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Although most of the theoretical and implementation aspects of wavelet 

based algorithms in ElectroCardioGram (ECG) signal compression are 

well studied, many issues related to the choice of wavelet filters and 

threshold levels selection remain unresolved. The utilization of optimal 

mother wavelet will lead to localization and maximization of wavelet 

coefficients' values in wavelet domain. This paper presents an ECG 

compressor based on the optimal selection of wavelet filters and threshold 

levels in different subbands that achieve maximum data volume reduction 

while guaranteeing reconstruction quality. The proposed algorithm starts 

by segmenting the ECG signal into frames; where each frame is 

decomposed into m subbands through optimized wavelet filters. The 

resulting wavelet coefficients are threshold and those having absolute 

values below specified threshold levels in all subands are deleted and the 

remaining coefficients are appropriately encoded with a modified version 

of the run-length coding scheme. The threshold levels to use, before 

encoding, are adjusted in an optimum manner, until predefined 

compression ratio and signal quality are achieved. Extensive 

experimental tests were made by applying the algorithm to ECG records 

from the MIT-BIH Arrhythmia Database [1]. The compression ratio (CR), 

the percent root-mean-square difference (PRD) and the zero-mean 

percent root-mean-square difference (PRD1) measures are used for 

measuring the algorithm performance (high CR with excellent 

reconstruction quality). From the obtained results, it can be deduced that 

the performance of the optimized signal dependent wavelet outperforms 

that of Daubechies and Coiflet standard wavelets. However, the 

computational complexity of the proposed technique is the price paid for 

the improvement in the compression performance measures. Finally, it 

should be noted that the proposed method is flexible in controlling the 

quality of the reconstructed signals and the volume of the compressed 

signals by establishing target PRD and CR a priori respectively.  
 

KEY-WORDS: ECG signal compression; Discrete wavelet transform; 

Coding; Thresholding. 

 

1. INTRODUCTION 

Transmission techniques of biomedical signals through communication channels are 

currently an important issue in many applications related to clinical practice [8]-[9]. 
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These techniques can allow experts to make a remote assessment of the information 

carried by the signals, in a very cost-effective way. However, in many situations this 

process leads to a large volume of information. The necessity of efficient data 

compression methods for biomedical signals is currently widely recognized. In 

electrocardiography, various channels are recorded during several hours, resulting in a 

great demand of storage capacity or channel bandwidth. This situation demands the use 

of efficient data compression systems. Although storage space is currently relatively 

cheap, electronic ECG archives could easily become extremely large and expensive. 

Moreover, sending ECG recordings through mobile networks would benefit from low 

bandwidth demands. Several examples of ECG compression algorithms have been 

described in the literature with compression ratios ranging approximately from 2:1 up 

to 50:1 [2]-[14]. These techniques can be categorized into: direct time-domain 

techniques; transformed frequency-domain techniques and parameters optimization 

techniques. Most time-domain techniques are based on the idea of extracting a subset 

of significant signal samples to represent the original signal. The key to a successful 

algorithm is the development of a good rule for determining the most significant 

samples. In this case, signal reconstruction is based on interpolating this subset of 

samples. The ECG time-domain techniques are, all in common, based on heuristics in 

the sample selection process. This generally makes them fast, but they all suffer from 

sub-optimality [2]. The second category of the ECG compression techniques utilizes 

the spectral and energy distributions of the signal by means of some transformation. 

This category includes traditional transform coding techniques applied to ECG signals 

such as the Karhunen–Loève transform, Fourier transform, cosine transform and 

wavelet transform (WT) [3]-[7]. Wavelet-based ECG compression methods have been 

proved to perform well [3], [8]-[9]. As reported in [9], the ability of WT to separate out 

pertinent signal components has led to a number of wavelet-based techniques which 

supersede those based on traditional Fourier methods. The discrete wavelet transform 

(DWT) has interesting mathematics and fits in with standard signal filtering and 

encoding methodologies. It produces few coefficients, and the user does not have to 

worry about losing energy during the transform process or its inverse. More recently, 

many interesting optimization based ECG compression methods, third category, have 

been developed [10]-[14]. The goal of most of these methods is to minimize the 

reconstruction error given a bound on the number of samples to be extracted [15] or the 

quality of the reconstructed signal to be achieved [4], [16].  

The vast majority of the above mentioned methods do not permit perfect 

reconstruction of the original signals. In fact; there is no automatic way to assure that 

the distortion in the reconstructed signal will not affect clinical important features of 

the ECG. To guarantee the preservation of the clinical diagnostic features of the 

reconstructed ECG signals both the wavelet filters’ parameters and the threshold levels 
in all subbands should be selected carefully. The aim of this study is to present ECG 

compression technique that achieves maximum data volume reduction while 

preserving the significant signal morphology features upon reconstruction. This has 

been achieved through the minimization of both the bit rate and the distortion of the 

reconstructed ECG signal through parameterization of the wavelet filters and the 

selection of optimum threshold levels of the wavelet coefficients in different subbands.  
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2. WAVELET PARAMETERIZATION 
 

The present study addresses the problem of finding a wavelet that best matches the wave 

shape of the ECG signal. In the framework of the proposed research methodology, an 

optimal wavelet can adequately represent a wavelet-compressed ECG signal at a given 

compression ratio. The optimality is detected by minimizing an error measure between 

the original signal and its compressed version, subject to the choice of wavelet. If, for a 

given wavelet, the error associated with the compressed signal is minimal, then its 

wavelet coefficients be considered to best represent the original signal. Therefore, the 

selected wavelet would more effectively match the signal under analysis when compared 

to standard wavelets [17]. In general, a square integrable function x(t) can be represented 

in terms of translates and dilates of a single unique function )(t called the mother 

wavelet as 
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, ntt
jj

nj    are the set of orthogonal basis functions, obtained by 

dilating  and translating )(t  and njc , are the DWT coefficients. Here, j and, n belong 

to the set of integers, Z  [17]. The DWT of the discrete type signal x[n] of length N is 

computed in a recursive cascade structure consisting of decimators 2 and 

complementing low-pass (h) and high-pass (g) filters which are uniquely associated 

with a wavelet [8]. The signal is iteratively decomposed through a filter bank to obtain 

its discrete wavelet transform. This gives a new interpretation of the wavelet 

decomposition as splitting the signal into frequency bands. Figure (1) depicts a diagram 

of the filter bank structure. In hierarchical decomposition, the output from the low-pass 

filter constitutes the input to a new pair of filters. The filters coefficients corresponding 

to scaling (lowpass filter) and wavelet (highpass filter) functions are related by 

g[n] = (-1)
n  

h[L – n] ,  n=0 , 1, . . . , L-1     (2) 

where L is the filter length. To adapt the mother wavelet to the signals for the purpose 

of compression, it is necessary to define a family of wavelets that depend on a set of 

parameters and a quality criterion for wavelet selection (i.e. wavelet parameter 

optimization). In this work, these concepts are adopted to derive a new approach for 

ECG signal compression based on dyadic discrete orthogonal wavelet bases, with 

selection of the mother wavelet leading to minimum reconstruction error. An 

orthogonal wavelet transform decomposes a signal in dilated and translated versions of 

the wavelet function )(t . The wavelet function )(t is based on a scaling function 

)(t and both can be represented by dilated and translated versions of this scaling 

function. 
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With these coefficients h(n) and g(n) the transfer functions of the filter bank 

that are used to implement the discrete orthogonal wavelet transform can be 

formulated. 
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Figure (1) The discrete dyadic wavelet transform as iteration of a 2-channel filter bank.  

 

For a finite impulse response (FIR) filter of length L, there are 

12/ L sufficient conditions to ensure the existence and orthogonality of the scaling 

function and wavelets [18]. Thus 12/ L  degrees of freedom (free parameters) 

remain to design the filter h. The lattice parameterization described by Vaidyanathan 

[21] offers the opportunity to design h via unconstrained optimization: the L 

coefficients of h can be expressed in term of 12/ L  new free parameters. These 

parameters can be used to choose the wavelets which results in a good coding 

performance. The Daubechies wavelet family was constructed by using all the free 

parameters to maximize the number of vanishing moments. Coiflet wavelets were 

designed by imposing vanishing moments on both the scaling and wavelet functions. 

Wavelet parameterizations of Zou et al, [19] have been used to systematically generate 

L-tap orthogonal wavelets using the 12/ L  free parameters for L = 4, 6 and 8. The 

order of a wavelet filter is important in achieving good coding performance. A higher 

order filter can be designed to have good frequency localization which in turn increases 
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the energy compaction. Consequently, by restriction to the orthogonal case, h 

defines . For this purpose consider, the orthogonal 2x2 rotational angles, realized by 

the lattice section shown in Figure (2), and defined by the matrix: 
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Figure (2) Lattice Implementation. 

 

The polyphase matrix )(zH p  can be defined in terms of the rotational angles as 
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where, )(zH e , )(zH o , )(zGe and )(zGo are defined, respectively, from the 

decomposition of )(zH and )(zG as 

  )()()( 212
zHzzHzH oe

        (7a) 

and  )()()( 212
zGzzGzG oe

        (7b) 

To obtain the expressions for the coefficients of H(z) in terms of the rotational 

angles, it is necessary to multiply out the above matrix product. In order to 

parameterize all orthogonal wavelet transforms leading to a simple implementation, the 

following facts should be considered.   
 

1. Orthogonality is structurally imposed by using lattice filters consisting of 

orthogonal rotations.  
2. The sufficient condition for constructing a wavelet transform, namely one 

vanishing moment of the wavelet, is guaranteed, by assuring the sum of all 

rotation angles of the of filters to be exactly -45
o .  

 

A suitable architecture for the implementation of the orthogonal wavelet 

transforms are lattice filters. However, the wavelet function should be of zero mean, 

what is equivalent with the wavelet having at least one vanishing moment and the 

transfer functions H(z) and G(z) have at least one zero at z=-1 and z=1 respectively. 

These conditions are fulfilled if the sum of all rotation angles is 45
o
 [20], i.e.,  
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Therefore, a lattice filter whose sum of all rotation angles is 45
o
 performs an 

orthogonal WT independent of the angles of each rotation. For a lattice filter of length L, 

L/2 orthogonal rotations are required. Denote the rotation angles 

by 2/,...,2,1, Lii  , and considering the constraint given in (8), the number 

of design angles  s is L/2-1.  The following is the relation between the rotation 

angles and the design angles. 



















12/

2/

2/

1

11

)1(

,12/.,..,3,2)()1(

,45

L

L

L

ii

i

i

o

Lifor







   (9) 

At the end of the decomposition process, a set of vectors representing the 

wavelet coefficients is obtained  
 

  
mmj adddddC ,,...,,...,,, 321               (10) 

 

where, m is the number of decomposition levels of the DWT. This set of approximation 

and detail vectors represents the DWT coefficients of the original signal. Vectors jd  

contain the detail coefficients of the signal in each scale j. As j varies from 1 to m, a 

finer or coarser detail coefficients vector is obtained. On the other hand, the vector ma  

contains the approximation wavelet coefficients of the signal at scale m. It should be 

noted that this recursive procedure can be iterated  Nm 2log   times at most. 

Depending on the choice of m, a different set of coefficients can be obtained. The 

inverse transform can be performed using a similar recursive approach. Thus, the 

process of decomposing the signal x can be reversed, that is given the approximation 

and detail information it is possible to reconstruct x. This process can be realized as up-

sampling (by a factor of 2) followed by filtering the resulting signals and adding the 

result of the filters. The impulse responses h’ and g’ can be derived from h and g. 

However, to generate an orthogonal wavelet, h must satisfy some constraints. The 

basic condition is 



L

n

nh
1

2)( , to ensure the existence of  . Moreover, for 

orthogonality, h must be of norm one and must satisfy the quadratic condition 
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The lattice parameterization described in [21] offers the opportunity to design 

h using unconstrained optimization by expressing the 12/ L  free parameters in terms 

of the design parameter vector . For instance, if L = 6, two-component design vector, 

],[ 21    is needed, and h is given by [21]-[22]: 
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For other values of L, expressions of h are given in [21]-[22]. With this 

wavelet parameterization there are infinite available wavelets which depend on the 

design parameter vector   to represent the ECG signal at hand. Different values of   

may lead to different quality in the reconstructed signal. In order to choose the optimal 

  values, and thus the optimal wavelet, a blind criterion of performance is needed. 

Figure (3) illustrates the block diagram of the proposed compression algorithm. 
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Figure (3) Block diagram for the proposed compression algorithm. 

 

3. THRESHOLD LEVELS SELECTION 

The main property of WT is that regions of little variation in original data manifest 

themselves as small or zero elements in the wavelet-transformed version. Hence, the 

WT of the signal contains a large number of detail coefficients, which are very small in 

magnitude. By fixing a nonnegative threshold, we can reset these small coefficients to 

zero resulting in a set of coefficients easier to store and transmit. Wavelet shrinkage 

and signal thresholding works in the following way [23]. When ECG signal is 

decomposed using wavelets, filters that act as averaging filters produce signal 

approximation and others produce details. If the details are small, they might be 

omitted without substantially affecting the main features of the data set. The idea of 

thresholding, then, is to set to zero all coefficients that are less than a particular 

threshold value. These coefficients are used in an inverse wavelet transformation to 

reconstruct the data set. A number of thresholding methods have been developed to 
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allow the selection of the most pertinent components. In [24]-[27] concise descriptions 

of the commonly used wavelet thresholding methods together with a comprehensive 

list of references on the subject are given. Data compression methods require that only 

those wavelet coefficients which carry most of the signal information are identified and 

retained for use in the reconstruction of the signal.  

Wavelet transform is energy invariant which means that total energy does not 

change when the wavelet transform is applied. This property indicates that near zero 

coefficients can be replaced by zeros without introducing too great distortion in the 

reconstructed signal. Energy compaction property of WT says that most of the energy 

of the signal is concentrated in fewer of the coefficients. Thus we need to keep 

coefficients with significant magnitudes only and kill the reset of the coefficients by 

considering them zeros. The elimination of small-valued coefficients can be brought 

about by setting all coefficients with value below a certain threshold equal to zero. 

Thresholds can be in general applied in two different modes, hard- and soft 

thresholding. In hard thresholding, coefficients whose absolute value does not exceed 

the threshold are zeroed, according to 


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
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      (13) 

where, )(ˆ iC  and )(iC  are the ith wavelet coefficient after and before thresholding 

respectively; and   is the threshold level. However, in soft thresholding the 

coefficients with absolute values below the threshold are zeroed and then the values of 

the nonzero remaining coefficients are shifted towards zero, according to 
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The amount of compression achieved and the distortion in the reconstructed 

signal can be controlled by choosing   values. In addition, the wavelet filters chosen 

should have high energy compaction properties. The main problem in ECG 

compression is the calculation of the threshold values that led to a predetermined 

reduction of wavelet coefficients. There are a variety of methods to choose the 

threshold level  in (13) or (14) for any given one-dimensional signal. Some methods 

proposed means for computing a better single threshold to apply to all the wavelet 

coefficients while others suggested using different thresholds for different subbands. 

These can be grouped into two categories: global thresholds and level-dependent 

thresholds. The former means that a single value of  is chosen to be applied globally 

to all empirical wavelet coefficients, while the latter means that a possibly different 

threshold value j is chosen for each resolution level j. In what follows, we consider 

the level-dependent thresholds. These thresholds all require an estimate of the noise 

level . The usual standard deviation of the data values is clearly not a good estimator. 

Donoho and Johnstone, considered estimating  in the wavelet domain and suggested a 

robust estimate that is based only on the empirical wavelet coefficients at the finest 

resolution level. The reason for considering only the finest level is that corresponding 

empirical wavelet coefficients tend to consist mostly of noise. Since there is some 
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signal present even at this level, they proposed a robust estimate of the noise level   

based on the median absolute deviation [27]. 

 

4. MODIFIED RUN-LENGTH CODING 

The wavelet domain representation itself does not introduce any compression. 

Compression is obtained by encoding the thresholded wavelet coefficients using 

optimal thresholding levels. Given that most of the energy in the signal is in the lower 

subbands, it is reasonable to assume that after thresholding a substantial number of 

higher band wavelet coefficients will be set to zeros. Since these zeros tend to occur in 

clusters, as a direct consequence of the way in which the data are organized in vectors, 

run-length coding of these zeros makes sense. The basic idea of this technique is to 

encode a sequence of equal symbols with a certain codeword depending on the length 

of that sequence. Thus, two types of codewords follow each other alternatively is used: 

the counter-words and the value-words. For example, the string “aaabbbbd” is encoded 
as: (a, 3), (b, 4), and (d, 1). In case of ECG compression, the run-length coding is done 

by representing the thresholded wavelet coefficients vectors in the forum of (Run, 

Level), where Run is the number of zeros before each nonzero coefficients, and Level is 

the amplitude of the coefficient following a number of zeros given by Run. The event 

that the last coefficients are all zeros is represented by the special code (0 , 0). For 

example, the set of wavelet coefficients given by  Wbefore = {0  1  0  0  0  4  5  0   0   0   

0   0   0    0    0   0 } is run-length coded as Wafter = { (1 , 1)    (3 , 4)    (0 , 5)    (0 , 0) }. 

As it has been mentioned in section 3, the compression is based on representing the 

thereshold wavelet coefficients with a small number of bits. This has been carried out 

by discarding the WT-coefficients, which are less than a given threshold. These 

coefficients are considered insignificant with their values set to zero. The remaining NS 

coefficients are the significant coefficients. The number of the discarded coefficients is 

NI=N-NS. Most of these coefficients are concentrated at the end of the coefficients’ 
vector. In technical literature, many algorithms are suggested to deal with signals with 

repeated samples' values such as run-length coding and Huffman coding. The need of 

at least one bit for the mostly repeated sample is the main limitation of the Huffman 

coding. The disadvantage of the run-length algorithm is the need of two words for the 

representation of each group of repeated samples: one for the repeated value and the 

other for the number of repetitions.  

In this section more efficient coding algorithm, modified run-length algorithm, is 

introduced for dealing with this situation. The algorithm is based on representing each 

significant coefficient by bS+1 bits. The insignificant coefficients (of value zero) are 

manipulated in a different manner. First, the repeated groups of zeros are counted and 

the resulting count is represented by bS+1 bits. Then the train of coefficients 

representing the ECG signal is transformed to another train of numbers. Some of these 

numbers represent the significant coefficients and the rest are the numbers representing 

the repeated group of zeros (K1, K2, …., KM). Here, M denotes the number of these 

groups. The problem here is how to differentiate between the coefficients and the 

numbers representing the group of zeros. For example, the number 18 may be found 

twice in the new train of numbers, where the first 18 may be a significant coefficient 

and the second one may indicate 18 repeated zeros. To come over this problem, the 
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first bit in the representation of each number is used as a control bit. In case of the 

significant coefficient this bit is set to one and in case of repeated zeros it is reset to 

zero.  
 

 representation of significant residual coefficient 1 bS – bits 

 

 representation of a group of repeated zeros 0 bS – bits 

 

5. PERFORMANCE MEASURES 

The criteria for testing the performance of the compression algorithms consist of three 

components: compression measure, reconstruction error and computational 

complexity. The compression measure and the reconstruction error depend usually on 

each other and determine the rate-distortion function of the algorithm. The 

computational complexity component is related to practical implementation 

consideration and is desired to be as low as possible. The compression ratio (CR) is 

defined as the ratio of the number of bits representing the original signal to the number 

required for representing the compressed signal. So, it can be calculated from: 
 

)1()( 


SS bMN

cbN
CR                 (15) 

 

Where, cb is the number of bits representing each ECG sample. One of the most 

difficult problems in ECG compression applications and reconstruction is defining the 

error criterion. Several techniques exist for evaluating the quality of compression 

algorithms. The most obvious way to determine the preservation of diagnostic 

information is to subject the reconstructed data to evaluation by a cardiologist. This 

approach might be accurate in some cases but suffers from many disadvantages. One 

drawback is that it is a subjective measure of the quality of reconstructed data and 

depending on the cardiologist being consulted, different results may be presented. 

Another shortcoming of the approach is that it is highly inefficient. Moreover, the 

subjective judgment solution is expensive and can generally be applied only for 

research purposes [8]. The distortion resulting from the ECG processing is objectively 

measured by the percent root-mean-square difference (PRD) [3]. However, in previous 

trials focus has been on how much compression a specific algorithm can achieve 

without loosing too much diagnostic information. In most ECG compression 

algorithms, the PRD measure is employed. It is defined as 
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This error estimate is the one most commonly used in all scientific literature concerned 

with ECG compression techniques. The clinical acceptability of the reconstructed 
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signal is desired to be as high as possible. The main drawbacks are the inability to cope 

with baseline fluctuations and the inability to discriminate between the diagnostic 

portions of an ECG curve. However, its simplicity and relative accuracy make it a 

popular error estimate among researchers. As the PRD is heavily dependent on the 

mean value, it is more appropriate to use the modified criteriaμ  
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      (17) 

 

where, x  is the mean value of the signal. Furthermore, it is established in [3], 

that if the PRD1 value is between 0 and 9%, the quality of the reconstructed 

signal is either ‘very good’ or ‘good’, whereas if the value is greater than λ% its 
quality group cannot be determined. As we are strictly interested in very good 

and good reconstructions, it is taken that the PRD1 value, as measured with 

(17), must be less than 9%. In this paper, the PRD1 error measure has been 

chosen. The decision was based upon the fact that it is a rather simple measure 

requiring few non-complex calculations. Also, it is currently the prime error 

estimate used in almost all literature concerning ECG compression.  
 

6. PROPOSED OPTIMIZATION-BASED COMPRESSION 

ALGORITHM 

As it has been mentioned before, many of the resulting wavelet coefficients are either 

zero or close to zero. These coefficients are divided into two classes according to their 

energy contents; namely: high energy coefficients and low energy coefficients. By 

coding only the larger coefficients, many bits are already discarded. The high energy 

coefficients should be compressed very accurately because they contain more 

information. So, they are threshold with low threshold levels. However, the low energy 

coefficients that represent the details are threshold with high threshold levels. The 

wavelet selection step involves choosing an analysis wavelet and allocating bits to each 

coefficient in the resulting wavelet representation. The success of this scheme is based 

on the fact that only a fraction of nonzero value wavelet coefficients may be encoded 

using a small number of bits. The main idea behind the proposed approach is to find 

the minimum distortion representation of a signal, subject to a given bit budget or to 

find the minimum bit rate representation of a signal, subject to a target PRD.  

In order to establish an efficient solution scheme, the following precise 

problem formulation is developed.  For this purpose, consider the one-dimensional 

vector x(i), i=1, 2, 3, …., N represents the frame of the ECG signal to be compressed; 

where N is the number of its samples. The initial threshold values are selected as 

follows. The threshold value is computed separately for each subband by finding the 

mean (ȝ) and standard deviation (σ) of the absolute of the non-zero wavelet 

coefficients in the corresponding subband. If the σ is greater than ȝ then the threshold 
value in that subband is set to (2*ȝ), otherwise, it is set to (ȝ-σ). Also, define the 
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targeted performance measures PRDtargte and CRtarget and start with an initial wavelet 

design parameter vector .,,[ 2010    ],.. 01L  to construct the wavelet filters 

H(z) and G(z) adopting equation (12).  
 

1) Use designed parameters to construct the wavelet decomposition filters to 

decompose the ECG signal into its equivalent m subbands represented by the 

vector  mYYYYY ,....,,,)( 321 . 

2) Threshold the obtained wavelet coefficients with threshold levels Ȝi , i=1, 2,  3, 

. . . , m. The threshold wavelet coefficients are 

 mYYYYY


,....,,,),( 321 .  

3) Use the modified run-length coding algorithm to represent the threshold 

coefficients with minimum storage capacity. 

4) Decode the stored coefficients and reconstruct the signal using the 

reconstruction filters deduced from the wavelet filters' parameters. 

5) Calculate the PRD (PRD1) using equation 16 (17) and check the acceptance of 

the signal quality using targtePRDPRD  ( 1targte1 PRDPRD  ). If 

targtePRDPRD   ( 1targte1 PRDPRD  ), modify the threshold levels, based on 

energy contents of the subands' representations and go to step (2); otherwise go 

to step (6). 

6)  

ettN

n

N

n PRDPRDthatsubject

nx

nxnx

imizeinm arg

1

2

1

2

))((

))()((














  (18) 

 

ettN

n

N

n PRDPRDthatsubject

xnx

nxnx

nimizemi
arg11

1

2

1

2

))((

))()((
















   (19) 

 

7) Calculate the CR and check the acceptance of the bit rate using targteCC RR  . 

If the compression ratio is less than targteCR , modify the wavelet design 

parameter vector ],...,,[ 121  L  and go to step (2); otherwise go to 

step (7). 

         

ettCRCRthatsubject

x(n) signal original the of bits of number 

(n)x signal compressed the of bits of number 

CR

1
minimize

arg











 (20) 

8) end. 
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where,  ),()( 1 YWTnx
   is the reconstructed signal, and  .1

WT  is the inverse 

wavelet transformation. The problem is that the wavelet coefficients corresponding to 

the QRS regions are higher than those in the other subbands. Thus direct minimization of 

(17) results in minimum distortion in least mean square sense; however the visual 

investigation of the reconstructed signal is not satisfactory. This problem has been 

solved by introducing a weighting vector  mWWWWW ,...,,, 321 ; where Wi is 

high for small coefficients subands and is low for high coefficients subands. Taking into 

consideration the weighting process, the reconstructed signal is calculated as 

 YWWTnx


*)( 1 . Keeping those (potentially) important coefficients, the distortion 

error is reduced and signal estimation is improved. Equations 18 (19) and 20 are solved 

by adopting the Matlab function fminimax. In all cases considered, the solution is 

obtained within 12 iterations. Figure (4) illustrates the compression algorithm for 

satisfying predefined CR and PRD (PRD1). 

  

7. RESULTS AND DISCUSSION 

Common criteria for performance testing are the compression ratio CR and the 

percentage root-mean-square difference PRD1 (independent from the mean value), 

defined as in section 5. The values of PRD1 between 0% and 9% guarantee good 

reconstructed signals. Here, the reconstructed signals have been evaluated using the 

percentage root mean square difference PRD (PRD1)  defined by equation 16 (17) and 

the compression ratio defined by equation (15) are used as quantitative performance 

measures. The MIT-BIH Arrhythmia database [1], which has been extensively used to 

evaluate ECG compression methods, has been used for performance evaluation of the 

proposed algorithm. We have selected a subset of 2 records (117, and 119) of 4 min 

duration. We will refer to them simply as the database. The sampling frequency is 360 

Hz and the resolution is 11 bps. It should be noted that the performance of the 

compression algorithm depends on the record being compressed. Before running the 

compression algorithm, the wavelet transform parameters and the threshold levels in 

different subbands should be initially selected. To select the decomposition and 

reconstruction filters, we have to seek a good trade-off between compression 

performance and computational complexity. Generally compression performance is 

better for longer filters, and computational complexity is smaller for the shorter filters. 

The tested signals have been decomposed up to the fifth decomposition level by 

utilizing six parameters orthogonal wavelet filters. For this case, the parameterization 

consists of three orthogonal rotations: 11 45   o , )( 212    and 23   . 

Thus, the pair of design angles ),( 21  defines completely the case of L=6. The 

minimization process starts by considering 
0

1 6.22 and 0

2 03.6 as initial design 

angles. In fact, these values correspond to the Daubechies' wavelet of length L=6. 
The initial threshold values are selected as explained in section 6. Now, considering the 

compression of records 117 and 119 with the target CR and PRD given as: 

23arg ettCR , %6.1arg ettPRD  for record 117 and 25arg ettCR , 

%2.2arg ettPRD  for record 119, solutions are obtained after 8 and 10 iterations 
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respectively. In the two cases, the wavelet parameters and the threshold levels 

are optimized. Compressing the same two signals with the standard six parameters 

Daubechies and Coiflet orthogonal wavelet filters and allowing only the threshold 

levels in subbands to vary, the distortion in the reconstructed signal is higher than that 

obtained with optimized filters. The parameters of a Coifet filter are 
0

1 85.122 and 0

2 92.151 . Table (1) summarizes the comparison between the 

performance of the proposed signal dependent wavelet parameterization method and 

Daubechies and Coiflet standard wavelets. From the obtained results, it can be deduced 

that the optimized wavelet gives highest CR and lowest PRD. However, the 

computational complexity of the proposed technique is the price paid for the 

improvement in the performance measures. Table (2) illustrates the parameters of the 

wavelet filters used in getting the results given in Table (1). 

 

Table (1): Comparison between the performance of the proposed signal dependent 

wavelet parameterization method and other standard wavelets when the threshold 

levels are optimized in all subbands 
 

MIT-BIH  

Record Wavelet filters 
Performance Measures Computation Cost 

(number of 

iterations) 
PRD1 (%) CR 

117 
Optimized wavelet filters 

1.6 23.0 : 1 8 

119 2.2 25.0 : 1 10 

117 
Coiflet wavelet filters 

5.2 16.5 : 1 1 

119 4.7 18.1 : 1 1 

117 
Daubechies wavelet filters 

7.1 8.0 : 1 1 

119 6.7 10.1 : 1 1 

 

Table (2) Rotational angles and wavelet filters' parameters used in getting the results 

given in Table (1). 
 

MIT-

BIH  

Record 

Wavelet 

filters 

Rotational angles Wavelet filters' parameters 

1  2  3  h0 h1 h2 h3 h4 h5 

117 Optimized 

wavelet 

filters 

3.1367 1.1921 -3.5434 -0.0007 -0.1446 0.3675 0.8534 0.3403 -0.0017 

119 3.2763 1.2444 -3.7354 0.0241 -0.1778 0.4197 0.8492 0.2633 0.0357 

117 Coiflet 

wavelet 

filter 
2.9295 1.2095 -3.3537 -0.0157 -0.0727 0.3849 0.8526 0.3379 -0.0727 

119 

117 Daubechies 

wavelet 

filter 

0.3910 0.4997 -0.1052 0.0352 -0.0854 -0.1350 0.4599 0.8069 0.3327 
119 
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Figure (4) Compression Algorithm for Satisfying Predefined the CR and PRD (PRD1). 
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8. CONCLUSION 

Wavelet bases may be better suited than other transformations; however one mother 

wavelet may be better than another for a specific signal or in different experimental 

sessions. In most cases, it is not possible to choose a prior the best wavelet, which also 

depends on the encoding scheme. So, wavelet parameterization is necessary. In the context 

of signal compression, a natural optimization criterion is the mean square error of the 

compressed signal with respect to the original signal. It was shown that within the same 

ECG signals, the best basis functions may be largely different for different CRs, and with 

significant differences in the reconstruction error. This paper introduces a new DWT based 

technique for the compression of ECG signals with minimum loss of diagnostics 

information. It is based on the parameterization of wavelet filters that can offer better time-

frequency localization and the optimal selection of threshold levels in different sub-bands 

that yields to efficient coding of the wavelet coefficients. The main feature of the proposed 

ECG compression algorithm is the achievement of information rate reduction, while 

retaining the relevant diagnostic information in the reconstructed signal. Experimental 

results obtained by running the compressor on records 117 and 119 shows that the 

proposed method is capable of achieving good CR values with low distortion and at the 

same time provide preservation of the shapes and amplitudes of the important ECG waves. 

The obtained results show superiority of the proposed method at all target PRD values. 

From these results, it can be deduced that the performance of the optimized signal 

dependent wavelet parameterization outperforms that of Daubechies and Coiflet standard 

wavelets. However, the computational complexity of the proposed technique is the price 

paid for the improvement in the compression performance measures. Finally, it should be 

noted that the proposed method is flexible in controlling the quality of the reconstructed 

signals and the volume of the compressed signals by establishing target PRD and CR a 

prior respectively.  
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لضغط أشارة القلب بجودة عالية رشحات المويجةااختيار اأمثل لمستويات الحدود وم  

Ϊأحم Ϊد. صباح محم 
 

 جامعة أسيوط  –كلية الهنΪسة   –أستاΫ مساعΪ بقسم الهنΪسة الكهربائية 

باƅرغم من ان معظم اأمور اƊƅظرية واƅتطبيقية ƅخوارزميات ضغط أشارة اƊƅشاط اƄƅهربائي ƅلقلب اƅمبƊية 
بطريقة جيدة اا اƊه مازال هƊاك بعض اƅمسائل اƅمتعلقة باختيار  على محول اƅمويجة قد تمت دراستها

مرشحات اƅمويجة ومستويات اƅحدود ƅم يتم حلها بعد.  استخدام اƅمويجة اأم اƅمثلى يؤدي اƅى تجميع 
معامات اƅمويجة في Ɗطاق مƄاƊي واحد واƅى زيادة اƅحد اأعلى ƅقيم اƅمعامات في اƊƅطاق اƅمويجي.  

في جميع  ااختيار اأمثل ƅمستويات اƅحدودƅبحث طريقة جديدة ƅضغط أشارة اƅقلب مبƊية على يقدم هذا ا
اƅمثلى اƅتي تؤدي ƅلحصول على أقل حجم ƅلبياƊات مع ضمان  ومرشحات اƅمويجةاƊƅطاقات اƅترددية 

يتم تحليلها بواسطة   Ƅframesفاءة استرجاع اإشارة. اƅطريقة اƅمقترحة تبدأ بتقسيم اإشارة اƅي إطارات 
اƅمرشحات ذات معامات متغيرة. يلي ذƅك تصفير اƅمعامات اƅتي قيمها أقل من حد معين في Ƅل 

اƅطول اƅمعدƅة -Ɗطاق ترددي واإبقاء على اƅمعامات اأخرى Ƅما هي ثم استخدام طريق تƄويد اƅتƄرار
modified run-length codingمستخدمة قبل عƅحدود اƅتشفير يتم ضبطها . ومستويات اƅملية ا

اختبار تم بطريقة مثاƅية بحيث يتم ضغط اإشارة اƅي Ɗسبة اƅضغط اƅمطلوبة وباƅدقة اƅمطلوبة. وƅقد 
 اƅطريقة اƅمقترحة عن طريق ضغط مجموعة من اإشارات اƅموجودة بقاعدة بياƊات عدم اتساق اƊƅبض

(MIT-BIH arrhythmia database)  معهد اأمرƅمتوفرة في اƅي ام أي تياƄسبة  يƊ حيث استخدمت
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( واƅجذر اƅتربيعي ƅمتوسط ƅPRDمتوسط مربع اƅخطأ ) اƅتربيعيجذر Ɗسبة اƅمئوية ƅلاƅ و (CR)اƅضغط 
اƊƅتائج اƅتي من  ( ƅقياس سلوك طرق اƅضغط اƅمقترحة. PRD1اƅفرق بين مربع اƅخطأ ومربع اƅمتوسط )

واƅتي تعتمد علي تحديد معامات اƅمرشحات يتضح أن سلوك اƅطريقة اƅمقترحة  تم اƅحصول عليها
اƅمستخدمة بطريقة مثاƅية وفقا ƅإشارة اƅمراد ضغطها من حيث Ɗسبة اƅضغط واƅدقة في استرجاع اإشارة 

ويؤخذ  اƅقياسية. Coiflet وƄوافلتDaubechies تفوق تلك اƅتي استخدمت فيها مرشحات دبوتشيز 
سلوك عملية اƅضغط هو زيادة Ƅمية اƅحسابات  سين في مقاييعلى هذƋ اƅطريقة ان اƅثمن اƅمدفوع ƅلتحس

اƅتي تأخذها عملية تحديد معامات اƅمرشحات. أخيرا يجب ماحظة ان اƅطريقة اƅمقترحة مرƊة في 
ƅ مضغوطة وفقاƅم في دقة عملية استرجاع اإشارات وحجم اإشارات اƄتحƅللاƅ مئويةƅسبة اƊ تربيعيƅجذر ا

 سبة اƅضغط اƅمحددة مسبقا. و ƅƊمتوسط مربع اƅخطأ 
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