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It is becoming increasingly evident that cognitive radio (CR) usersin CR
networks acting in uncertain dynamical environments often employ exact
or approximate Bayesian statistical calculations in order to continuously
estimate the channel states. In this work we propose a prediction/filtering
channel state estimation model capable of exactly implementing Bayesian
state estimation and prediction from input point process measurements in
real time. This setup is ideally suited to real CR networks. The results
suggest that our model is useful for improving the performance of the
sensing mechanismin practical CR environment.

KEYWORDS: Cognitive radio networks; Adaptive sensing; Channel
activity estimation; Hypotheses testing.

1. INTRODUCTION

The traditional wisdom of spectrum management s down, that is, frequency
channels are assigned to users through licensets$ l@and only licensed users (primary
users, PUs) can carry out communications over lilbdea channels. A recent report
from FCC shows that under this static allocatiorrety 5% to 15% of the spectrum is
utilized [1, 2]. Such a significant under-utilizani has motivated a significant interest
in studying cognitive radio (CR) networks. A CR dgpected to capture temporal
“spectrum holes” in the radio spectrum, and to &naecondary users (SUs) for
spectrum sharing. A key functionality needed isdapability of sensing the spectrum
and opportunistically using it without causing nféeence to the PUs. In this paper, we
assume presence of N parallel, time-slotted-chaneatch channel is assigned to a PU.
The transmissions of PUs are modeled as a Markavmaoff process, with the “off”
periods representing potential opportunities fa 8Us. We assume also that SU can
only sense one channel in each time slot and #esing is noisy due to channel
characteristics. The sensing error is, therefdneracterized by two basic parameters
related to PU's activity: probability of false ataF: = Pr (claim inactive | active) and

probability of miss detectiol¥,, = Pr (claim active | inactive). In this respect, we

propose an adaptive sensing scheme which ada¥'totransmission activities. In
this respect, use has been made of mathematicaltsrdsom the theory of point
process filtering in order to show how real-timatstestimation and prediction of PU's
activities can improve the performance of CR system
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2. RELATED WORK

Optimal wireless medium access is derived withiklakovian framework between
sensing and medium access. A significant numbeseaking methods have already
been proposed. These include, for example, eneajgctbrs [3], cyclostationary
detection [4], and eigenvalue-based sensing [5lthia paper, we focus on energy
detectors for its implementation simplicity. On tb#her hand, the usual approach to
minimum mean square (MMSE) estimation has led timasors that are intrinsically
non-recursive and this is certainly a major drawbéar their practical utilization.
However, in [6], for example, it has been showrt tha MMSE filtered estimates can
be efficiently obtained as a linear transformatidrihe Posteriori Probabilities of the
system states. In this paper we adopt an estimaibreme that is based on the
Martingale Difference (MD) sequences which is sdnmg intermediate between
statistical independence and un-correlation, st ihdependence implies the MD
property which in turn implies un-correlation. This effect, has led to the so-called
“MD Representation Theorem” [7].

Our approach is formulated within a point processmework based on
discrete time approximations and input smoothing.aAresult, using tools from the
theory of point process filtering (e.g., [8]), irorgunction with the probabilistic
Bayesian framework for dynamical state estimatiem.( [9]). We are able to show
that, a linear system suffices to yield an estinfateghe posterior distribution for the
state of a Markov process modeling the dynamicBWfactivities in cognitive radio
networks. The remaining of the paper is organizetbbows: In Section 3, we present
the CR channel activity modeling. In Section 4, prepose the prediction/filtering
algorithm based on the point process. The hyposhiesting formulations is presented
in section 4 as well. In Section 5, we evaluate pleeformance of the proposed
detection scheme based on computer simulationsllfirSection 6 concludes the

paper
3. SYSTEM MODEL

Assume a cognitive radio system in which PU's #gtidynamics is characterized, at
time t, by the statéf_ belonging to an on-off Markovian process withefdvailable,
(0), and busy, (1), periods exponentially distrdzlitvith generator matrix Q:

Q=[ILL 1—wu

. 1—n @)

Assume, also that, an energy detection schemeirig belopted for spectrum
sensing. The reason for this choice is simply dugstimplementation simplicity. In
this respect, energy detection technique is mattiealiz formulated as a binary
hypothesis testing problem on a set of N-samplasetther represents just noise, or a
signal in noise. This has led to the following faitations [10],

Hy: Y::= n, i=12..,N )

1

Hy: Y,:= S+ n, i=12..,N
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where Yi denotes complex baseband sampigsre noise samples,;: CN (0,3, ),
and 5, denotes the signal samples drawn from a complaxs§an 3, : CN (0,a, ),

This hypotheses testing problem is standard andgtimmal Neyman-Pearson detector

is, therefore, given by,
; 5 o H
;'"1[1’) = ?:-]_ Yi_ - : Vv (3)

<H,

where the thresholcy, needs to be chosen such that the probabilitylsé falarm (i.e.,

erroneously declaring a busy channel) is not grehten a specific value.

At this point, it is not difficult to see that, s8ng is nothing but a sampling
procedure of the given channel in order to discat®i(ON/OF) state at each sensing
instant. Therefore, samples from ON/OFF periodddea the values 1/0. In another
words, sensing outcomes produces a random binayesee for each channel. The
problem we wish to consider is to approximate thedom binary sequence at the
output of a given channel-sensor as a discretepioigt-process. This point process is
independent with arrival rate that is modulatedtmy time varying channel stati,.
Hence, while the channel state is not directly oledge, it is only sensed through the
point process observation sequence n(t), t = 1, 2,N. In the following sections, an
estimate of the channel state from the past obsensaof the point process n(t) is
presented and its performance is validated.

4. FILTERING OF THE MARKOV PROCESS FROM NOISY

POINT PROCESS MEASUREMENTS
This section presents an estimation scheme fanastig the state of the unobservable
(ON/OF) channel activities from point process obations n(t). Let 7} represent all

factors that affect the occurrence probability loé fpoint process at time t. These
factors include the past observation$;! = {n(1),...,n(t— 1)} and the past and

present sequence of the hidden channel states, {x{1),...,x{t — 1),=(t)}. It can
be shown (see Appendix) that the least square atjri* (t+ 1) of the state x(t+1)
given the observations, = o{n(1),..,n(t=1),n(t)} satisfies the following
formula, [7, 12]
M +1/t) = QT (X" (t/t— 1)
BT x/t-1)— Q@ (1) 2(1) p(1)}
[pT ()X (t/t — 1)] — [T (X" (t/t — 1)]*
[n(t) — pT(OX"(t/t—12] (4)
and the filtered and smoothed estimate of X(t) witlee past and present observations
F. = ofn(1),...,n(t— 1),n(t)} is,

[diag(x"(t/t —1) — E(t)] p(t)
[pT (DX (t/t —1)] = [pT(DX™ (t/t - 1]*
[n(t) — pT (X" (t/t—1)] (5)

xMtft) = x e/t —1) +
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where, S;;(t) = Pr[ X {t+1)= Ln(t)=1 /X (t)=1],
T(t) = X"(t/t— 1) X (t/t=1)7, the traffic intensity o (t) = [py.p,], and
x”™(1/0]) is the a priori of the signal.

Several observations are in place regarding equat{d, 5): (a) It provide
optimal channel state estimator/filter given theartrof point process observations. (b)
The evolution of the state estimatiom”(t+ 1,t) breaks up neatly into an
observation independent term, which can be condeagimplementing a Bayesian
dynamic prior, and an observation-dependent terimciwcontributes each time a point
process occurs. Note that a similar structure vsemwed in [11]. In a more general
setting, one can expect that the parameters oQthmatrix to be learned on a slower
time scale through interaction with the environm&ie leave this as a topic for future
work.

Now, for a cognitive user (SU), sensing a givenncied, only two actions are
available: to transmit or not to transmit. Therefowe need a mapping from the
estimation="(t/t) — [0.1], i.e., from the expectations of the channel staes
maintained by the SU to the transmission probabiRkiecall that we have assumed that
the PU's channel transits from state 0 (idle/abéglato state 1 (busy/unavailable) with
probability 1 — 1, and stays in state 1 with probabilily— .. Therefore, given that,

our present knowledge of the channel state'it/t) (equ. (5)). Then, we propose

that the SU updates his expectation on the chaawerding to the following Bayes
rule,

h(1—x"(t/1)+

ux"(t/t)

Lidle (1— w)="(t/t) +
“husy [(1 —uw)(d—="t/en !’ (6)

where}. (1 - x"(t/t)] is the transition probability from busy to idledaw x" (/1) is

from idle to idle, respectively. In the followinga&ion, we demonstrate how the Bayes
rule (6) allows us to exploit the contribution dfamnel activity modeling in improving
the miss/false detection probabilities in CR neksor

5. NUMERICAL SIMULATION

In this section, some numerical results are presennh order to illustrate the
performance of the proposed sensing scheme usewfispnetwork parameters. The
selections of these parameters are not crucial, @amd simulation results are
representative of the general behavior of the CRvark. Here, we focus on the
performance of a single CR user contending for seharing with a given PU's
channel. The activity of the channel is modeledthy ON/OFF states shown in
Fig.(1), with sojourn times assumed to be expoaéntdistributed with parameters:

371 = u~' = 2 ms, and with slot size T =0.25 ms.

As shown in Fig. (1) below, when the cognitive usenses the channel, it
collects the (1/0) point process at the outcomthefenergy detector according to equ.
(3), with the thresholdy, used to regulate the trade-off between probghilftfalse

alarm and missing probability. For the noisy chameasing scenario we look into, the
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sensing error that is characterized by the miss fals#® (point process) detections
shown. The channel state is predicted using equ.Ag can be seen, the prediction
result approximates the overall behavior of thenoleh activity. In order to better
approximate the busy periods of real channels. pitegliction results are filtered,
equation (5), and the results are shown in Fig.GBarly, the filtered output provides
a better protection for the PU's transmission bguceng the miss detection
probabilities.
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Comparing the predicted and the filtered results, see that the overall
behavior of the channel activity is reasonably agjmated, and that the Markov
modeling of the channel dynamics provides valuavidences on channel activities.
This, in turn, is expected to better reflect on $4édls predictions of the current state of
the PU's channel.

Now, in order for the SU to transmit optimally, weave (section 4)
parameterized the decision process as a Bayesiaanan (SU) who collected
expectations about the true state of the charril/t), and we combined it with the

channel activity parameters (equ. (6)). The reisulbat, the SU is now able to decide
on one of the two (to transmit or not to transradgnpeting hypotheses. Fig.(3) shows
the result of the hypotheses testing, i.e., likadith ratio test (LRT). This result is
processed in small, discrete time steps and theimgignd false alarm probabilities are
obtained as shown in Fig. (4). As can be seengsitielation results show that the
proposed sensing algorithm which is based on chaatigity estimation/filtering with
hypotheses testing performs is better than theggndetection without further (point
process) processing. The implications of this tegilthat, the proposed sensing
scheme, which adapts to channel activity dynamies/e led to a lower missing
probability and (as it should according to NeymaarBon) have maintained, almost,
the same level of false alarm detections. In mpeigic terms, this simply means a
better protection for the PU's transmissions (redumterference from SU) while
maintaining the same level of throughput for the SU
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Fig.(4), Performance of adaptive sensing.

6. SUMMARY AND CONCLUSIONS

In this paper, we have presented a computatioriedigtable method for (channel)
state-space and parameter estimation from poirtegsoobservations. Results have
indicated that this modeling approach have led toetier protection for the PU's
transmissions while maintaining almost the samelle¥ throughput for the SUs. The
reason for such an improvement is that our modapsdefficiently to the PU's channel
activity dynamics which, in turns, suggests that model is useful for improving the
performance of the sensing mechanism in CR networks

APPENDEX

The innovation, representation concept and thetate ghat, the signal X(t) which
influences the observations n(t) can be decompwgedredictable and unpredictable
parts [12].

X(t+1) = Efr[X(t+ )] + [X(T+ 1) = Ef2{X(t + 1)}]

where fi._; represents all factors that affect the occurrenuebability,
B._y = afn® ™ x"} of X().

Therefore,  define, f(t.n""%x%)= Efr—:[x(t+1)], and u@t) =
[%(T + 1) — EF-{X(t + 1)}], we can write, X(t+1) =f(t,n""% x%) + u(),
where u(t) is interpreted as some noise process.
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Similarly, we can write, n(t) = (t, 7", x) + w(t) for the point process observations.
Now, defineu(t) = X" (t+1/t) — [ (t/t — 1)

The representation theorem states that every rgaténdifference sequence,
u(t) can be represented in terms of the innovationge®a(t) — »n" (t/t — 1).

That is, ult) = g(t)v(e) where, glt)

(pv), = ETr-+ uy(t)v(t), and (v.v), = E7t-2 vw(t)v(t).
In the Markovian signal settings which we look iimic¢his paper, we find,
a"(t/t —1) = pT X"(t/t — 1), andu,(t) =X, (t + 1) — X3, q;; X;(1),
EFi—: u(t)w(t) = ETe-: [S(8)X(t) — T X () X7 (1) p],
|:‘.‘.f v :l:_ = ﬂ;..[i-.-"ff — lj,l - a’ [fa-"'i'— l:l:.
Hence, after some algebraic manipulations, the siep predictor and the filtering
formulas can be found.

a— and
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