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Neural networks and fuzzy inference systems are becoming well-

recognized tools of designing an identifier / controller capable of 

perceiving the operating environment and human operator with high 

performance. The purpose of this paper is to identify different models for 

a DC-servo system using the previous identification methods and linear 

identification methods as ARX, ARMAX and state space models. The 

paper compares between these methods and presents the practical results 

for the application these methods. 
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1. INTRODUCTION 

In recent years aspects of system identification have been discussed in a multitude of 

papers, at many conferences and in an appreciable number of university courses. 

Apparently the interest in this subject has different roots, (e.g. definite needs by 

engineers in process industries to obtain a better knowledge about their plants for 

improved control) [1]. 

      

1.1  System Identification 

System identification is the task of inferring a mathematical description, a model, of a 

dynamic system from a series of measurements on the system. There are several 

motives for establishing mathematical descriptions of dynamic systems. Typical 

applications encompass simulation, prediction, fault diagnostics, and control system 

design. Figure 1 illustrates the task of system identification. A model shall represent 

the behavior of a process as closely as possible. The model quality is typically 

measured in terms of a function of the error between the process output and the model 

output. This error is utilized to adjust the parameters of the model. 

There are three different modeling approaches can be distinguished white box 

models, gray box models and black box models are solely based on measurement data 

and no or very little prior knowledge is exploited [2]. This paper deals with black box 

modeling. 

 

1.2  System Identification Procedures 

When attempting to identify a model of a dynamic system it is common practice to 

follow a procedure similar to the one depicted in Fig. 2. 



Mohamed. M. Hassan, Amer. A. Aly, and Asmaa. F. Rashwan 

 

1482 

Process

Model

+

-

)(ku )(ky

)(ˆ ky

n

e

 
Fig. 1 System identification 

 

 

SELECT

MODEL STRUCTURE

EXPERIMENT

VALIDATE

MODEL

ESTIMATE

MODEL

Accepted

Not accepted

 

Fig. 2 The basic system identification procedure 

The purpose of the experiment is to collect a set of data that describes how the 

system acts over its entire range of operation. The second step is to select a “family” of 

model structures considered appropriate for describing the system. The following step 

will pick the model that performs best according to some type of criterion. In the last 

step the model it must be evaluated to investigate whether or not it meets the necessary 

requirements. The paper is organized as follows. Section 2 explains the approaches of 

the linear system identification. Section 3 gives a brief introduction to an ANN, 

ANFIS. Section 4 illustrates the identification of the dc-motor and evaluates the 

performance of each structure. Section 5 presents conclusions. 

 

2. LINEAR DYNAMIC SYSTEM IDENTIFICATION 

In this paper two parametric time-domain model representations will be used : the  

Auto-Regressive with eXogenous input (ARX) model and the Auto-Regressive 



DIFFERENT IDENTIFICATION METHODS……. 

 

1483 

 

Moving Average with eXogenous input (ARMAX) model. These models are special 

cases of the following general model [3]: 
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Where A(q), B(q), C(q), D(q) and F(q) are polynomials in the shift operator q, defined 
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By making certain choices for these polynomials, the different model representations 

are obtained.  

 

2.1 Auto-Regressive With Exogenous Input Model  

The ARX model can be obtained from the general model (1) by choosing 

      1 qFqDqC , and  qA  and  qB  arbitrary polynomials [4]  

         kvkuqBkyqA 
                                                                                    (2) 

Since the noise enters directly in the equation, the model is of the class of equation 

error models.  

 

2.2 Auto-Regressive Moving Average with Exogenous Input Model 

The ARMAX model can be derived from the general model (1) by choosing 

    1 qFqD  and    qBqA ,  and  qC  arbitrary polynomials [4]  

           kvqCkuqBkyqA 
                                                                           (3) 

 

2.3 State-Space Model 

The state-space model takes the following form:  

)k(e)k(Du)k(Cx)k(y

)k(Ke)k(Bu)k(Ax)k(x



1
                                                                   (4) 

The easiest and most straightforward way to obtain a state space model from data is to 

estimate an input/output model. 

The state-space model can be obtained by choosing DCBA ,,, and K  arbitrary 

matrices. 
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3. NONLINEAR DYNAMIC SYSTEM IDENTIFICATION  

3.1  Multilayer Perceptron (MLP) Network 

A feed forward Multilayer perceptron [4,5] is layered network made up of one or more 

hidden layers between the input and output layers. Each layer consists of several 

percepton neurons are used in parallel and connected to the neurons in adjacent layers. 

The input layer acts as an input data holder that distributes the inputs to the first hidden 

layer. The output from the first layer nodes then becomes input to the second layer, and 

so on. The last layer acts as the output layer; see Fig.3. In basis function formulation 

the MLP can be written as 

 
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         with   1 ,                                                            (5) 

where M  as the number of neurons in the hidden layer, iw  as output layer weights, 

and 
ijw  as weights of the hidden layer [6]. 

  

 

Fig. 3  A multilayer perceptron network  

3.2  Neuro-Fuzzy Modeling 

ANFIS Architecture 
For simplicity, we assume the fuzzy inference system under consideration has two 

inputs x and y and one output z  . Suppose that the rule base contains two fuzzy if-then 

rules of Takagi and Sugeno’s type [7,8]: 

Rule 1: If x  is 1A  and y  is 1B , then 1111 ryqxpf   

Rule 2: If x  is 2A  and y  is 2B , then 2222 ryqxpf   

then the type-3 fuzzy reasoning is illustrated in Fig.4(a), and the corresponding 

equivalent ANFIS architecture (type-3 ANFIS) is shown in Fig.4(b) [9,10,11]. The 

ANFIS has 5 layers and functions of these layers are explained below: 

Layer 1: In this layer where the fuzzification process takes place, every node is 

adaptive. Outputs of this layer form the membership values of the premise part. 
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Layer 2: In contrary to layer 1 the nodes in this layer are fixed. Each node output 

represents a firing strength of a rule. 

Layer 3: In this layer where the normalization process is performed, the nodes are 

fixed as they are in Layer 2. The ratio of the ith rule's firing strength to the sum of all 

rule's firing strength is calculated for the corresponding node. 

Layer 4: Since the nodes in this layer operate as a function block whose variables are 

the input values, they are adaptive. Consequently the output of this layer forms TSK 

outputs and this layer is referred to as the consequent part. 

Layer 5: This is the summation layer. Which consist of a single fixed node. It sums up 

all the incoming signals and produces the output. 

 

Fig. 4 (a) Type-3 fuzzy reasoning; (b) equivalent ANFIS (type-3 ANFIS) 

_ 

3.3  Type of Models 

In analogy to linear system identification [3], a nonlinear dynamic model can be used 

in two configurations: for prediction and for simulation. Prediction means that on the 

basis of previous process inputs )1( ku and process outputs )1( ky the model 

predicts one or several steps into the future. A requirement for prediction is that the 

process output is measured during operation. In contrast, simulation means that on the 

basis of previous process inputs )1( ku only the model simulates future outputs. 

Thus, simulation does not require process output measurements during operation. Fig.5 

compares the model configuration for prediction (a) and simulation (b). In former 

linear system identification literature and in the context of neural networks, fuzzy 

systems and other modern nonlinear models the one-step prediction configuration is 

called a series-parallel model while the simulation configuration is called a parallel 

model. 
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Fig. 5 (a) One-step prediction with a series parallel model  

(b) simulation with a parallel model 

For a second order model, the one-step prediction is calculated with the 

previous process outputs as 

))k(y).k(y),k(u),k(u(f)k(ŷ 2121                                            (6) 

while the simulation is evaluated with the previous model outputs as 

))k(ŷ).k(ŷ),k(u),k(u(f)k(ŷ 2121                                                     (7) 

  

4. DC SERVO MOTOR IDENTIFICATION 

4.1 System Model 

The DC motor dynamics are given by the following equations [12]: 

        

        tTtDdttdJtKi

tVdttdiLtiRtK

La

caaaa
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


                                                              (8) 

where K,J,D,L,R,i,V, aaac and LT are the rotor speed, terminal voltage, armature 

current, armature resistance, armature inductance, damping constant, rotor inertia, 

torque, back emf constant and load torque, respectively. From the previous equations, 

the overall transfer function of the motor system can therefore be written as: 

 
 

21

2 asas

k

sV

s t

c 



                                                                                               (9) 

where amt kkk  and ak is the servo amplifier gain, constant 21 , aa  and mk  depend 

on the motor parameters, can be written in the form of difference equation as: 

       21  kkkkVc                                                                    (10) 

where  , and  are constants and their values depend on the motor parameters and 

the sampling time. 
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4.2 Identification of DC Motor Using Linear Method 

Equation (10) which is approximated via previous linear approaches using some 

input/output data for estimate the model and another data for validate this model. The 

input to linear model is  kVc  and its output is  k .the first 2001 pairs (training data 

set) were used for training the models, while the remaining 2000 pairs (checking data 

set) were used for validating the model identified. Table 1 demonstrates The values of 

the parameters of the linear models and Fig.6 illustrates the results of identification. 

 

Experimental Results 
The experiments were carried out by supplying a square wave input in Fig.7 and a 

sawtooth wave input in Fig.8. Fig.9 and Fig.10 show the motor response, the ARX 

model response to a square wave and a sawtooth wave inputs, respectively and the 

error between the motor output and the ARX model output.  

 

Table 1 The values of the parameters of the linear models. 
 

The models The coefficients 

a1 a2 b1 b2 c1 c2 

ARX -0.49 -0.495 0.008856 0.004428   

ARMAX -0.49 -0.495 0.008856 0.004428 0.3414 0.3536 

 The matrices 

A B C D K 

State-Space 0.99 0.0010782 8.2135 0 0.10196 
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(a)     DC-servo motor system and ARX model outputs. 
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(b)     DC-servo motor system and ARMAX model outputs. 
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(c )    DC-servo motor system and state space model outputs. 

Fig. 6 

 
Fig. 7 A square wave input. 
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Fig. 8 A sawtooth wave input. 

 

 

 
Fig. 9 The experimental motor and the ARX model outputs to a square wave input. 

 

 

 
Fig. 10 The experimental motor and the ARX model outputs to a sawtooth wave input. 
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4.3 Identification Of DC Motor Using Nonlinear Method 

Equation (10) can be written in the form 

        21  k,k,kVfk c                                                                          (11) 

in the identification model, a feedforward neural network belonging to the class 2
1,2,3  

is used to approximate the function  f . The inputs to a neural network are 

     21,  kandkkVc   and its output is  k . A neuro-fuzzy is used to 

approximate the function  f  with the number of rules is 6. the first (4001, 2001) 

pairs (training data set) were used for training neural network and ANFIS respectively, 

while the remaining (4001, 2000) pairs (checking data set) were used for validating the 

model identified. During the identification process a series-parallel model is used, but 

after the identification process is terminated the performance of the model is studied 

using a parallel model. Fig.11 (a, b) shows the training data and the validation data of a 

dc-motor system with the prediction output of a neural network model and Fig.12(a, b) 

shows the training data and the validation data of a dc-motor system with the 

prediction output of a neuro-fuzzy model [12]. 

 

Experimental Results 
Figures 13 and Fig.14 show the motor response, the neural network model response to 

a square wave and a sawtooth wave inputs, respectively and the error between the 

motor output and the neural network model output. We note that the maximum error in 

the neural network model is less than the maximum error in the ARX model. 
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(b) 

Fig. 11 DC-servo motor system and feedforward network (FFNN) 
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(b) 

Fig. 12 DC-servo motor system and ANFIS model 
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Fig. 13 The experimental motor and the neural network model outputs to a square 

wave input. 

 

 
Fig. 14 The experimental motor and the neural network model outputs to a sawtooth 

wave input. 

 

5. CONCLUSION 

Linear and nonlinear identification have been compared, referring to their usability as 

black box model for DC-servo motor. The identification of DC-motor has been 

successfully captured by an artificial neural networks (ANNs) and neuro-fuzzy. 
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 الطرق المختلفة للتعريف مع تطبيقها علي محرك تيار مستمر

التعريف الخطية كنظام الارتداد الذاتي بالإدخال الخارجي,  ةيعرض مقدمة مختصرة عن أنظم بحثهذا ال
نظام الارتداد الذاتي للمتوسط المتحرك بالإدخال الخارجي, نظام المدى و أنظمة التعريف اللاخطية 

يار المستمر نظام كالشبكة العصبية للتغذية الأمامية, الشبكة العصبية الغيمية. نقوم باعتبار محرك الت
 مجهول يتم تعريف نموذج له باستخدام الطرق السابقة في التعريف  ثم نقوم بالمقارنة بينهم.        
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