conclusions  

The new in this paper is by using neural network (NN) as well as ANFIS techniques for 

detection of the induction motor at different fault conditions taking the saturation effect in 
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consideration. The simulations present that these methods are effective for the three and 

multi phase induction machines.  This paper is different from the previous work that we 

are using NN and ANFIS controllers for detection of the supply voltage faults as well as 

any short circuit appears in the motor windings. The percentage of the error is accepted in 

both cases, while ANFIS technique gives better accuracy than NN technique. From the 

simulations, we find that both methods can be used for early detection of any failure start 

in the motor winding for predictive maintenance. Predictive maintenance is very important 

factor in the industrial operation to reduce the running cost.   
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 ϝلأعطا ΓرϜΒالم Δى المعرفϠاً عΩاأوجه اعتما ΓΩمتعد ΕمحركاϠل Δالوقائي Δالصيان
 باستΨداϡ تقنياΕ نظم الذكاء ااصطناعى

العربى  مΨϠصال  

ϭقذد ججريذ  . هذάا الرذر  منά بدايΔ نموا كΒيرا قد شϬدΕ عϠى ϭجه الΨصوι مΘعدΩ المراحل محركاΕال مجال
Ιفي جميع جنحاء العالم بحو ϭوΘالعديد منصل الى تم ال ΕاέطوΘا المجذال الάفى ه ϡماΘلاه Γتذم ججذراء . المثير
Δلϭرديم محاΘفي ل ΔϠمفص Δا المجال لمحάمل. هθتϭ فصيل الجوانبΘبال ϭاياΰم Δالحثيذ Εالمراحذل اآا ΓΩعذدΘم ،

Ε تذذΘراتيجيامفصذذل لا مسذذ  جيπذذا ϭيرذذدϡ هذذάا الΒحذذ . مΘعذذدΓΩ المراحذذل اآاΕ الحثيذذΔ مذذنϭتذذم ϭ ذذع نمذذا   
مذع اخذذά فذى اخعΒΘذاέ ةذاهرΓ الθΘذΒع  السذΔΘ جϭجذΔمحركذاΕ الحثيذΔ  اϭ Εال جϭجذϭ  Δ الΨمسذΔلϠمحرك الحثى 

لϠمحركذاΕ مΘعذدΓΩ  ترريΒذي النمذو   الΨطذي باتذΨΘداϡتمذ   هذάا المجذال فذي الرديمذΔ الΒحوΙ جميع. مغناρيسيا
 Δجϭهى اخϭ ΔقيرΩ  من خ   لك تماما ليسπنحن ا نϭ ΔيϠالحر ج  العمΔع ليسذ  فذي كيذΒذθΘال Δذاج  . منطرذΘالن

ةذاهرΓ   ااعΒΘذاέيأذذά فذى  باتذΨΘداϡ نمذو   الΨامسϭ ΔالساΩتذΔ المحركاΕ  اΕ اخϭجΔ  تπمن  تϠوك جيπا
نظذذاϡ الθذذΔ Β  يعΘمذذد عϠذذى ϭالθΘذذΨيا تθذذΨيا اخذطذذاء ρذذر   يعذذره هذذάج الΒحذذ  المغناρيسذذى كمذذا الθΘذذΒع

( Δاخصطناعي ΔيΒالعصANN) ϭΔحال Θال ΔاخنظمΔيفي  ΔيΒدال غامض العصΘاات (ANFIS )ϭANFIS  هو
Δ Βعن ش ΓέاΒع ΔيΒى منظم عصϠئ عΩاΒابي مΒπي تم ن المنطق الΘالϭ ،ϡغذامض نظا ΔيΒالعصذ Δلمعرفذ Δحالذ 

( الΨذاANFIS ι)ϭنظذاϡ  (ANN)   باتذΨΘداϡ هذά  المعرفذΔ يذΘم تذوفير. ذطذأعمϠيذΔ ال θذع عذن ϭ المحرك
 ΕترنياΔ Βθال ΔيΒالعص ϭ يم ننا ،ϭ عθالك ϭطأ جΨربذاجىتحديد موقع الϬ ال αما  Δم انذϭ فذي  ϭء الثابذ  جΰالجذ

 .الطريرΔ المرΘرحΔ فعاليΔ لΘϠدليل عϠى نΘاج  المحاكاΓ يΘم عره. المΘحرك


