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New Variable valve timing strategy based on using auxiliary valve having
variable timing (VVT) is used in this study. The valve is driven by a new
variable valve timing mechanism constructed for this purpose. The
auxiliary valve acts as an exhaust valve and the experiments and
simulation model are carried out at different loads. The results show that
engine performance is improved at full load and worsens at part loads.
The study proves that using an auxiliary exhaust valve having variable
timing is not recommended in engines applications.

NOMENCLATURE
A Area (m?) x  Mass fraction, position
¢ ¢, Specific heats under constant co-ordinate
pressure, volume (J/kg.K) Greek Symbols
D Local mean diameter through 6  Crank position angle (degree)
intake and exhaust systems (m) A@ Combustion duration (degree)
e Specific internal energy (kJ/kg) -  Boltzman constant
f Darcy friction factor D Density (kg/m”)
h Specific enthalpy (kJ/kg) Equivalence ratio
k Specific heats ratio ¢ Supscripts
k' Thermal conductivity (W/m.K) B Bum
m Mass (kg) w  Unburn
N Engine speed (rpm) w o wall
0O, ¢, Heat transfer (kJ), heat flux Superscripts
through cylinder walls (j/m?) Derivative with time (d/dt)
u Local gas velocity through Molar quantity
intake and exhaust pipes (m/s)

1. INTRODUCTION

Recently, variable valve timing engines (VVT) have attracted a lot of attention because
of their ability to control valve events independent of crankshaft rotation, allowing for
reduced pumping losses and increased brake thermal efficiency over a wider range than
conventional spark-ignition engines. Variable valve timing also allows control of
internal exhaust gas recirculation (by control of the valve overlap), allowing for control
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of engine emissions. There are four VVT strategies [1,2,3]: (1) Phasing only the intake
valve. (2) Phasing only the exhaust valve. (3) Phasing the exhaust and the intake valves
equally. (4) Phasing the exhaust and the intake valves independently. In this study a
new strategy is achieved by using VVT mechanism with an auxiliary valve, while both
main intake and exhaust valves have fixed timing. The auxiliary valve can be used as
intake or exhaust valve. In this study, it will be used as exhaust valve to study the
influence of application of the new strategy on the engine performance. A new VVT
mechanism, having the ability of changing valve duration and opening angle with
respect to the crankshaft, is designed for controlling the auxiliary valve.

2. THEORETICAL MODEL

2.1 Assumptions

The main assumptions considered in this simulation model are: (1) Cylinder content is
homogenous mixture through intake, compression, expansion and exhaust processes.
(2) Two zones combustion model is assumed, each zone has a local temperature and
thermodynamic properties, while pressure is uniform through the two zones. (3) Flame
propagation is a spherical surface; its center is the spark plug. (4) Temperature of
cylinder head, cylinder walls, piston crown, intake manifold, and exhaust manifold are
constant. (5) The exhaust and intake valves are considered as converging nozzle
through both forward and reverse flow. (7) Carburetor is modeled as venturi followed
by an orifice representing the throttle valve.

2.2 Mathematical and Thermodynamic Submodels

Combustion Products Model For Temperature less than 1700 K, the general
combustion equation for hydrocarbon fuel with air may be written as [4]:

CHON ——nCO,+n,H,0+n,CO+nH, +n0,+nN, (1)
Where CO moles are calculated using the water gas reaction for rich mixture.

For Temperature higher than 1700 K, eleven products are assumed [4,5]. The reaction
equation is written as:

C HON —nCO,+n,CO+n0,+n0+nN,+nNO
+n,N+nH,+nH+n OH+n H,O
Where ny,..., n;; are calculated from mass balance equations of C, H, O and N and

(2)

seven dissociation reactions as given by Campbell [ 5] .

Thermodynamic Properties of Cylinder Content Model:

The thermodynamic properties of each species in the gas mixture inside the cylinder
are calculated by using of the JANAF tables. According to this program, the
thermodynamic properties of the combustion species as functions of temperature are
given in polynomial form [4].

¢, /R=a,+a,T+a,T" +a,T" +a,T" 3)
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hI(RT)=a, + 227+ 22> Qo Dope y Do )
2 3 4 5 T
Values of the polynomial coefficients for each species are given in [4]. Fuel vapor
thermodynamic properties are calculated by the following equations [4]:
c,=C +Cpt+Cit’+Ct’+C, /1’ Q)

— C
h=ci+c.Lvclicl-Zic 4 ©)
2 3 4 ¢
Where: 1=771000, C;, C,,..., C7 are constants and their values are given in [4].

Engine Friction The mechanical losses due to friction between engine parts are
expressed in terms of friction mean effective pressure (finep). These losses are
calculated according to Bishop model [6] as follows.
Piston losses:

(finep), =6.2n, +{0.606r +1.254r7*"> | 19,35 " @)
Blowby losses:

04 N e

(fmep), =11.86r"" —(3.38+0.103r ) +689(1000j (8)

Exhaust and inlet system throttling losses:

(finep), = p,, +p,, 1275 o)
Crankcase mechanical losses:

dN 4N (n.D'" N\’
—12124 Y | h00730- 2N UMD o 6d M) (10
(fmep), 2(10001} { 1000}( 4’ j 6(1000} (19

Valve pumping losses:

y . 5 08V 1298
e = 89 } 1 1
(ﬁ’l’l p)5 6[1000j [n/vnrD/‘z j ( )

Cylinder Heat Transfer: Instantaneous heat transfer rate between the working fluid
and the surrounding surfaces of the cylinder is calculated by using Annand equation

[7].

g, =a(k'/d)Re) (T -T )+éo{r* -T.") (12)
Where: a=0.5, bh=0.7 , ¢ =0 during compression and ¢ = 0.4 during the rest of
cycle,

Combustion Process: Burned mass fraction of fuel is calculated by using Wiebe
function [4,8]:

X, :1—exp{—ab((0—0“)/AHr )b”l} (13)
Where 6, is the crank angle at which combustion starts, A@ is the combustion

duration in degrees CA, a,=2 and b,=5. Cylinder volume is divided into two zones,
burned zone has a volume V,, and unburned zone has a volume V,. These volumes are
calculated by Annand mathematical model [9] as shown in Fig.1.
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' 4 | ;!

Fig. 1 Flame propagation through combustion chamber

Burned volume V,, area of flame front S, and chamber area that is in contact
with burned zone A, are calculated by the following equations:

V/,Zj.bbdy , S,,Zj(rbph/ﬁ,)dy and Asz.qhdy (14)
0 ° :

Where f, is the radius of intersection of flame front with plane y, p, is the perimeter

of flame front measured in plane y, and g, is the perimeter of intersection measured in

plane y.

L3 L ()
o5} fos-4)

b, =7 —a+0.5xsin(2a)|f? Jr[Z,H—sin(Z,B)d2 /8]
np,f,=2r—d)r
:d)(ﬁ

Pressure and Temperature Relationships: Applying the first law of thermodynamic
for an open system on the engine cycle yields [10,11].

T:%{Q—pVﬁ-Z(mmhh _maha)_em_mze"xi} (16)
mC. i
Rx V. _dpjor . (17)
8p/8p ~ R % P

Where: i denotes the number of species in the working medium inside the
cylinder. These equations are used in intake, compression, expansion and exhaust
processes. In combustion process the cylinder is assumed to be divided into two zones,
burned zone and unburned zone governed by the following equations [12,13]:
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1
7,-—WVp+0) (18)
m.c,,
RT RT RV R
7’;72 p V_[ b™ b _ U u me_,r_ K_ u-ou p_ u Qu (19)
m,R, p P P pc, re,,
1 c R
=——|1l+==|pv+|U,-U,)-c,|T,——T, ||m,+Y'Q, — (20)
P=-= {( R Jp [( ,-U,) [ R D 0, Q}
o o Cv b o Cv u ¢ vb Ru
Where: X'=YV +——=V and Y’ =—"-— (21)
R c ¢ R

b Pb pu- b

NO, Formation Mechanism: The extended Zeldovich mechanism mentioned in
[4,8,14] is widely used. The mechanism consists of three reactions:

O+ N,<—>NO+N
N+0O,<—>NO+0 22)
N+OH«+—NO+H

These equations are solved assuming steady state formation of N and
equilibrium values at the local pressure and temperature for O, O,, OH, H and N.,.
The resulting NO formation rate is:

d 1-[nvol /(k,.[0,][N.])
i [NO]: 2k, [0] [Nz ] {1 Tk [NO]/(sz [Oz ] ik, [OH]e )} (23)

Where: K= (k;/ki)/(kz/k2s), subscripts 1,2 and 3 refer to the three reactions
in equation (22) of the mechanism respectively, subscript e refers to equilibrium, [4]
denotes concentration in mole/cm’. The rate constants are mentioned in [4].

CO Formation Mechanism: CO formation rate is calculated by the following
equation which is suggested by Annand [15]:

%[co ]=-10" expl- 4500/ RT )co Jon |-[co,J#H Jno-s==n}  (24)

HC Emission Mechanism Unburned HC occurs due to flame quenching at cylinder
walls, unburned mixture in cylinder craves, absorbed fuel by the oil layer and poor
combustion quality. HC oxidation rate are calculated according to Lavoie model [16].

%[HC |=c.A[HC o, lexp(-18735/T) (25)

Where: C, =2.0 and A, = 6.7*10" cm*/mole.s

Flow rate Through Valves: Continuity, momentum and energy equations besides
ideal gas and wave action equations are applied to the forward and reverse flow
through valves [17].
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Intake and Exhaust Systems: Flow through both intake, exhaust pipes and carburetor
is assumed to be compressible one-dimensional, unsteady flow with friction, heat
transfer and gradual area changes. The governing equations are:

op ou op u dA

1-Continuity Equation: —+p—+u—+p———=0 26
Y= ot p@x Ox pA dx (26)
6_u+u6_u+l6_p+iu_l=0 27)
ot ox pox D 2 |u|

2-Momentum Equation:

3- Energy Equation:

p o Lop ., Op fu u
PP 2P P o plgrnl Mg (28
Ll L T (28)

Method of characteristics is used for solving the unsteady flow in intake and
exhaust system ducts [8,19], by replacing the hyperbolic partial differential equations
to total differential equations along certain characteristic lines.

Carburetor throttle valve area is simulated as an orifice. Its value is calculated
according to the following equation [4]:

D’ :
A:”—{(l— COSWJ+2[ a (COS2l//—LIZCOSzl//O)2

4 cosy, 7T | COSy
(29)
_cosy . [ acosy, —a(l-a*)* +sin"a
cosy, cosy

Where: i/, y are the initial and operated inclination angles of the throttle valve.

3. EXPERIMENTAL INVESTIGATION

The experimental work is carried out on a single cylinder, water cooled four stroke
spark ignition engine. The engine specifications are illustrated in table 1. The auxiliary
valve durations produced by the VVT mechanism are: 196, 204, 212, 220, 228 and 236
°CA. Experiments are carried out for five closing angles for each duration, 20 °CA
BTDC, TDC, 20 °CA ATDC, 40 °CA ATDC and 50 °CA ATDC. These valve
closing angles will be denoted in the following figures as -20°, 0°, 20°, 40° and 50° CA
respectively. Figure 2 shows the VVT mechanism that controlled the auxiliary valve
timing. The additional camshaft (1) leads multi-face follower (2) which moves the
valve. Each face of the follower achieves valve opening duration different from the
others. Additional mechanism, consists of two sliding pulleys (5) and (6), that control
the valve opening angle. The valve lift profile is measured by LVDT. The LVDT is
connected to an electronic circuit which is designed for magnifying its signals. The
signals are displayed on a storage oscilloscope connected to PC. Both mass flow rates
of air and exhaust gases through the auxiliary valve are measured by orifice meters
connected to air boxes which designed according to [20] and modified according to
[21,22]. Mass flow rate of fuel is calculated by determining the fuel consumed volume
in 400 seconds. Brae power is measured by dynamometer.
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Table 1. Engine specifications

1- Cylinder bore ,stroke 65, 100 mm
2- Compression ratio 6.6

3- Start of ignition 26 deg. BTDC
4- Main intake valve opening angle 13 deg. BTDC
5- Main intake valve closing angle 45 deg. ABDC
6- Main exhaust valve opening angle 45 deg. BBDC
7- Main exhaust valve closing angle 17 deg. ATDC
8- Intake and exhaust valves head diameter | 26.5 mm

9- Intake and exhaust valves maximum lift 5 mm

10- Auxiliary valve maximum lift 3.2 mm

11- Auxiliary valve head diameter 20 mm

12- Engine speed 1200 rpm

Part name

Additional camshaft

Multi-face follower

Auxiliary valve

Camshaft driving pulley

Eight sliding pulle

Lift sliding pulley

Timing belt

Fig. 2 The auxiliary valve and its driving mechanism assembly
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Fig. 3 Schematic diagram of the engine with the associated
measuring equipments

Figure 3 shows the schematic diagram of the engine with the associated measuring
equipments.
1-Dynamometer 2- Condenser 3- Exhaust valve 4- Water pump 5- Main intake
valve 6- Main carburetor 7- LVDT terminals to electric circuit 8- LVDT
9- Auxiliary valve camshaft 10- Main fuel tube 11-Main fuel tank 12- Exhaust
surge tank 13- Exhaust orifice meter 14- Auxiliary camshaft driven gear
15- Auxiliary camshaft driving gear 16- Intake orifice meter 17- Intake air box
18- V-belt drive

4. VALIDATION OF THE MODEL

The validity of the present simulation model was evaluated by comparing its results
with some published experimental work. Figures 4 to 7 illustrate the agreement
between experimental and simulation outputs.
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angle diagram by Ref. [23] by Ref. [24]
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5. ORIGINAL ENGINE PERFORMANCE

We mean by "original engine" the engine without the auxiliary valve as its outputs will
be taken as a reference values for comparison purpose with the VVT engine.
Experiments are carried out on the engine at different loads. The loads under
consideration are: Full load (1.45 kW), 1.1 kW (3/4 load), 0.75 kW (1/2 load) and 0.4
kW (1/4 load). At each load the engine parameters under consideration are: brake
power, mass flow rates of air and fuel, volumetric efficiency, brake thermal efficiency
and bsfc. The simulation model predicts residual gas fraction, CO concentration based
on dry mole, NOx concentration and HC concentration. Table 2 shows the engine
performance parameters at the loads under consideration.

Table 2 Original engine performance parameters at full load and part loads

Engine parameter Full load 1.1 kW 0.75 kW 0.4 kW
Brake thermal efficiency % | 16.7 15.7 12.7 8.38
bsfc (kg/kW.h) 0.486 0.518 0.638 0.97
Mass flow rate of air (kg/s) | 2.49E-3 2.15E-3 1.88E-3 1.61E-3
Mass flow rate of fuel (kg/s) | 1.96E-4 1.58E-4 1.33E-4 1.08E-4
Equivalence ratio 1.19 1.11 1.07 1.01
Volumetric efficiency % 64.2 55.4 48.3 41.5
Residual gas fraction % 9.62 10.92 12.75 14.5
CO concentration % 4.86 2.95 1.88 0.61
NOy Concentration (ppm) | 207 462 646 1035
HC concentration (ppm) 2633 2591 2749 2625
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6. VVT ENGINE

The experiments are carried out at full load and the same previous part loads. The same
outputs are recorded for comparison. Two variation parameters are used for
comparison, V; and V, as follows:

vi%=(&-¢,.)/&,)x100 (30)

Where: V; is the variation percentage, £ is the engine parameter under consideration
and £ is the same parameter of the original engine under the same load. As the

maximum value of each engine parameter does not occur at maximum brake thermal
efficiency, another variation percentage V, illustrates the difference between the
maximum engine parameter magnitude and its value at maximum brake thermal
efficiency. This variation percentage is applied for the VVT engine only. It is defined
as follows:

V,%=(¢ —&. )&, )x100 31)

Where: & s the engine parameter under consideration and &, is the same parameter

at maximum brake thermal efficiency.

6.1 Full Load

Figures 8 to 16 illustrate the engine parameters variations with both auxiliary valve
opening durations and closing angles. The auxiliary valve opening durations are listed
on the top of each figure.

-0 = 196 O 204 =212 === 220 eooo@ocooi 008wy -236|

1.55 : 3
: |
Ml = = =~ e &
.’ - I I~
~ | i > -
145 |, = e -
- : =
i 1 4[3’ s ' - S ~\\
5 7 4 . g -
2 ZKVV : N
81.35 X /. -
S ¢ : \
o . \
m 13(/ : \ \)
1.25 .
1
1.2 !
20 -10 0 10 20 %0 “ -

Auxiliary valve closing angle (deg.)

Fig. 8 Experimental variation of brake power with both auxiliary valve duration
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As shown in Fig. 8, brake power increases in the range from -20° to (10°-20°)
as exhaust flow area during the valve overlap increases because of participation of
auxiliary valve in it. After (10°-20°), the power decreased because of the exhaust gas
reverse flow through the auxiliary valve which decreases engine charging. Maximum
brake power =1.51 kW and occurs at 196° CA valve duration and 10° valve closing
angle.

Mass flow rate of air through intake valve increases in the range from -20° to
20° and then decreases for the same previous reasons as shown in Fig. 9.

Exhaust mass flow rate through the auxiliary valve decreases while the valve closing
angle moves from -20° to 50° as shown in Fig. 10 as early opening of the valve
enhances its participation in getting out the exhaust gases. For the same reason, higher
valve durations have greater participation than lower valve durations.

The total mass flow rate through the exhaust valves in Fig. 10 which represents also
the fresh charge has approximately the same trend of mass flow rate of air in Fig. 9 as
the mass of fuel is relatively small compared with the mass of air.

Volumetric efficiency in Fig. 11 has also the same trend of mass flow rate of
air in Fig. 9 for the same previous reason.

Equivalence ratio in Fig. 12 decreases in the range of (-20 to 20) due to the
increment of the mass flow rate of air in this range. Then it increases in the rest range
due to the decrement of the mass flow rate of air.

Brake thermal efficiency in Fig. 13 increases in the range from -20° to 17° then
decreases following approximately the charge mass flow rate in Fig. 10. Maximum
brake thermal efficiency happens at valve duration of 196° CA and valve closing angle
of 17° with a value of 18.07% and variation percentage V;=8.2 %. The corresponding
bsfc=0.45 kg/(kW.h) with variation percentage V,=-7.4 %. At this condition 20.8 % of
the total mass of exhaust gets out through the auxiliary valve while the rest gets out
through the main valve as shown in Fig. 10.

CO concentration in Fig. 14 decreases in the range of -20° to 20° then increases
following the trend of equivalence ratio in Figs. 12 as the increase of equivalence ratio
leads to incomplete combustion and hence CO formation increases and vice versa.
Residual gas fraction in Fig. 14 decreases in the range from -20° to 10° because of
overlap improvement and then increases quickly due to the reverse flow through the
auxiliary valve.

NOy formation is an endothermal reaction depending on cylinder content
temperature which increases with the increase of equivalence ratio till stoichiometric
condition and then decrease at rich mixtures due to dissociation. Hence, NO,
concentration trend in Fig. 15 follows the excess air factor which is the inverse of the
equivalence ratio trend in Fig. 12.

HC concentration depends on the wall quench distance, craves volumes and
oxidation rate. From the simulation model, it is found that, the change in wall quench
distance is small as the variation in flame speed is small in the range of equivalence
ratio that is achieved in these experiments and craves hydrocarbons variation is also
small relative to the total amount of hydrocarbons. The important parameter is the
oxidation rate which increases by cylinder content temperature increase.

Then HC in Fig. 15 has approximately a trend opposite to the cylinder content
maximum temperature in Fig. 16. Maximum and minimum values of the parameters
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under consideration and their values at maximum brake thermal efficiency, V, and V,
are illustrated in table 3.

From Figs. 8 to 16 and table 3 we can reach the following result; Valve
duration of 196° CA and 17° closing angle are the best conditions for running the
engine at full load as it achieve the maximum brake thermal efficiency, approximately
maximum brake power and mass flow rate of fresh charge. It also achieves
approximately minimum fuel consumption, residual gas fraction, CO concentration and
HC concentration, in spite of achieving nearly maximum NO, concentration.

Table 3 Magnitudes and variations of engine parameters

Engine o Auxiliary valve
description magnitude . closing | V| % V, %
parameter duration
angle

Brake power Maximum | 1.51 196 10 4.1
(kW) Atn. |15 9 |17 375 | 066
Mass flow rate | Maximum | 2.548E-3 | 220 19 2.33
of air (kg/s) NG/ 2.498E-3 | 196 17 0.3 1.96
Mass flow rate | Minimum | 1.873E-4 196 27 -4.42
of fuel (kg/s) Atn,, 1.880E-4 | 196 19 -4.08 0.37
Mass flow rate | Maximum | 2.742E-3 | 220 19 2.1
of fresh charge | At My 2.685E-3 196 17 0.05 -2
(kg/s)
Equivalence Minimum | 1.134 196 21 -4.65
ratio Atm,, 1.137 196 17 -4.45 0.26
Volumetric Maximum | 65 220 19 1.2
efficiency % Atn, 63.7 196 17 0.8 -2
Residual gas Minimum | 9.1 228 11 -5.2
fraction % Atn,, 9.6 196 17 -0.2 55
CO % Minimum | 3.74 196 22 -23.25

Atn,, 3.81 196 17 -21.5 1.87

NOx (ppm) Maximum | 540 196 18.5 160

Atz, | 537 196 17 159 0.5
HC (ppm) Minimum | 2633 236 20 0.0

Atnm,, | 2053 196 17 0.75 0.76

6.2 Part loads

The same experiments and simulation are carried out at 1.1 kW, 0.75 kW and 0.4 kW.
It is found that valve duration of 196° CA is the best for all loads. The suitable closing
angles are 23° for 1.1 kW, 28° for 0.75 kW and 24° for 0.4 kW where the maximum
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brake thermal efficiencies occurred. Figures 17 to 24 show the different parameters
variations for both original engine and VVT engine at £, at different loads.
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Table 4 shows magnitude of the same previous parameters and their variation
percentages at maximum brake thermal efficiency for the different mentioned loads.

Table 4 Engine parameters at the recommended valve timing

Full load 1.TkW | 0.75kW | 04 kW
Auxiliary valve | duration 196 196 196 196
closing angle 17 23 28 24
Brake thermal Magnitude 18.07 15.7 12.65 8.22
efficiency Variation V,% | 8.2 0.0 0.4 1.9
bsfc Magnitude 0.45 0.517 0.642 0.988
Variation V,;% | -7.4 0.0 0.63 1.85
Mass flow magnitude 2.498E-3 | 2.166E-3 | 1.888E-3 | 1.6125E-3
rate of air (kefs) g tation V% | 0.32 0.74 0.43 0.12
magnitude 1.88E-4 | 1.58E-4 1.3375E- | 1.098E-4
Mass flow rate of 4
fuel (kg/s)
Variation V;% | -4.08 0.0 0.56 1.67
Mass flow rate of | magnitude 2.685E-3 | 2.324E-3 | 2.022E-3 | 1.722E-3
fresh charge (ke/s) 7 fation Vi% [ -0.04 | 0.7 0.43 0.23
Auxiliary valve participation % 20.8 20.8 19.3 19.1
Volumetric Magnitude 63.7 55.24 48.17 41.12
efficiency % Variation V;% | -0.8 -0.29 -0.27 -0.9
Equivalence ratio | Magnitude 1.137 1.103 1.07 1.029
Variation V,;% | -4.45 -0.63 0.0 1.88
Residual gas Magnitude 9.6 11.15 13.1 14.8
fraction % Variation V,;% | -0.3 2.1 2.7 2
CO % Magnitude 3.81 2.8 1.9 0.8
Variation V;% | -21.5 -5.1 1.1 12.1
NO; (ppm) Magnitude 537 710 760 1120
Variation V;% | 159.5 53.6 17.6 8.2
HC (ppm) Magnitude 2653 2760 2925 2980
Variation V;% | 0.75 6.4 6.5 13.5
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From Figs. 17 to 24 and table 4, it is obvious that:

1.

Brake thermal efficiency is improved at full load by 8.2 % but it decreased at part
loads relative to the original engine. This means that the engine fuel consumption is
increased at part loads.

Masses flow rates of air and fresh charge besides volumetric efficiency are mainly
the same as that of the original engine at part loads.

Residual gas fraction increases while the load decreases and the VVT engine has a
constant increase with a value of 0.3% over the whole range of load due to auxiliary
valve participation in exhaust gas recirculation.

CO concentration decreased at small part loads and increased at moderate and full
loads relative to the original engine following the same trend of the equivalences
ratios of the VVT and original engines.

. NOy decreased over the whole range of load relative to the original engine due to

the increase of residual gas fraction.

HC increased over the whole range of load relative to the original engine because of
the decrease in oxidation rate. The oxidation rate decreases due to the decrease in
cylinder content temperature which occurs due to the increase of residual gas
fraction.

7. CONCLUSIONS

The present study can be summarized in the following points:

1- VVT engine performance improved at full load relative to the original engine,
but it worsened at part loads.

2- VVT engine with auxiliary exhaust valve having variable timing strategy is not
recommended in engine application as it cannot improve the engine
performance at part loads which is the real aim in spark ignition engines.
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