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In this paper, a new technique to solve the nonlinear blind source 

separation problem (NBSS) is introduced. The method is based on the 

concept of reducing the high frequency component of  the nonlinear  

mixed signal by dividing the mixed signal into blocks in the time domain, 

with any arbitrary size. To remove the distortion of the nonlinear function, 

the discreet cosine transform (DCT) is applied on each block. By 

adaptively adjusting the size of the DCT block of data, the highly 

correlated subblocks,  can be estimated, then  the correlation between the 

highly correlated sub-blocks can be reduced.  To complete the separation 

process, the linear blind source separation (BSS) algorithm based on the 

wavelet transform is used to reduced the correlation between the highly 

correlated DCT subblock. Performed computer simulations have shown 

the effectiveness of the idea, even in presence of strong nonlinearities and 

synthetic mixture of real world data (like speech and image signals). 
 

KEYWORDS: nonlinear blind source separation, discreet casein 

transform, linearization, post nonlinear mixing and independent 

component analysis (ICA). 

 

1. INTRODUCTION 

The problem of blind source separation (BSS) consists on the recovery of independent 

sources from their mixture. This is important in several applications like speech 

enhancement, telecommunication, biomedical signal processing, etc. Most of the work 

on BSS mainly addresses the cases of instantaneous linear mixture [1-5]. Let A a real 

or complex rectangular (n×m; n≥m) matrix, the data model for linear mixture can be 

expressed as  

                       AS(t)X(t)                                                       (1) 

Where S(t) represents the statistically independent sources array while X(t) is the array 

containing the observed signals. For real world situation, however, the basic linear 

mixing model in equation (1) is too simple for describing the observed data. In many 

applications such as the nonlinear characteristic introduced by preamplifiers of 

receiving sensors, we can consider a nonlinear mixing. So a nonlinear mixing is more 

realistic and accurate than linear model. For instantaneous mixtures, a general 

nonlinear data model can have the form 
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                       (S(t))X(t) f                                        (2) 

Where f is an unknown vector of real functions.  

The linear instantaneous mixing (BSS) can be solved using the independent 

component analysis (ICA). The goal of the ICA is to separated the signals by finding 

independent component from the data signal. The ICA is commonly used  in  solving 

the problem of the linear mixing  but in the nonlinear case the ICA is not used to solve 

this problem. It is important to note that if x and y are two independent random 

variables, any of their functions f(x) and f(y) are also independent. An even more 

serious problem is that in the nonlinear case, x and y can be mixed and still be 

statistically independent. Several authors [6-10] have addressed the important issues on 

the existence and uniqueness of solutions for the nonlinear ICA and BSS problems. In 

general, the ICA is not a strong enough constraint for ensuring separation in the 

nonlinear mixing case. There are several known methods that try to solve this nonlinear 

BSS problem. They can roughly be divided into algorithms with a parametric 

approach and algorithms with nonlinear expansion approach. With the parametric 

model the nonlinearity of the mixture is estimated by parameterized nonlinearities. In 

[8] and [11], neural network is used to solved this problem. In the nonlinear expansion 

approach the observed mixture is mapped into a high dimensional feature space and 

afterwards a linear method is applied to the expanded data. A common technique to 

turn a nonlinear problem into a linear one is introduced in [12].  
 

1.1 Nonlinear Mixture Model 

A generic nonlinear mixture model for blind source separation can be described as 

follows: 

) A f (S(t)X(t) 
       (3) 

Where S(t) represents the statistically independent sources array while X(t) is the array 

containing the observed signals and f  is unknown multiple-input and multiple-output 

(MIMO) mapping which called the nonlinear mixing transform (NMT). In order for the 

mapping to be invertible we assume that the nonlinear mapping is monotone. We make 

the assumption here, for simplicity and convenience, that the dimensions of X and S is 

equal. Fig. 1 shows the general model of the nonlinear mixing model system described 

in eq. (3), which contains both channel and cross-channel nonlinearities.  

 
Fig.1 Nonlinear mixing model 

 

An important special case of the nonlinear mixture is the so-called post-nonlinear 

(PNL) mixture, 
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(AS(t))  X(t) f         (4) 

where f  is an invertible nonlinear function that operates componentwise and A is a 

linear mixing matrix, more detailed: 

n1,.....,i,(t) Saf(t)X
m

1j

jijii 












 



                                     (5) 

Where aij are the elements of the mixing matrix A. The PNL model was introduced by 

Taleb and Jutten[14]. It represents an important subclass of the general nonlinear 

model and has therefore attracted the interest of several researchers [15-19]. 

Applications are found, for example, in the fields of telecommunications, where power 

efficient wireless communication devices with nonlinear class C amplifiers are used 

[20] or in the field of biomedical data recording, where sensors can have nonlinear 

characteristics [21]. 

 
Fig.2 Building blocks of PNL mixing model and separation 

 

In this work, a decoupled two-stage process to solve the PNL-BSS problem or 

the general nonlinear BSS is proposed. First, making linearization for each data vector 

to overcome the nonlinear function f. The second step is the  linear BSS techniques. It 

is based on the time-frequency analysis to recover the underlying source signals.  
 

1.2 Discrete Cosine Transforms (DCT) 

Discrete cosine transform (DCT) expresses a sequence of finite data points in terms of 

a sum of cosine functions oscillating at different frequencies. DCT is important to 

numerous applications in science and engineering. In particular, a DCT is a Fourier-

related transform similar to the discrete Fourier transform (DFT), but using only real 

numbers. DCT are equivalent to DFT of roughly twice the length, operating on real 

data with even symmetry (since the Fourier transform of a real and even function is 

real and even), where in some variants the input and/or output data are shifted by half a 

sample. In DCT most of the signal information tends to be concentrated in a few low-

frequency components of the DCT. Forward DCT (N-point DCT) can be described as 

follows: 

1......N....................0,1,......k

1N

0n 2N

1)kπ(2n
x(n)cos

N

2
X(k) ck














 


       (6) 

 

Where the inverse DCT (N-point IDCT) can be described as follows: 
 

http://en.wikipedia.org/wiki/Cosine
http://en.wikipedia.org/wiki/Frequency
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http://en.wikipedia.org/wiki/Discrete_Fourier_transform
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http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Even_and_odd_functions
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 (7) 
 

 

 
 

 
 

1.3  Assumptions and Definitions 

In the proposed algorithm, there are some assumptions are considered  as follows:  

(1) the source signals must be independent, (2) the number of mixed signals are greater 

than or equal to the number of the source signals, (3) there are at most one source 

signal have Gaussian distribution, (4) the nonlinear function f  is invertible function, 

and (4) the mixed matrix must be of full rank. 

 

2. THE PROPOSED SEPARATION METHOD 

For any periodic signal, the most significant power of the DCT coefficients is 

concentrated in the low-frequency components. Even with the applying a nonlinear 

function on this signal, the distribution of the DCT coefficients will be changed 

keeping the most significant power in the low frequency components. After applying 

the DCT transform on the blocks of the mixed signals, the effect of nonlinear function 

can be removed by finding the  highly correlated subblocks (in the low frequency 

components of the DCT coefficients ) and reducing this correlation. The correlation 

reduction process among  subblocks can be done by applying a linear blind source 

separation technique on the correlated subblocks of the signal. 

In this work, the idea of the proposed algorithm is to make linearization of the 

nonlinear mixed data by apply the DCT transform on the blocks of the nonlinear mixed 

signals and adaptively select the suitable data block size that produce highly correlated 

DCT coefficients and reducing this correlation. The proposed algorithm can be used 

with the nonlinear blind source separation problem described by eq. (3) or even for the 

post nonlinear form of BSS described by eq. (5). The proposed method needs the signal 

to be stationery. So, the mixed signals are divided, in the time domain, into small block 

to overcome this problem.  

The proposed algorithm can be summarized as follows: (1) dividing the 

nonlinear mixed data in the time domain into blocks, (2) Apply the DCT transform on 

each block, (3) select the low frequency components of the DCT data block as a 

subblocks, (4) test the correlation among these subblocks with a predefined threshold 

(in this work the threshold of the correlation is selected to be 0.8), (5) if the correlation 

value is not greater than or equal the threshold, then increase the size of the subblocks 

and repeat step 4, (6) the correlated DCT subblocks  are pre-whitened using eigenvalue 

decomposition of the zero time-lag correlation matrix (the basics of the pre-whitened 

procedure is reported in appendix A.1), (7) n-scale wavelet packet  transform of the 

whitened subblocks resulting in n-subband signals, (8) evaluate the covariance matrix 

among the corresponding subband to test the correlation in the wavelet domain, (9) the 

joint approximate diagonalization criteria is used to minimize the  zero time lag  
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correlation among the subband (the joint approximate diagonalization criteria is 

reported in appendix A.2) [22], (10) for n separation matrices B from each subband of 

n-stage are  estimated, using each two matrices to compute  and test the global matrices  

"G" in eq.(8)[23], (11) using eq.(9) to test the performance of the estimated separation 

matrices (12) If the subband signals are correlated then the signals must be 

decomposed another time using the wavelet packet transform and using the minimum 

correlated band (MCB) search method to estimate the global separating matrix (MCB is 

reported in Appendix A.3). (a good measuring of the uncorrelated subbands is the 

performance index (PI) in eq.(9)). 

,1
jiij BBG   where i ≠ j      (8) 

PI = 
)1(

1

nn



n

i 1




n

j 1

  
 

1
ijj

ij

Gmax

G                                (9) 

 

Where [G]ij is the (i,j)-element of the estimating matrix G. The smaller PI implies 

usually better performance in separation. 

(13) using the estimated matrix which corresponding to the minimum correlated band 

as a separation matrix ,(14) compare the Kurtosis of the estimated signals with a 

predefined threshold (in this work the threshold absolute value of the Kurtosis is 

selected to be 4, (15) if the Kurtosis of the estimating signals is greater than the 

threshold, then increase the time domain block size in step (1) and repeat the steps 

starting from step (2). 

 

3. SIMULATION RESULTS AND IMPLEMENTATION 

Several types of signals with the two mixture models are used to evaluate the 

performance of the proposed technique. In the first example, AM modulated signal and 

sine wave signal is mixed by cubic function, introduced in [13], to compare the 

performance of the proposed algorithm with the results of BSNN (B-Spline Neural 

Network). In the 2
nd

  example and the 4
th
 example, the performance of the proposed 

algorithm in separation of real audio application is introduced. In the third example, a 

sinusoidal signal is mixed with white Gaussian noise to illustrate the separation of the 

noise from the signal. The performance of the proposed technique in separation of the 

nonlinear mixing of two images is introduced in the 5
th
 example. In all the simulation 

results the initial block size is selected to be 10-sample and is adaptively increased to 

the proper size (highly correlation case).  In the simulation results, the scatter plot is 

used as a tool to measurement the joint distributions [24]. Scatter plots are often used 

to depict joint distributions of random variables. As mentioned in Section 1.3, our 

basically assumption is that the original data are uncorrelated and the nonlinear 

mapping is monotone. 

Experiment 1 (post nonlinear mixing model): Consider a two-

channel nonlinear mixture with cubic nonlinearity. For the sake of simplicity, we 

introduce our examples for the 2x2 case i.e. considering the two-dimensional post-

nonlinear mixing model. 
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Where the matrices B and A are defined as   
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B  

The source vectors S(t) is given by an amplitude-modulated signal and a 

sinusoidal signal as follows 

TtttS )]20sin();100cos())t6sin(5.0[()(   

Figure 3 shows the original and the estimating sources. 

 

 

Fig. 3 the original data are the first two signals on the top ,the mixing data are in the 

middle and the recovering data are in the last two rows. 

 

Experiment 2 (general nonlinear mixing model): The proposed 

algorithm is applied on speech signal with length of 30000 samples mixed by the 

following strong nonlinear function.  Figure 4 shows the original and the estimating 

sources. Moreover, the scattering plot of the original signals, the mixed signals and the 

estimating signals are shown in Figure 5. 
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Fig. 4 the original data are the first two signals on the top ,the mixing data are in the 

middle and the recovering data are in the last two rows. 
 

 

 

 

 

 

 

 

 

 

 

         (a)          (b)                   (c)                                                            

Fig.5. (a) scatter plot of the original data. (b) scatter plot of the mixed data . (c) scatter 

plot of the estimated data 

 

Experiment 3 (general nonlinear mixing model): The proposed 

algorithm is applied on sinusoidal  signal with length of 10000 samples mixed with 

white Gaussian noise with zero mean and 10% variance using the following strong 

nonlinear function. Figure 6 shows the original, the mixing and the estimating sources. 

Moreover, the scattering plot of the original signals, the mixed signals and the 

estimating signals are shown in Figure 7. 
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Fig. 6 the original data are the first two signals on the top ,the mixing data are in the 

middle and the recovering data are in the last two rows. 
 

 

 

 

 

 

 

 

 

  

                   (a)         (b)           (c)                                                            

Fig.7. (a) scatter plot of the original data. (b) scatter plot of the mixed data . (c) scatter 

plot of the estimated data 

 

Experiment 4 (general nonlinear mixing model): The proposed 

algorithm is applied on speech signal, in the experiment 2, mixed by the following 

strong nonlinear function. Figure 8 shows the original, the mixing and the estimating 

sources. Moreover, the scattering plot of the original signals, the mixed signals and the 

estimating signals are shown in Figure 9. 
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Fig. 8 the original data are the first two signals on the top ,the mixing data are in the 

middle and the recovering data are in the last two rows. 
 

 

 

 

  

  

 

 

 

                               (a)   (b)                  (c)                                                            

Fig.9 (a) scatter plot of the original data. (b) scatter plot of the mixed data . (c) scatter 

plot of the estimated data 
 

Experiment 5 (general nonlinear mixing model): The proposed 

algorithm is applied on two mixed image signals. The image signals are mixed by the 

following strong nonlinear function. Figure 8 shows the original, the mixing and the 

estimating images. 
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Fig. 10 the original images are the first two images on the top ,the mixing images are in 

the middle and the recovering images are in the last two rows. 

 

The simulation result confirms the robustness of the algorithm versus the 

nonlinear mixing function. The the proposed algorithm is not simple and the execution 

computational time of the algorithm is relatively high but the performance of this 

algorithm is promising with all type of the nonlinear mixing model. Therefore, our 

future investigations will focus on reduction of the algorithm complexity.    

 

4. CONCLUSIONS AND DISCUSSION  

We have introduced a new adaptive algorithm to solve the problem of the nonlinear 

blind source separation. The algorithm depends on minimizing the correlation between 

the block of the data in the DCT domain. By choosing the suitable block size in the 

time domain and the DCT domain we can  overcame the nonlinearity of the mixing  

function. Then a linear  blind source separation algorithm is applied  on the data.  

Wavelet based blind signal separation approach is used for blind signal separation of 

the DCT data block. Although the proposed algorithm is not simple but there is no 

restriction on the mixed model (general nonlinear or post nonlinear mixing model). 

Our extensive experiments have confirmed that, the use of the proposed procedure 

provides promising results. 
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APPENDIX 
 

A.1 Spatial whitening 

The role of whitening is ideally to convert the noise-free signal vector x(t) into a new 

signal vector so that the zero time-lag correlation matrix of the new vector is the 

identity matrix. In the following analysis, the signal vector x
'
(t) is the DCT coefficients 

of the data blocks.  

When the sources s(t) is uncorrelated, then, 

E {si(t) sj(t)} = 0      for i ≠ j                 (10) 

This condition is weaker than spatial independence, and it also can include 

nearly Gaussian-distributed sources. In addition to this condition, under the assumption 

that each source signal has unit variance, i.e.;  

Rss (0) = E {s(t) s
T
(t)} =I                     (11) 

Since the DCT output can be modeled as a linear combination of the subblock 

components i.e. the mixing matrix A is transferred to the DCT domain.   Consider the 

corresponding correlation matrix of the input (DCT) Data  

Rxx(0) = E {x
'
(t) x

' T
(t)} 

           A E {s(t) s
T
(t)} A

T
 

          =ARss(0)A
T
                             (12) 

The mixing matrix A can be parameterized as QDG with Q and G is unitary 

matrices and D is a diagonal matrix. The correlation matrix of the observed signal is 

given by  

Rxx=ARssA
T
=AA

T
=QD

2
Q

T
                                   (13) 

The eigenvalue decomposition (EVD) of Rxx(0), which is unique, can be 

written as; 

Rxx(0)=vkv
T 

With v is a unitary matrix and k is a diagonal matrix. By identification, it is found that; 

v = Q and k = D
2
.  

Then, the whitening matrix w is defined as w =k
-0.5

 v
T
 and the whitened signals 

are defined as: 

z(t)= w x
'
(t)   w A s(t) = u s(t)                                        (14) 

and the signal in the transform domain can be written as: 

Z(k)=w X(k) = w AS(k)=u S(k)                                                (15)  

In this work, the unitary matrix u will be estimated in the wavelet domain to 

perform separation. From each corresponding subband in the wavelet domain, the 

covariance matrix is estimated to construct a set of covariance matrices. Then, the joint 

approximate diagonalization (JAD) process is applied on this set to obtain on the 

unitary matrix u, and the separating matrix will be as follows: 

B = u
T
w                                                                (16) 
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A.2  Joint Approximate Diagonalization (JAD) 
The approximate joint diagonalization of a combined set of arbitrary matrices, the 

“off” of an n×n matrix M with entries Mij, can be defined as 

Off (M)= 
 nji

Mij
1

2

                                               (17)    

and the unitary diagonalization of a matrix M is equivalent to zeroing Off (V
T
MV) by 

some unitary matrix P. The spectral theorem states that only normal matrices can be 

unitarily diagonalized. In addition, if a matrix M is in the form M=UDU
T
, where U is 

unitary and D is diagonal with distinct diagonal elements, then it may be unitarily 

diagonalized only by unitary matrices that are essentially equal to U, that is, if Off 

(P
T
MP) = 0, then P = U. 

Consider a set µ={Mj,…., Mk} of k matrices of size n×n. the joint 

diagonalization (JD) criterion is defined, for any n×n matrix P, as the following 

nonnegative function of P: 

C (µ, P)= 
 kk

PKMTP Off

,1

}{                                   (18) 

A unitary matrix is said to be a joint diagonalizer of the set µ if it minimizes 

the JD criterion over the set of all unitary matrices.  

Let us first consider the case where each matrix in the set µ is in the form 

Mk=UDkU
T
, where Dk is a diagonal matrix. Then clearly, C(µ, U) = 0, and this is the 

global minimum of the JD criterion since C (µ, P) ≥ 0 for any matrix P. Thus, if each 

matrix in the set µ can be unitarily diagonalized by U, then according to our definition, 

matrix U is a joint diagonalizer of µ. 
 

A.3 Minimum correlated band (MCB) search technique 

The wavelet transform of the DCT coefficients  may be correlated in subband. We 

need that at least two bands is uncorrelated to achieve the separation. To blindly detect 

these uncorrelated bands in the n-stage, a set of separating matrices: B1, B2, B3,…Bm 

from each two bands in the m-band in the wavelet domain are used to compute the 

global matrices [23] as:  

Gi j = Bi *Bj

,   for i  ≠ j 

For all possible pairs i and j, where Bj is the estimated separating matrix for the 

j-th frequency subband and Bj

 is its pseudo-inverse which is equal to the separating 

matrix. If the specific sub-components of interest are uncorrelated for at least two 

subbands, or more generally two subsets of multi-band, say for the subband "p" and 

subband "q", then the global matrix will be as follows: 
 

Gpq = Bp * Bq

 ≈ P                                                   (19) 

Will be a sparse generalized permutation matrix P with special structure with 

only one non-zero (or strongly dominating) element in each row and each column. 
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 فصل الإشارات المبهمة والمخلوطة لاخطيا ذاتية التكيف لذاتية التكيف ل  طريقهطريقه
 

 . تم فيللإشارات خطىالمبهم الغير جديدة يمكن بها حل مشكلة الخلط  ةقيتم اقتراح طر في هذه المقالة 
للخليط, حيث أنه تم عمل معالجة  لتمام والتحويل المويجىتحويل جيب االجمع بين استخدام  هذه الطريقة

ثم أستخدم التحليل المويجى للخليط  تحويل جيب التمامباستخدام  Linearization)) مبدئية للخليط
بين معاملات الحزم المتناظرة.  الارتباطتعتمد علي تقليل  الأساسيةالفكرة   المعالج لإتمام عملية الفصل.

 أنضيقة النطاق التي من الممكن  الإشاراتعدد من  النطاق إليالملاحظة واسعة  راتالإشا يتم تقسيم
ويتم تقليل تأثير عملية الخلط الغير خطى  يكون بعض منها مترابط, أن أوتكون جميعها غير مترابطة 

ة ضيق الإشاراتمع الضبط التلقائي لحجم  تحويل جيب التمام في هذه الإشارات ضيقة النطاق باستخدام
السابقة الناتجة من يتم ضرب العينة  -1في خمسة خطوات: . ثم يلي ذلك عملية الفصل الخطى النطاق

باستخدام التحويل  -2 متعامدة. إشاراتفي مصفوفة التعامد لنحصل علي  للإشارات تحويل جيب التمام
 شارات الفرعيةالإبين  -3 . الفرعية الإشاراتعدد "ن" من المرات نحصل علي عدد  "م" من  المويجى

( JAD)التقريبي القطريالترابط  باستخدام طريقة-4 في النطاق نحصل علي مصفوفة الترابط. ناظرةالمت
 الإشاراتنحصل علي المصفوفة المتعامدة التي تدور  ناظرةوالتي تقلل الترابط بين النطاقات المت
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مترابطة في العدد "م" من النطاقات كان هناك عدد من النطاقات  إذا -5  المتعامدة بالزاوية المطلوبة
علي كل نطاق علي حدة  4و3و2نطبق طريقة البحث علي النطاقات الأقل ترابط )نطبق الخطوات 

 مصفوفتيثم نحصل علي مصفوفة عامة ما بين كل  وبدلك نحصل علي عدد "م" من مصفوفات الفصل,
مة والأفضل هي تلك المصفوفة أفضل مصفوفة عا ونأخذفصل, التي تختبر الترابط بين كل نطاقين 

في النهاية نختبر  استخدام معامل الكفاءة لتحديد الأفضل , وذلك بأن يكون الأقل قيمة. تمو  .القطرية
للخرج بالنسبة لقيمة قليلة افتراضية. أذا كانت قيمة هذا المعامل أقل من أو تساوى  Kurtosisمعامل 

ذا كانت قيمة هذا المعامل أكبر من القيمة الافتراضية يتم القيمة الافتراضية يتم إيقاف عملية الفصل. أ
وتكرار الخطوات السابقة  النطاقالملاحظة واسعة  الإشارات الأصليةتكبير حجم البيانات الأولية من 

ولاختبار الطرق المقترحة تم تنفيذها و عمل محاكاة وتم تجربتها على أنواع  حتى تتم عملية الفصل.
وقد أثبتت هذه  )الصوت, الموسيقى,...( وعدد مختلف من مصفوفات الخلط. مختلفة من الإشارات

 الطريقة كفاءة عالية في عملية الفصل لهذه الإشارات مع جميع الاحتمالات الخاصة بعملية الخلط.
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