
Journal of Engineering Sciences, Assiut University, Vol. 40,  No. 3, pp. 867-875,  May 2012 
 

867 

ADAPTIVE SPECTRUM SENSING IN COGNITIVE RADIO 
NETWORKS 

 

Gamal Abdel Fadeel Mohammed 
Electronics, Communications and Computer Engineering Department, 
Faculty of Engineering, Helwan, Cairo, Egypt, 
gam_hel@yahoo.com  
 

(Received February 2, 2012 Accepted March 8, 2012) 
 

It is becoming increasingly evident that cognitive radio (CR) users in CR 
networks acting in uncertain dynamical environments often employ exact 
or approximate Bayesian statistical calculations in order to continuously 
estimate the channel states. In this work we propose a prediction/filtering 
channel state estimation model capable of exactly implementing Bayesian 
state estimation and prediction from input point process measurements in 
real time. This setup is ideally suited to real CR networks. The results 
suggest that our model is useful for improving the performance of the 
sensing mechanism in practical CR environment. 
KEYWORDS: Cognitive radio networks; Adaptive sensing; Channel 
activity estimation; Hypotheses testing. 

 
1. INTRODUCTION 

The traditional wisdom of spectrum management is top down, that is, frequency 
channels are assigned to users through licensed bands and only licensed users (primary 
users, PUs) can carry out communications over the allotted channels. A recent report 
from FCC shows that under this static allocation, merely 5% to 15% of the spectrum is 
utilized [1, 2]. Such a significant under-utilization has motivated a significant interest 
in studying cognitive radio (CR) networks. A CR is expected to capture temporal 
“spectrum holes” in the radio spectrum, and to enable secondary users (SUs) for 
spectrum sharing. A key functionality needed is the capability of sensing the spectrum 
and opportunistically using it without causing interference to the PUs. In this paper, we 
assume presence of N parallel, time-slotted-channels; each channel is assigned to a PU. 
The transmissions of PUs are modeled as a Markovian on-off process, with the “off” 
periods representing potential opportunities for the SUs. We assume also that SU can 
only sense one channel in each time slot and their sensing is noisy due to channel 
characteristics. The sensing error is, therefore, characterized by two basic parameters 
related to PU's activity: probability of false alarm  Pr (claim inactive | active) and 

probability of miss detection  Pr (claim active | inactive). In this respect, we 

propose an adaptive sensing scheme which adapts to PU's transmission activities. In 
this respect, use has been made of mathematical results from the theory of point 
process filtering in order to show how real-time state estimation and prediction of PU's 
activities can improve the performance of CR systems. 
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2. RELATED WORK 

Optimal wireless medium access is derived within a Markovian framework between 
sensing and medium access. A significant number of sensing methods have already 
been proposed. These include, for example, energy detectors [3], cyclostationary 
detection [4], and eigenvalue-based sensing [5]. In this paper, we focus on energy 
detectors for its implementation simplicity. On the other hand, the usual approach to 
minimum mean square (MMSE) estimation has led to estimators that are intrinsically 
non-recursive and this is certainly a major drawback for their practical utilization. 
However, in [6], for example, it has been shown that the MMSE filtered estimates can 
be efficiently obtained as a linear transformation of the Posteriori Probabilities of the 
system states. In this paper we adopt an estimation scheme that is based on the 
Martingale Difference (MD) sequences which is something intermediate between 
statistical independence and un-correlation, so that independence implies the MD 
property which in turn implies un-correlation. This, in effect, has led to the so-called 
“MD Representation Theorem” [7].  

Our approach is formulated within a point process framework based on 
discrete time approximations and input smoothing. As a result, using tools from the 
theory of point process filtering (e.g., [8]), in conjunction with the probabilistic 
Bayesian framework for dynamical state estimation (e.g., [9]). We are able to show 
that, a linear system suffices to yield an estimate for the posterior distribution for the 
state of a Markov process modeling the dynamics of PU activities in cognitive radio 
networks. The remaining of the paper is organized as follows: In Section 3, we present 
the CR channel activity modeling. In Section 4, we propose the prediction/filtering 
algorithm based on the point process. The hypotheses testing formulations is presented 
in section 4 as well. In Section 5, we evaluate the performance of the proposed 
detection scheme based on computer simulations. Finally, Section 6 concludes the 
paper 

 
3. SYSTEM MODEL 

Assume a cognitive radio system in which PU's activity-dynamics is characterized, at 
time t, by the state  belonging to an on-off  Markovian process with idle/available, 

(0), and busy, (1), periods exponentially distributed with generator matrix Q:  

                              (1) 

Assume, also that, an energy detection scheme is being adopted for spectrum 
sensing. The reason for this choice is simply due to its implementation simplicity. In 
this respect, energy detection technique is mathematically formulated as a binary 
hypothesis testing problem on a set of N-samples that either represents just noise, or a 
signal in noise. This has led to the following formulations [10], 

                                      (2) 
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where Yi denotes complex baseband samples,  are noise samples, : , 

and  denotes the signal samples drawn from a complex Gaussian,  , 

This hypotheses testing problem is standard and the optimal Neyman-Pearson detector 
is, therefore, given by,  

               (3) 

where the threshold,  needs to be chosen such that the probability of false alarm (i.e., 

erroneously declaring a busy channel) is not greater than a specific value. 
At this point, it is not difficult to see that, sensing is nothing but a sampling 

procedure of the given channel in order to discover it's (ON/OF) state at each sensing 
instant. Therefore, samples from ON/OFF periods leads to the values 1/0. In another 
words, sensing outcomes produces a random binary sequence for each channel. The 
problem we wish to consider is to approximate the random binary sequence at the 
output of a given channel-sensor as a discrete-time point-process. This point process is 
independent with arrival rate that is modulated by the time varying channel state  . 

Hence, while the channel state is not directly observable, it is only sensed through the 
point process observation sequence n(t), t = 1, 2, . . ., N. In the following sections, an 
estimate of the channel state from the past observations of the point process n(t) is 
presented and its performance is validated. 

 

4.  FILTERING  OF THE MARKOV PROCESS FROM NOISY 
POINT  PROCESS MEASUREMENTS 

This section presents an estimation scheme for estimating the state of the unobservable 
(ON/OF) channel activities from point process observations n(t). Let  represent all 

factors that affect the occurrence probability of the point process at time t. These 
factors include the past observations,  and the past and 

present sequence of the hidden channel states, . It can 

be shown (see Appendix) that the least square estimate,  of the state x(t+1) 

given the observations  satisfies the following 

formula, [7, 12] 

 
 [  (4) 

and the filtered and smoothed estimate of X(t) given the past and present observations  
 is, 

 

 
[   (5) 
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where,   ,  

, the traffic intensity , and 

 is the a priori of the signal. 

Several observations are in place regarding equations (4, 5): (a) It provide 
optimal channel state estimator/filter given the train of point process observations. (b) 
The evolution of the state estimation  breaks up neatly into an 

observation independent term, which can be conceived as implementing a Bayesian 
dynamic prior, and an observation-dependent term, which contributes each time a point 
process occurs. Note that a similar structure was observed in [11]. In a more general 
setting, one can expect that the parameters of the Q-matrix to be learned on a slower 
time scale through interaction with the environment. We leave this as a topic for future 
work. 

Now, for a cognitive user (SU), sensing a given channel, only two actions are 
available: to transmit or not to transmit. Therefore, we need a mapping from the 
estimation  i.e., from the expectations of the channel states as 

maintained by the SU to the transmission probability. Recall that we have assumed that 
the PU's channel transits from state 0 (idle/available) to state 1 (busy/unavailable) with 
probability  and stays in state 1 with probability . Therefore, given that, 

our present knowledge of the channel state is  (equ. (5)). Then, we propose 

that the SU updates his expectation on the channel according to the following Bayes 
rule, 

  ,                   (6) 

where  is the transition probability from busy to idle and  is 

from idle to idle, respectively. In the following section, we demonstrate how the Bayes 
rule (6) allows us to exploit the contribution of channel activity modeling in improving 
the miss/false detection probabilities in CR networks.  
 

5. NUMERICAL SIMULATION 

In this section, some numerical results are presented in order to illustrate the 
performance of the proposed sensing scheme using specific network parameters. The 
selections of these parameters are not crucial, and our simulation results are 
representative of the general behavior of the CR network. Here, we focus on the 
performance of a single CR user contending for access sharing with a given PU's 
channel. The activity of the channel is modeled by the ON/OFF states shown in 
Fig.(1), with sojourn times assumed to be exponentially distributed with parameters: 

, and with slot size T = 0.25 ms. 

As shown in Fig. (1) below, when the cognitive user senses the channel, it 
collects the (1/0) point process at the outcome of the energy detector according to equ. 
(3), with the threshold, , used to regulate the trade-off between probability of false 

alarm and missing probability. For the noisy channel sensing scenario we look into, the 
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sensing error that is characterized by the miss and false (point process) detections 
shown. The channel state is predicted using equ. (4). As can be seen, the prediction 
result approximates the overall behavior of the channel activity. In order to better 
approximate the busy periods of real channels. The prediction results are filtered, 
equation (5), and the results are shown in Fig. (2). Clearly, the filtered output provides 
a better protection for the PU's transmission by reducing the miss detection 
probabilities. 
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Comparing the predicted and the filtered results, we see that the overall 
behavior of the channel activity is reasonably approximated, and that the Markov 
modeling of the channel dynamics provides valuable evidences on channel activities. 
This, in turn, is expected to better reflect on the SU's predictions of the current state of 
the PU's channel. 

Now, in order for the SU to transmit optimally, we have (section 4) 
parameterized the decision process as a Bayesian observer (SU) who collected 
expectations about the true state of the channel, , and we combined it with the 

channel activity parameters (equ. (6)). The result is that, the SU is now able to decide 
on one of the two (to transmit or not to transmit) competing hypotheses. Fig.(3) shows 
the result of the hypotheses testing, i.e., likelihood ratio test (LRT). This result is 
processed in small, discrete time steps and the missing and false alarm probabilities are 
obtained as shown in Fig. (4). As can be seen, the simulation results show that the 
proposed sensing algorithm which is based on channel activity estimation/filtering with 
hypotheses testing performs is better than the energy detection without further (point 
process) processing. The implications of this result is that, the proposed sensing 
scheme, which adapts to channel activity dynamics, have led to a lower missing 
probability and (as it should according to Neyman Pearson) have maintained, almost, 
the same level of false alarm detections. In more specific terms, this simply means a 
better protection for the PU's transmissions (reduced interference from SU) while 
maintaining the same level of throughput for the SU. 
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6. SUMMARY AND CONCLUSIONS 

In this paper, we have presented a computationally tractable method for (channel) 
state-space and parameter estimation from point process observations. Results have 
indicated that this modeling approach have led to a better protection for the PU's 
transmissions while maintaining almost the same level of throughput for the SUs. The 
reason for such an improvement is that our model adapts efficiently to the PU's channel 
activity dynamics which, in turns, suggests that our model is useful for improving the 
performance of the sensing mechanism in CR networks. 

 
APPENDEX 

The innovation, representation concept and theory state that, the signal X(t) which 
influences the observations n(t) can be decomposed into predictable and unpredictable 
parts [12].  

 
where  represents all factors that affect the occurrence probability, 

 of X(t).  

Therefore, define, = , and u(t) = 

, we can write, X(t+1) =  + u(t), 

where u(t) is interpreted as some noise process. 
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Similarly, we can write, n(t) =  + w(t) for the point process observations. 

Now, define  

The representation theorem states that every martingale difference sequence, 
 can be represented in terms of the innovation process, .  

That is,  where, , and 

. 

In the Markovian signal settings which we look into in this paper, we find, 
, and  = , 

, 

 
Hence, after some algebraic manipulations, the one step predictor and the filtering 
formulas can be found. 
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اديو الادراكىالتقدير والتوقع المتابع لطيف التردد في  شبكات اتصالات الر   

  .يقدم هذا البحث نظام لتقدير ومتابعة حالات قنوات الاتصالات اللاسلكية في نظم اتصالات الراديو الادراكى

وذلك للوصول إلى تقدير وتوقع أفضل لحالات وتغير " بعملية النقاط"يعتمد هذا النظام على توظيف ما يعرف  

أثبتت النتائج فاعلية هذا النظام في . قنوات اتصالات الراديو والتي تتغير بصفه دائمه أثناء عمليات التواصل

الأمر الذي أدى بدوره إلى تحسن ملحوظ في  ،الحصول على تقدير وتوقع أفضل لتغير حالات قنوات الاتصالات

  .    أداء هذا النوع من اتصالات الراديو الادراكيه

 
 

 


