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This study aims to building a mathematical model for pneumohydraulic 

brake system. Creating a pneumohydraulic brake system with a variable 

transfer attitudes or relation requires really a lot of complex works on 

modeling transient of such systems. After building the mathematical model 

it will be solved in order to investigate its final response and stability. It is 

found that the output pressure values (P1, P2, andP3) are increasing with 

time; displacements of pistons and may depend on pneumatic and 

hydraulic properties of the using medium. 
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NOMENCLATURE 

AB area of the piston according   to a 

pneumatic cavity [m
2
] 

"

3
  Pressure of the end of operation of  

the relay [Pa] 

Ai area of working cavities of     the 

main and executive cylinders [m
2
] 

Pвmax maximal pressure of air [Pa] 

ci rigidity of the brake mechanism 

[Pa] 
P4min Pressure appropriate to the 

beginning of cavitations [Pa] 

F(z) characteristic force of the brake 

mechanism [N] 
V M/S  dynamic viscosity N.S/ m

2 

kε approximation factor; Yi pliability 

k parameter exhibitors Уi units of a circuit; 

Li pipes length [m] x,y, z coordinates of a rule 

mi mass of a liquid [Kg] β relative initial volume of air in a liquid; 

Pв pressure of air in a pneumatic 

cavity [Pa] 

ρ density of the current liquid 

[Kg/m
3
] 

Pi pressure of a liquid accordingly in 

working cavities [Pa] 

v kinematic  viscosity factor of a 

liquid[m
2 
/s] 

'

3
  Pressure appropriate to the 

beginning [Pa] 

ξi or 

(R) 

factor of  hydraulic resistance 

  Ψ spring constant [N/m] 
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INTRODUCTION 

Building a new brake system requires a full analysis in order to get a good efficiency 

and good performance. There were little studies using mathematical modeling -as a 

technique- concerned with such topic. These works were limited to some systems 

developed by some automobiles companies.  

Guner et al. [1] presented some technique to check the validation of analytical 

model of vehicle brake system. In this work they presented a paper aimed to contribute 

to dynamic and thermal analysis of the braking phenomenon. Using this model, the 

equation of motion of a car has been phenomenon. Using this model, the equation of 

motion of a car has been derived for straight line braking. In this study the pressure 

variations in the brake hydraulic circuit versus pedal force had been determined. 

Afterwards, the expressions for friction torques and associated braking forces induced 

by hydraulic pressure had been taken into account, and substituted into the equation of 

motion of vehicle. In its last form, this equation had been numerically solved by means 

of the Newmark integration scheme; so, the distance traveled by car until stopping, 

along with its speed and deceleration, had been computed. Finally, a thermal analysis 

in the brake discs and drum had been carried out. An excellent agreement between 

numerical and test results had been observed. In addition, optimal pressure values for 

which the rear tires do not go to lockup had been obtained. Hedrick and Uchanski [2] 

provided solutions to two common brake control problems: variable brake torque gain 

and brake rotor-induced brake torque oscillations. The adaptive control solution for the 

variable brake torque gain problem was shown to work experimentally, and the 

algorithm to eliminate brake torque oscillations was demonstrated in simulation.  

In addition, documentation was provided for deferential braking hardware, 

wheel speed measurement hardware, and a strain-based brake torque sensor that were 

constructed to test these algorithms. They built some relations between torque needed 

and the time using both experimental and analytical models. They concluded that the 

non-adaptive sliding mode brake controller performed well but showed a tracking error 

when there were parameter mismatches. Although this could be remedied with a higher 

surface gain, an integral term in the surface, or  a switching term, it would likely be at 

the expense of increased control effort. Both adaptive algorithms reduced velocity 

tracking error and had their parameters converge to the correct value. The smooth 

adaptation scheme converged as expected, and the nonsmooth adaptation algorithm 

converged in a linear matter, chattering at a low frequency once it reached the correct 

parameter value. For this application, the nonsmooth parameter adaptation law gave 

better results because it had less of a tendency to over/undershoot the correct parameter 

value when the initial parameter error was large [3]. 

Shankar et al. [4] Developed a fault-free model of the pneumatic subsystem of 

the air brake system. Their model can be used in brake control and diagnostic 

applications. Current enforcement inspections were done manually and hence were 

time consuming and subjective. The long- term objective was to develop a model-

based, performance based diagnostic system that will automate enforcement 

inspections and help in monitoring the condition of the air brake system. 

Such a diagnostic system can update the driver on the performance of the 

brake system during travel and with recent advancements in communication 

technology.  
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This information can be remotely transferred to the brake inspection teams. 

The model of the pneumatic subsystem correlates the pressure transients in the brake 

chamber with the brake pedal actuation force and the brake valve plunger 

displacement. An experimental test bench was set up at Texas A&M University and the 

experimental data is used to corroborate the results obtained from the model. Mainly 

they found a relation between the pressure needed inside the brake system and time. 

They concluded that the model was able to predict the beginning and the end of 

each brake application accurately. The steady state values are also accurately predicted 

by the model in all the cases. It can be observed that the model responded well to 

various supply pressures. The model also predicted the start and the termination of the 

exhaust phase accurately. 

 

DERIVING GOVERNING EQUATIONS 
(MATHEMATICAL MODEL) 

The creation of a pneumohydraulic brake drive with the variable transfer attitude 

requires realization of a complex of works on modeling transients in it, research of 

influence of the basic design data of a contour on quality of its work. With this purpose 

the dynamic circuit of a pneumohydraulic drive with the variable transfer attitude –
relation-(see figure ((1)) was developed in view of the concentrated parameters (mass 

of a liquid mi, pliability Yi, hydraulic resistance Ri). 

 

Figure (1) the dynamic circuit pneumohydraulic with the variable transfer 

attitude (relation) 
     

On the dynamic circuit as shown: Уi - units of a circuit; Y, Z, X, Z1 - 

coordinate of a rule(situation) accordingly of pistons of the main and executive 

cylinders, converter of pressure and moving of a liquid in a highway; pв, p1, p2, p3, p4, 

p5, - pressure of air in a pneumatic cavity and pressure of a liquid accordingly in 

working cavities of the main and executive cylinders, under the piston of the converter 

of pressure, and pressure inside cavity of the pneumohydraulic cylinder, or tank 

respectively. Aв, A1, A2, A3, A4, - area of the piston according to a pneumatic cavity, 
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working cavities of the main and executive cylinders, converter of pressure, inside the 

cavity respectively; Y1, Y2, Y3, - pliability of a circuit given accordingly in units У1, 

У2, У3; Ai, Li - area of through passage sections of pipelines of the appropriate sites 

and their lengths; F (z) - characteristic of the brake mechanism force. 

For drawing up of the equations of motion, the laws of units and contours are 

used, and also the nonlinear characteristics of the brake mechanism and converter of 

pressure are taken into account. Dynamics changes of a considered pneumohydraulic 

drive are described by the following equations: 

In z-direction, the equation of motion can be written as: 
 

  
;ppsgn*
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12dt

dz

2
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Similar by in y-direction: 
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Also these equations are depending on pressure values such that: 

-If 
'

3
  ≤ 

3
  ≤ "

3
  

13dt
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2

dt

dx
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11
dt

xd

10

ppsgn

*))(a(aaa
2

2




                           (4)  

-If  
3
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3
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2
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15
dt

yd

14

ppsgn

*))(aa(aaa

3

33

2

3
2




                                    (5) 
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4
  ≤ P5             

54dt
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2

dt
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2221dt
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dt
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2
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where 

sgn: is defined as signum function, which is a mathematical operation and can be 

defined as: 
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For all last equations to be applicable, the following conditions should be worked: 
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also dt
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can be  written as: 
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Also the following equation can be concluded from figure (1): 
  

y1 = y2 +y3;                                       (9)                             
 

By solving equations (1) to (8), pressure values can be given by the following 

formulas: 
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In the given equations, constants can be calculated from boundary and initial 

conditions given in equation (7) as follows:  

 ;ρLa
T1

2
A

A
11                                                                                                              

;27.5ρa 2
T1

2

A

A
12 L  ;)(0.443ka 2

A

A

A

L

ε3
t1

2

T1

1                                                              



Sayel M. Fayyad, Waleed Momani, and Suleiman Abu-Ein 1418 

;)ρ(0.5ξa 2
A

A
14 T1

2                                                                                               

;a
1

2
A

A
5 

                                                                                                                          

;a
1

3
A

A
6                                                                                                                          

;51.0a
1

T1
A

A
max7  y                                                                                                    

;a
1

4
A

A
8                                                                                                                      

;0.51Lza
1

T1
A

A
1max9                                                                              

;ρLa
T2

3
A

A
310                                                                                           

;27.5ρa 2
T2

3

A

A
211 L                                                                                  

;)(ρ0.443κa 2

A

A

A

L

ε12 T2

3

T2

2    

;)ρ(0.5ξa 2
A

A
213 T5

3                                                                              

;ρLa
T5

4
A

A
514                                                                                                         

;27.5ρa 2
T5

4

A

A
515 L                                                                                     

;)(ρ0.443κa 2

A

A

A

L

ε16 T5

4

T5

5                                                                         

;)ρ(0.5ξa 2
A

A
517 T5

4  

;)ρ(0.5ξa 2
A

A
418 T4

4                                                                                                 

;ρLa
T5

4
A

A
319                                                                                                                

;27.5ρa 2
T3

4

A

A
320 L                                                                          

;)(ρ0.443κa 2

A

A

A

L

ε21 T3

4

T3

3                                                                        

;)ρ(0.5ξa 2
A

A
322 T3

4                                                                                                      

;La
4

T5
A

A
5min23  y                                                                                                     

;Aa
1

вmax
A

p
в24 

                                                                                        

;a
2A

1
25 

                                                                                                 

,a
3

4
A

c
26 

                                                                                              
where ρ: is the density of the current liquid; v: is the kinematic viscosity factor of a 

liquid; kε: is an approximation factor; ξi - factor of hydraulic resistance; y1: 

displacement moved by the piston of the main cylinder without the account of 

compression of a liquid; y2, y3 : are the displacements of the piston of the main cylinder 
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caused by change of volume of a liquid according to acting from the tank and for the 

account of flow from a working cavity in the system; c1, c2, c3 : are the given rigidity of 

the brake mechanism on the appropriate sites of the characteristic; z0, z01 : are the  

length of sites of the characteristic of the brake mechanism; F0 : is the effort of 

preliminary deformation of springs; c4 in the spring vigiclity of the prevue converter 

valve k : is the parameter of exhibitors; 
'

3
 , 

"

3
  : are the pressure appropriate to the 

beginning and the end of operation of the relay of a delay of time of the converter of 

pressure; β : is the relative initial volume of air in a liquid; pвmax : is the maximal 

pressure of air; p4min: is the  pressure appropriate to the beginning of cavitations  of a 

liquid. 

 

RESULTS, DISCUSSION, AND CONCLUSIONS 

Microsoft Excel and Matlab softwares are used here to calculate and find the final 

results. The objectives here are to calculate P1, P2, and P3.  P1 with time (t) and P4 

relations are represented graphically. In additions the relation between P2 and z will be 

represented graphically. P3 has a relation with x which will be represented graphically 

too. Figure (2) shows the relation between the resulted  pressure-P1 and the time, it can 

be noticed that pressure increases with time in a non-linear behavior. Figure (3) relates 

the resulted pressure- P1to the input pressure P4. From this figure it can be noticed that 

the two pressures have an increase (positive) linear relation. Figure (4) shows the 

relation between the pressure-P2 with the displacement z in the case of z≤zo, it can be 

noticed that as this displacement increases the pressure increases. Figures (5) and (6) 

show Pressure-P2 vs. the displacement-z, for the two cases when zo<z≤z01, and z>zo1 

respectively. From these figures the pressure increases linearly as the displacement 

increases. Figure (7) shows that as the displacement in x-direction increases the 

pressure –P3 increases, the relation looks like linear.  

 

P1 vs  t
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Figure (2) Pressure (P1) vs. time. 
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P1 vs P4
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Figure (3) Resulted pressure-P1 vs. input pressure-P4. 

P2 vs z
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Figure (4) Pressure-P2 vs. the displacement-z (m), for the case when z≤z0. 
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Figure (5) Pressure-P2 vs. the displacement-z (m), for the case when zo<z≤z01. 
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P2 vs z
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Figure (6) Pressure-P2 vs. the displacement-z (m), for the case when z>z01. 

P3 vs. x
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Figure (7) Pressure-P3 vs. the displacement-x. 
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 اƃنظام اƃرياضي ƃنظام بريك نيوماتي هيدروƃيƂي مع محول ضغط
أبو اƃعين + د. وƃيد اƃمؤمنيد. صايل فياض + د. سليمان   

 
هذا اƅعمل يقدم نموذجا رياضيا مقترحا ƅنظام بريك نيوماتي هيدروƅيƄي ، حيث تم تحديد Ƅل اƅعناصر 
اƅمؤثرة علي اƅنظام من ضغوط ابتدائية ونهائية وتأثير اابعاد واƅمحاور اƅمرتبطة اصا بخواص اƅسائل 

اداء ƅهذا اƅنظام. فقد وجد ان قيم اƅضغوط في  اƅمستخدم بهدف اƅحصول علي افضل Ƅفاءة وافضل
 اƅنظام تزيد مع اƅزمن، Ƅذƅك مع اƅمسافة اƅتي يتحرƄها اƅمƄبس.
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