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ABSTRACT 

Cyclostationary feature detection is one of the most powerful spectrum sensing techniques 

used for cognitive radio (CR) systems. This is because of its robustness against noise 

uncertainties. However, this technique needs high sampling rates, which is limited by the 

state-of the-art analog to digital converters (ADCs), especially in wideband regime. 

Comressive sensing (CS) was used by many researchers for solving this problem via 

sub-Nyquist sampling rates. However CS solves the high sampling rate problem, but it does 

not reduce complexity considerably. This is because spectrum sensing is performed in three 

steps: sensing compressed measurements, then reconstructing the Nyquist rate signal, and 

finally performing cyclostationary detection (CD) on the reconstructed signal. In this paper 

we suggest performing CD directly on the compressed measurements skipping the 

reconstruction step which is the most complex step in CS. This can be realized by designing 

the sensing matrix with constraints different from those used in the conventional CS. Results 

show that performance is improved relative to applying CD on the Nyquist rate signal. This 

is in addition to reduction in receiver complexity resulting from reducing sampling rates. A 

detection probability of 78.7% can be achieved with only 7% of samples used by the 

conventional cyclostationary detection technique that achieves a detection probability of 

32.7%. 

Keywords: Cognitive radio, Spectrum Sensing, Cyclostationary Detector, Compressive Sensing. 

1.  Introduction 

 The electromagnetic spectrum is a scarce resource, therefore it is coordinated by 

governmental agencies like the Federal Communications Commission (FCC) in USA and the 

National Telecommunication Regulatory Authority (NTRA) in Egypt. The FCC assigns 

spectrum to licensed holders on a long term basis for large geographical regions. However, a 

large portion of the assigned spectrum remains under utilized [1]. Cognitive radio (CR) 

enables users who have no spectrum licenses, known as secondary users (SUs), to use the 
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temporarily unused spectrum of licensed or primary users (PUs). The main functions of CR’s 
are: spectrum sensing, spectrum management, spectrum mobility, and spectrum sharing [2]. 

Spectrum sensing (SS) is the most important component for the establishment of CR. The 

fundamental task of SS is to detect the unused spectrum band and share it without harmful 

interference with the PUs [3]. There is a lot of spectrum sensing techniques, it can be mainly 

classified to primary transmitter detection and cooperative and collaborative detection [4]. 

Primary transmitter detection is based on the received signal by CR users, it includes 

detection techniques such as; matched filter detection [5], energy detection [6], and 

cyclostationary detection. In cooperative and collaborative detection [7], signals for 

spectrum opportunities are detected reliably by cooperating with other users. 

SS is challenging due to the requirements set by the FCC on the sensing speed and 

accuracy [8]. This is particularly manifested in wide-band systems due to the high sampling 

rates required being at least equal to the Nyquist rate or twice the bandwidth of the sensed 

signal, which means complex and expensive hardware with high power consumption. Also, 

the timing requirements for rapid sensing may only allow for acquisition of a small number 

of samples, which may not provide sufficient statistics when conventional signal 

reconstruction methods are used. 

Recently, compressive sensing (CS) is used in conjunction with CRs to solve the high 

sampling rates problem and some other hardware requirement challenges. CS  is the 

technique of recovering the Nyquist rate samples of a signal from fewer samples sensed with 

sub-Nyquist rate [9], [10]. The sensing process can be performed using an Analog to 

Information Converter (AIC) to get a low dimensional data. Several matrices which 

represent the dimensionality reduction are used for sensing such as Gaussian, Bernoulli, and 

partial Hadamard and Fourier matrices. Whatever the used sensing matrix is, it should 

satisfy the Restricted Isometry Property (RIP) [11] and incoherence with the basis matrix at 

which the sensed signal is sparse. These conditions on the sensing matrix are required for 

signal reconstruction. Signal reconstruction is a solution to an 1l -norm optimization 

problem to recover the high dimensional data from the low dimensional samples. 

In previous work using CS with CRs, sensing a compressed measurements is done first, 

then reconstructing the Nyquist rate signal, and finally applying the spectrum sensing 

technique on the reconstructed signal or the reconstructed frequency response [12]-[14]. 

Although this method solves the high sampling rates problem, the resulting increase in 

computation and complexity is non-trivial. This results from the reconstruction step which is 

the most complex part in CS as will be discussed below. 

In this paper we propose performing spectrum sensing from the compressed 

measurements sensed using CS directly without going into the intermediate process of 

reconstructing the signal. Therefore, hardware complexity will be reduced to a large extent. 

This can be realized by designing a compressive sensing process which guarantees that the 

information used in the detection process is preserved in the compressed measurements. To 

achieve this, we have to design a sensing matrix with some additional constraints differ from 

those used in the conventional CS [11]. In this paper we use the cyclostationary spectrum 

sensing technique on compressed measurements sensed by the Discrete Fourier Transform 

(DFT) sensing matrix. Cyclostationary feature detection has an advantage of its robustness 

against noise uncertainties which makes it one of the most powerful spectrum sensing 

techniques. Using the DFT sensing matrix enables us to make detection from the 

compressed measurements as will be discussed below. The results show that the 
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performance is better than when using the traditional cyclostationary detection at the 

Nyquist-rate. This is in addition to the complexity reduction due to canceling the 

reconstruction step and solving the high sampling rates problem. 

The remainder of the paper is organized as follows. In Section 2.1, we investigate some 

cyclostationary signal analysis techniques. System model and the traditional cyclostationary 

detector are mentioned in Section 2.2. Compressive sensing based cyclostationary detection 

(CSBCD), and the compressed measurements based cyclostationary detection (CMBCD) 

algorithms are discussed in Sections 2.3 and 2.4 respectively. Section 3 includes the 

simulation results and its discussion. Finally, conclusions are drawn in Section 4. 

2.  System model and detection algorithms 

2.1 Cyclostationary signal analysis 

 Modulated signals have a built-in periodicity due to their coupling with periodic 

sinusoidal carriers, repeating spreading, over sampling or pulse trains. A random process 

)(tx  is classified as a wide sense cyclostationary process if the mean and autocorrelation 

are periodic in time, i.e., 

 ),(=)( 0mTtEtE xx                                                  (1) 

 ),(=/2)}(/2)({=),( 0  mTtRtxtxEtR xx                     (2) 

 where   is the time lag, 0T  is the period and m  is an integer. Since ),( tRx  is 

periodic, it can be expressed as a Fourier series representation [15]  
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where   is the cyclic frequency and t  is the measurement interval. 

Using the Wiener relationship, we can define the spectrum correlation function (SCF) as  
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which is the complex envelope of the narrow-band-pass component of )(tx ; the 

received signal, with center frequency v  and bandwidth f . 

Additive white Gaussian noise (AWGN) exhibits no cyclic correlation. Hence, the SCF 
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of noise has no spectral features at 0 . Modulated signals have spectral features at 

0 . For BPSK signals with carrier frequency cf  and symbol rate 01/T , the SCF has 

peaks at cffTm  =,/= 0  and 0=,/2= 0 fTmfc   [16]. 

2.2  System model and traditional cyclostationary detector 

 In CRs the hypothesis model of the received signal is  

 ),(=)(:0 tntxH
                                                      

(8) 

 )()(=)(:1 tntstxH                                                  
(9) 

 where )(tx  is the received signal, )(ts  is the PU signal, )(tn  is AWGN, 0H  means 

that no primary user exists, and 
1H  means that there is a primary user signal in this band. 

Using the cyclostationary features for performing spectrum sensing, we can rewrite the 

hypothesis model considering the SCF as  

 ),(=)(:0 fSfSH nx


                                                (10) 

 )()(=)(:1 fSfSfSH nsx

                                         (11) 

 where )( fSn


 is the SCF of noise, and )( fSs


 is the SCF of the PU signal. 

Because )(tn  is not a cyclostationary process, the SCF of it has no peaks at 0 . 

Therefore, the statistic test of the CD in the discrete domain is based on [17]:  
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 which is the SCF of the received signal. 

Then this statistic value is compared with a predetermined threshold   to decide for 0D  

or 
1D   
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 where the result of test 0D  indicates receiving 0H , and 1D  indicates receiving H1 

after applying the detection algorithm. 

2.3  Compressive sensing based cyclostationary detection (CSBCD) algorithm 

 In CSBCD, the received signal is sensed by CS to get a low dimensional data vector y  

using a sensing matrix   as follows  

 Φxy =                                                               (14) 

 where x  is an 1N  vector which represents the Nyquist rate samples of )(tx , y  is 
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the 1M  compressed measurements vector, and Φ  is an NM   sensing matrix  

( NM << ). 

After that, the Nyquist rate signal is reconstructed from the compressed measurements 

vector y , and then the CD is performed on the reconstructed signal. The reconstruction 

process is a linear inverse problem with sparseness constraint. It was shown that this 

problem is an NP-hard [18]. Basis Pursuit (BP) [19] is a reconstruction technique that 

transforms the problem to a convex optimization problem that can be solved by linear 

programming as follows  

 .= ..  |||| min arg=ˆ
1

x
Φxyxx ts                                       (15) 

Several reconstruction techniques have been proposed in the literature. Examples of 

these techniques are Matching Pursuit (MP) [20] and Orthogonal Matching Pursuit (OMP) 

[21]. These techniques differ in the computational complexity and memory requirements. 

For instance, the computational complexity and memory requirements of the (OMP) 

algorithm are summarized in Table 1 where k  is the iteration number and K  is the final 

iteration number [22]. The accuracy of the reconstructed signal depends on the number of 

compressed measurements M  and the number of iterations. 

  Table  1.  

Complexities and memory requirements for some OMP computational     

Approaches [22]. 

Algorithm   Complexity   Memory  

Naive Way 32
kMkMkNM     MN   

Cholesky Decomposition-1   
2

kMkNM     
22

kkNMN    
Cholesky Decomposition-2   

2
kNk     

22
kkNMN    

QR Decomposition-1   MkNM  ; solve: 
2

K    
2

kMkNM    

QR Decomposition-2   
2

kMkNk     
22

kMkNMN    
Matrix Inversion Lemma   MkNk     MkNMN 2

  

2.4  Compressed measurements based cyclostationary detection (CMBCD) 

algorithm 

 Figure 1 shows the block diagram of the proposed algorithm. In this algorithm 

compressed measurements are sensed using a DFT sensing matrix as follows  
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 where   is an NM   sensing matrix ( NM << ), 10,1,2,...,= Ni , and k  is the 

index of rows which represents the M  DFT coefficients taken out of N  coefficients. 

These indices are selected such that most of energy of x  is preserved in the compressed 

measurements y . For example, for a BPSK PU signal with main carrier frequency cf  and 

sampling frequency sf , most of the energy is concentrated around Nffk sc )/(=  . 

Therefore the M  coefficients are selected around these indices.  
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Fig. 1. System block diagram 

 After that, SCF is calculated by correlating the compressed measurements with itself 

and averaging over multiple frames as follows  
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 is the SCF for the 

th
i  frame, /2)(~ fy  is the conjugate of 

/2)( fy , and fn  is the total number of frames used for averaging. To use another 

window we can multiply the columns of the sensing matrix by the window. 

Finally calculate the detection statistic   as in equation (12) and compare it with the 

threshold   to take the decision as in equation (13). 

Performance of the detection algorithm can be measured with two probabilities: the 

probability of false alarm 
FP , and the probability of detection 

DP . 
FP  is the probability 

that the hypothesis test incorrectly decides 
1H  while it is 0H , and 

DP  is the probability of 

correctly deciding 
1H  while it is 

1H , i.e.,  

 ),|>(= 0HPrPF 
                                               

(19) 

 ).|>(= 1HPrPD                                                 
(20) 

 The probability of miss detection 
MP  is given by  

 ,1= DM PP   

     ).|>(1= 1HPr                                              
(21) 

 3.  Numerical results and discussions  

Simulations were performed on a BPSK signal with the following parameters: main 

carrier frequency 125=cf  MHz, bandwidth 20  MHz, and a sampling frequency 1=sf  

GHz. The used window is a Hanning window. 
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Fig. 2. Complementary ROC. 

Detection of this signal was performed using the CMBCD algorithm and the traditional 

cyclostationary detector (TCD) method which uses the Nyquist rate signal. By each method, 

detection probabilities were calculated for different false alarm probabilities to plot the 

Receiver Operating Characteristics (ROC) curves. Figure 2 shows the ROC using the two 

methods, the TCD and the CMBCD algorithm with a compression ratio of 30% , total 

number of samples of 1000 , window size of 200 , and signal to noise ratio (SNR) of 10
dB. Although we used only 30%  of the signal samples in CMBCD, performance is better 

than using all samples in the TED. This is because the compressed measurements contain 

most of the PU signal energy and only a fraction of the noise energy. Figure 3 shows the 

percentage of the energy contained in M  compressed measurements of both PU and noise 

signals against the compression ratio ( NM/ ). We find that, at 30%  compression ratio, the 

percentage of the energy contained in the compressed measurements of the PU signal equals 

97.77%  and that of the noise signal equals 30%  . Therefore detection probability will 

increase relative to that of the TCD algorithm at the same false alarm probability.   

 

Fig. 3. Energy ratio versus compression ratio for AWGN and BPSK signal. 
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   Fig. 4. Probability of detection vs. the compression ratio when 0.1=FP . 

In the proposed algorithm, compression ratio can be decreased to a far extent, achieving a 

higher performance improvement. However, there is a limit in compression ratio as shown in 

Figure 4 which shows the probability of detection versus compression ratio at false alarm 

probability 0.1=FP , SNR 10=   dB, and total number of sensed samples of 1000 . 

Figure 5 shows the probability of detection versus signal to noise ratio at false alarm 

probability 0.1=FP , total number of sensed samples of 1000 , and a compression ratio of 

30% . We find that the detection probability of the proposed CMBCD algorithm is higher 

than that of the TED especially at low SNR regime.  Figure  5: Probability of detection vs. 

SNR when 0.1=FP  and a compression ratio of 30% . 

4.  Conclusions 

   In this paper, we proposed a spectrum sensing technique for wideband cognitive radio 

systems. In order for the SU to detect the existence of the PU, it first samples the received 

signal at a sub-Nyquist rate using compressive sensing and then applies the cyclostationary 

detection on the compressed measurements. Therefore, the complexity required in 

reconstructing the Nyquist rate signal is eliminated. In addition to the considerable 

complexity reduction, the results show that the proposed algorithm provides a better 

detection probability compared to traditional schemes at the same false alarm probability. 
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Ϯ المعرفىياساΕ المπغΔρϮ أنظمΔ الراΩيباΩ Εورϯ قائم على القثمكتشف   

 الملΨص العربى
تعتبررت تية ررك ف عنرري ةررل ب ررال ف ىبرراح ف رر أقو  أفقرر ل بررل لطرر و  ررتم فاتنررعاق ف   رري  رر  ل   ررك ف تف  رر  
فا قفك . أذ ك  تجع ف   تΠةبها بنعϠك ة ϡ ف تأك  برل بر و ف ض ءراو. أ عةهرا ت ترا  ف ر  بعر م كب رت برل 

ةا  رك ا ار  ا ةةر  فاتنرعاق  لخذ ف ع ةاح بل ف   ي فأبت ف ذو   تا  ف   ب  اح تةاظت ك قط  ك بابعا  اح
ف ة اطاح ف  تسعك بل ف تت  فح. فااتنعاق ةل ف ضغط ه  تية ك ق  ىك تستخ ϡ   ل هرذ  ف  نرعϠك ةرل  ت ر  
لخذ ة ةاح بل ف   ي ب ع اح لطل بل ءعي فتساع ب و ف ة ام ف  تف  فاتنرعاق . ةϠر  ف رتمϢ برل له هرذ  

ةها ا تيϠل بل تعي   فاجهال ف   ق  كب ت. أذ ك  تجع ف   ف تعي ر  ف تية ك تي ϡ ب ل بنعϠك ف  ع اح ف عب تل  ع
 ف عب ت  خ  ل فةا ل تنع ل فاشاقل أف ت  ت تا  ف   ط ق كب ت بل ف  عا Πك أف ذفكتل. 

   هذف ف ب ث  يتتΡ ة ل فاتنعاق ف   ي بااتخ فϡ تية ك فااتنعاق ةل ف ضغط بر أه بتقϠرك فةرا ل تنرع ل 
 ت ر  فارتخ فϡ بورة  ك فاتنرعاق ب ت يرك بع ةرك تسر ا بع رل ف عنري ةرل ف   ري بر أه فاشاقل. أذ ك ةل 

 فةا ل تنع ل فاشاقل.
لأء ت ف ةتائج ل ه بΠا ب هذف ف تيϠ ل ف عب ت    ف تعي ر   ت Πرك ف غراو بتقϠرك فةرا ل ف تنرع ل  ا ره ل ضرا تع ر  

% 7..7 ررث تع رر  فقت ا  ررك كنرري ف  ت يرك ف  يتتقررك ل فو ل ضررل بررل ف  ررتم ف تيϠ   ررك ااتنرعاق ف   رري. ق
 %.7..7% بل ف ع   ف ذو تستخ به ف  تطك ف تيϠ   ك أف ت  تع   فقت ا  ك كني 7بااتخ فϡ ة   بل ف ع ةاح 
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