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In this paper, a new technique to solve the nonlinear blind source
separation problem (NBSS) is introduced. The method is based on the
concept of reducing the high frequency component of the nonlinear
mixed signal by dividing the mixed signal into blocks in the time domain,
with any arbitrary size. To remove the distortion of the nonlinear function,
the discreet cosine transform (DCT) is applied on each block. By
adaptively adjusting the size of the DCT block of data, the highly
correlated subblocks, can be estimated, then the correlation between the
highly correlated sub-blocks can be reduced. To complete the separation
process, the linear blind source separation (BSS) algorithm based on the
wavelet transform is used to reduced the correlation between the highly
correlated DCT subblock. Performed computer simulations have shown
the effectiveness of the idea, even in presence of strong nonlinearities and
synthetic mixture of real world data (like speech and image signals).
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1. INTRODUCTION

The problem of blind source separation (BSS) consists on the recovery of independent
sources from their mixture. This is important in several applications like speech
enhancement, telecommunication, biomedical signal processing, etc. Most of the work
on BSS mainly addresses the cases of instantaneous linear mixture [1-5]. Let A a real
or complex rectangular (nxm; n>m) matrix, the data model for linear mixture can be
expressed as

X(t) = AS(t) (1)

Where S(t) represents the statistically independent sources array while X(t) is the array
containing the observed signals. For real world situation, however, the basic linear
mixing model in equation (1) is too simple for describing the observed data. In many
applications such as the nonlinear characteristic introduced by preamplifiers of
receiving sensors, we can consider a nonlinear mixing. So a nonlinear mixing is more
realistic and accurate than linear model. For instantaneous mixtures, a general
nonlinear data model can have the form
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X(t) = f(S(@)) 2

Where f is an unknown vector of real functions.

The linear instantaneous mixing (BSS) can be solved using the independent
component analysis (ICA). The goal of the ICA is to separated the signals by finding
independent component from the data signal. The ICA is commonly used in solving
the problem of the linear mixing but in the nonlinear case the ICA is not used to solve
this problem. It is important to note that if x and y are two independent random
variables, any of their functions f(x) and f(y) are also independent. An even more
serious problem is that in the nonlinear case, x and y can be mixed and still be
statistically independent. Several authors [6-10] have addressed the important issues on
the existence and uniqueness of solutions for the nonlinear ICA and BSS problems. In
general, the ICA is not a strong enough constraint for ensuring separation in the
nonlinear mixing case. There are several known methods that try to solve this nonlinear
BSS problem. They can roughly be divided into algorithms with a parametric
approach and algorithms with nonlinear expansion approach. With the parametric
model the nonlinearity of the mixture is estimated by parameterized nonlinearities. In
[8] and [11], neural network is used to solved this problem. In the nonlinear expansion
approach the observed mixture is mapped into a high dimensional feature space and
afterwards a linear method is applied to the expanded data. A common technique to
turn a nonlinear problem into a linear one is introduced in [12].

1.1 Nonlinear Mixture Model

A generic nonlinear mixture model for blind source separation can be described as
follows:

X(t) = Af(S(D) @)

Where S(t) represents the statistically independent sources array while X(t) is the array
containing the observed signals and f is unknown multiple-input and multiple-output
(MIMO) mapping which called the nonlinear mixing transform (NMT). In order for the
mapping to be invertible we assume that the nonlinear mapping is monotone. We make
the assumption here, for simplicity and convenience, that the dimensions of X and S is
equal. Fig. 1 shows the general model of the nonlinear mixing model system described
in eg. (3), which contains both channel and cross-channel nonlinearities.

s — A — X

B2 T Sa) > — X

Mixing matrix
s

= Tt} >

Fig.1 Nonlinear mixing model

An important special case of the nonlinear mixture is the so-called post-nonlinear
(PNL) mixture,
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X(t)= f (A(t)) (4)

where f is an invertible nonlinear function that operates componentwise and A is a
linear mixing matrix, more detailed:

Xi(t):f{iaij Sj(t)],izl, ..... n (5)

Where a;; are the elements of the mixing matrix A. The PNL model was introduced by
Taleb and Jutten[14]. It represents an important subclass of the general nonlinear
model and has therefore attracted the interest of several researchers [15-19].
Applications are found, for example, in the fields of telecommunications, where power
efficient wireless communication devices with nonlinear class C amplifiers are used
[20] or in the field of biomedical data recording, where sensors can have nonlinear
characteristics [21].

s=p A zz X :v}u
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Fig.2 Building blocks of PNL mixing model and separation

In this work, a decoupled two-stage process to solve the PNL-BSS problem or
the general nonlinear BSS is proposed. First, making linearization for each data vector
to overcome the nonlinear function f. The second step is the linear BSS techniques. It
is based on the time-frequency analysis to recover the underlying source signals.

1.2 Discrete Cosine Transforms (DCT)

Discrete cosine transform (DCT) expresses a sequence of finite data points in terms of
a sum of cosine functions oscillating at different frequencies. DCT is important to
numerous applications in science and engineering. In particular, a DCT is a Fourier-
related transform similar to the discrete Fourier transform (DFT), but using only real
numbers. DCT are equivalent to DFT of roughly twice the length, operating on real
data with even symmetry (since the Fourier transform of a real and even function is
real and even), where in some variants the input and/or output data are shifted by half a
sample. In DCT most of the signal information tends to be concentrated in a few low-
frequency components of the DCT. Forward DCT (N-point DCT) can be described as
follows:

XM= 2¢, £ x(neoy 2D |
n=0
©
K=0,1, i, N—-1

Where the inverse DCT (N-point IDCT) can be described as follows:
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N-—1
X(N)= > ¢ X(k)cOs[(Z”J“l)k”} )
K=o Kk 2N
N=0,1, . eeeeneenaaeenannns N—1
1,
where c, =4 ./2 -
1 k=0

1.3 Assumptions and Definitions

In the proposed algorithm, there are some assumptions are considered as follows:

(1) the source signals must be independent, (2) the number of mixed signals are greater
than or equal to the number of the source signals, (3) there are at most one source
signal have Gaussian distribution, (4) the nonlinear function f is invertible function,
and (4) the mixed matrix must be of full rank.

2. THE PROPOSED SEPARATION METHOD

For any periodic signal, the most significant power of the DCT coefficients is
concentrated in the low-frequency components. Even with the applying a nonlinear
function on this signal, the distribution of the DCT coefficients will be changed
keeping the most significant power in the low frequency components. After applying
the DCT transform on the blocks of the mixed signals, the effect of nonlinear function
can be removed by finding the highly correlated subblocks (in the low frequency
components of the DCT coefficients ) and reducing this correlation. The correlation
reduction process among subblocks can be done by applying a linear blind source
separation technique on the correlated subblocks of the signal.

In this work, the idea of the proposed algorithm is to make linearization of the
nonlinear mixed data by apply the DCT transform on the blocks of the nonlinear mixed
signals and adaptively select the suitable data block size that produce highly correlated
DCT coefficients and reducing this correlation. The proposed algorithm can be used
with the nonlinear blind source separation problem described by eq. (3) or even for the
post nonlinear form of BSS described by eq. (5). The proposed method needs the signal
to be stationery. So, the mixed signals are divided, in the time domain, into small block
to overcome this problem.

The proposed algorithm can be summarized as follows: (1) dividing the
nonlinear mixed data in the time domain into blocks, (2) Apply the DCT transform on
each block, (3) select the low frequency components of the DCT data block as a
subblocks, (4) test the correlation among these subblocks with a predefined threshold
(in this work the threshold of the correlation is selected to be 0.8), (5) if the correlation
value is not greater than or equal the threshold, then increase the size of the subblocks
and repeat step 4, (6) the correlated DCT subblocks are pre-whitened using eigenvalue
decomposition of the zero time-lag correlation matrix (the basics of the pre-whitened
procedure is reported in appendix A.1), (7) n-scale wavelet packet transform of the
whitened subblocks resulting in n-subband signals, (8) evaluate the covariance matrix
among the corresponding subband to test the correlation in the wavelet domain, (9) the
joint approximate diagonalization criteria is used to minimize the zero time lag
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correlation among the subband (the joint approximate diagonalization criteria is
reported in appendix A.2) [22], (10) for n separation matrices B from each subband of
n-stage are estimated, using each two matrices to compute and test the global matrices
"G" in eq.(8)[23], (11) using eq.(9) to test the performance of the estimated separation
matrices (12) If the subband signals are correlated then the signals must be
decomposed another time using the wavelet packet transform and using the minimum
correlated band (MCB) search method to estimate the global separating matrix (MCB is
reported in Appendix A.3). (a good measuring of the uncorrelated subbands is the
performance index (PI) in eq.(9)).

G, = Bi x B, wherei#j )
. \ [G]ij 9
‘532 & mantsy ¥

Where [G];; is the (i,j)-element of the estimating matrix G. The smaller Pl implies
usually better performance in separation.

(13) using the estimated matrix which corresponding to the minimum correlated band
as a separation matrix ,(14) compare the Kurtosis of the estimated signals with a
predefined threshold (in this work the threshold absolute value of the Kurtosis is
selected to be 4, (15) if the Kurtosis of the estimating signals is greater than the
threshold, then increase the time domain block size in step (1) and repeat the steps
starting from step (2).

3. SIMULATION RESULTS AND IMPLEMENTATION

Several types of signals with the two mixture models are used to evaluate the
performance of the proposed technique. In the first example, AM modulated signal and
sine wave signal is mixed by cubic function, introduced in [13], to compare the
performance of the proposed algorithm with the results of BSNN (B-Spline Neural
Network). In the 2" example and the 4™ example, the performance of the proposed
algorithm in separation of real audio application is introduced. In the third example, a
sinusoidal signal is mixed with white Gaussian noise to illustrate the separation of the
noise from the signal. The performance of the proposed technique in separation of the
nonlinear mixing of two images is introduced in the 5" example. In all the simulation
results the initial block size is selected to be 10-sample and is adaptively increased to
the proper size (highly correlation case). In the simulation results, the scatter plot is
used as a tool to measurement the joint distributions [24]. Scatter plots are often used
to depict joint distributions of random variables. As mentioned in Section 1.3, our
basically assumption is that the original data are uncorrelated and the nonlinear
mapping is monotone.

Experiment 1 (post nonlinear mixing model): Consider a two-
channel nonlinear mixture with cubic nonlinearity. For the sake of simplicity, we
introduce our examples for the 2x2 case i.e. considering the two-dimensional post-
nonlinear mixing model.
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-]

Where the matrices B and A are defined as

[ 25 .86 5 .9
A=
- .86 .25} {-.9 .5}

The source vectors S(t) is given by an amplitude-modulated signal and a
sinusoidal signal as follows

S(t) =[(0.5+sin(62t)) cos(L00);sin(202)]
Figure 3 shows the original and the estimating sources.
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Fig. 3 the original data are the first two signals on the top ,the mixing data are in the
middle and the recovering data are in the last two rows.

Experiment 2 (general nonlinear mixing model): The proposed
algorithm is applied on speech signal with length of 30000 samples mixed by the
following strong nonlinear function. Figure 4 shows the original and the estimating
sources. Moreover, the scattering plot of the original signals, the mixed signals and the
estimating signals are shown in Figure 5.

X,(0) = S, (1) + S, 1)°
X, () = S,(1)° +tanh§, (1))
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Fig. 4 the original data are the first two signals on the top ,the mixing data are in the
middle and the recovering data are in the last two rows.
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Fig.5. (a) scatter plot of the original data. (b) scatter plot of the mixed data . (c) scatter
plot of the estimated data

Experiment 3 (general nonlinear mixing model): The proposed
algorithm is applied on sinusoidal signal with length of 10000 samples mixed with
white Gaussian noise with zero mean and 10% variance using the following strong
nonlinear function. Figure 6 shows the original, the mixing and the estimating sources.
Moreover, the scattering plot of the original signals, the mixed signals and the
estimating signals are shown in Figure 7.

X, (1) =48,()* +S,(t)
X, () =e®® ytanhg, (1))



660 Usama Sayed Mohammed and Hany Saber

original data vector 81

v

0 1000 2000 3000 4000 5000 5000 7000 5000 5000 10000
original data vector 52

1 T T | T T | T | T
0
10 \ \ | \ \ | \ | \
0 1000 200 30 4000 5000 5000 7000 8000 9000 10000
mixed data vector X1
§ T T | T T | T | T
AAMAAAAAAAAAAAAAAANAAAAAAAAAAANASAAAAAAANAAAAANS
5 | | | | | | | | |
0 1000 2000 3000 4000 5000 5000 7000 8000 9000 10000

mixed data vector X2
§ T T T T T T T T T

5 | | | | | | | | |
0 1000 2000 3000 4000 5000 5000 7000 8000 9000 10000
recover data s1

| | | | | | | | |
2

0 1000 2000 3000 4000 5000 5000 7000 8000 9000 10000
recover data 52

|
5
0 1000 2000 3000 4000 5000 6000 7000 8000 5000 10000

Fig. 6 the original data are the first two signals on the top ,the mixing data are in the
middle and the recovering data are in the last two rows.
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Fig.7. (a) scatter plot of the original data. (b) scatter plot of the mixed data . (c) scatter
plot of the estimated data

Experiment 4 (general nonlinear mixing model): The proposed
algorithm is applied on speech signal, in the experiment 2, mixed by the following
strong nonlinear function. Figure 8 shows the original, the mixing and the estimating
sources. Moreover, the scattering plot of the original signals, the mixed signals and the
estimating signals are shown in Figure 9.
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X, (t) = cos(S,(t))
X, (t) = (0.2S, (t) + 6) coS(S, (t))
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Fig. 8 the original data are the first two signals on the top ,the mixing data are in the
middle and the recovering data are in the last two rows.
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Fig.9 (a) scatter plot of the original data. (b) scatter plot of the mixed data . (c) scatter
plot of the estimated data

Experiment 5 (general nonlinear mixing model): The proposed
algorithm is applied on two mixed image signals. The image signals are mixed by the
following strong nonlinear function. Figure 8 shows the original, the mixing and the
estimating images.

X, (t) =S, (t)(tanhB,(t))+0.2sin(S, (1))

X, (t) = S, (t)(tanhE, (1)) + 0.2sin (S, (t))
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orignal image 1 orignal image 2

Mixture 1 Mixture 2

estimated of image 2

Fig. 10 the original images are the first two images on the top ,the mixing images are in
the middle and the recovering images are in the last two rows.

The simulation result confirms the robustness of the algorithm versus the
nonlinear mixing function. The the proposed algorithm is not simple and the execution
computational time of the algorithm is relatively high but the performance of this
algorithm is promising with all type of the nonlinear mixing model. Therefore, our
future investigations will focus on reduction of the algorithm complexity.

4. CONCLUSIONS AND DISCUSSION

We have introduced a new adaptive algorithm to solve the problem of the nonlinear
blind source separation. The algorithm depends on minimizing the correlation between
the block of the data in the DCT domain. By choosing the suitable block size in the
time domain and the DCT domain we can overcame the nonlinearity of the mixing
function. Then a linear blind source separation algorithm is applied on the data.
Wavelet based blind signal separation approach is used for blind signal separation of
the DCT data block. Although the proposed algorithm is not simple but there is no
restriction on the mixed model (general nonlinear or post nonlinear mixing model).
Our extensive experiments have confirmed that, the use of the proposed procedure
provides promising results.
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APPENDIX

A.1 Spatial whitening

The role of whitening is ideally to convert the noise-free signal vector x(t) into a new
signal vector so that the zero time-lag correlation matrix of the new vector is the
identity matrix. In the following analysis, the signal vector X (t) is the DCT coefficients
of the data blocks.

When the sources s(t) is uncorrelated, then,

E {si(t)sj(t)} =0 fori#] (10)
This condition is weaker than spatial independence, and it also can include

nearly Gaussian-distributed sources. In addition to this condition, under the assumption
that each source signal has unit variance, i.e.;

Rss (0) = E {s(t) s"(0)} =!I (11)
Since the DCT output can be modeled as a linear combination of the subblock
components i.e. the mixing matrix A is transferred to the DCT domain. Consider the
corresponding correlation matrix of the input (DCT) Data
Ra(0) = E {x(t) x ()}
~ AE {s(t)s"()} AT
=AR(0)A" (12)
The mixing matrix A can be parameterized as QDG with Q and G is unitary
matrices and D is a diagonal matrix. The correlation matrix of the observed signal is
given by
Ro=ARA'=AA™=QD’Q’ (13)
The eigenvalue decomposition (EVD) of Ry(0), which is unique, can be
written as;
Ryx(0)=vkv"
With v is a unitary matrix and k is a diagonal matrix. By identification, it is found that;
v=Qand k=D’
Then, the whitening matrix w is defined as w =k™*® v" and the whitened signals
are defined as:

z()= wX(t) = wA s(t) = u s(t) (14)
and the signal in the transform domain can be written as:
Z(k)=w X(k) = w AS(k)=u S(k) (15)

In this work, the unitary matrix u will be estimated in the wavelet domain to
perform separation. From each corresponding subband in the wavelet domain, the
covariance matrix is estimated to construct a set of covariance matrices. Then, the joint
approximate diagonalization (JAD) process is applied on this set to obtain on the
unitary matrix u, and the separating matrix will be as follows:

B=u'w (16)



664 Usama Sayed Mohammed and Hany Saber

A.2 Joint Approximate Diagonalization (JAD)

The approximate joint diagonalization of a combined set of arbitrary matrices, the
“off” of an nxn matrix M with entries M;;, can be defined as

Vi
off (M)=_ 2 |Mij (17)
1<i= j<n
and the unitary diagonalization of a matrix M is equivalent to zeroing Off (V'MV) by
some unitary matrix P. The spectral theorem states that only normal matrices can be
unitarily diagonalized. In addition, if a matrix M is in the form M=UDU?, where U is
unitary and D is diagonal with distinct diagonal elements, then it may be unitarily
diagonalized only by unitary matrices that are essentially equal to U, that is, if Off
(PTMP) =0, then P = U.
Consider a set p={M,,...., My} of k matrices of size nxn. the joint
diagonalization (JD) criterion is defined, for any nxn matrix P, as the following
nonnegative function of P:

cup= YOff {PT MKP} (18)
k=Lk

A unitary matrix is said to be a joint diagonalizer of the set p if it minimizes
the JD criterion over the set of all unitary matrices.

Let us first consider the case where each matrix in the set u is in the form
M,=UD,U", where Dy is a diagonal matrix. Then clearly, C(u, U) = 0, and this is the
global minimum of the JD criterion since C (Y, P) > 0 for any matrix P. Thus, if each
matrix in the set p can be unitarily diagonalized by U, then according to our definition,
matrix U is a joint diagonalizer of L.

A.3 Minimum correlated band (MCB) search technique

The wavelet transform of the DCT coefficients may be correlated in subband. We
need that at least two bands is uncorrelated to achieve the separation. To blindly detect
these uncorrelated bands in the n-stage, a set of separating matrices: By, B,, Bs,...Bn
from each two bands in the m-band in the wavelet domain are used to compute the
global matrices [23] as:

Gij=Bi*B, fori #j

For all possible pairs i and j, where B is the estimated separating matrix for the
j-th frequency subband and Bj” is its pseudo-inverse which is equal to the separating

matrix. If the specific sub-components of interest are uncorrelated for at least two
subbands, or more generally two subsets of multi-band, say for the subband "p" and
subband "g", then the global matrix will be as follows:

Gy=B,*B;” =P (19)

Will be a sparse generalized permutation matrix P with special structure with
only one non-zero (or strongly dominating) element in each row and each column.
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