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In this contribution, a new simultaneous amplitude and phase
approximation for wave digital lattice structures is introduced. It is
relying on the orientation of one of the two branch polynomials to adjust
the amplitude, while the other is oriented to adjust the phase. The
approximation process starts with proper initial settings for the two
branch polynomials according to the given amplitude and phase
specifications. Then, the two branch polynomials are generated
alternatively. This means that during one polynomial is generated to
approximate the amplitude or the phase, the other polynomial is fixed. By
iterating this alternative procedure, the two polynomials and consequently
the amplitude and phase converge to their optimal response. Interpolation
method combined with the Remez-exchange algorithm is employed for this
purpose. Finally, the filter structure is synthesized and the wave digital
realization is reached.
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1. INTRODUCTION

In literature [1-3], several design methods are available for wave digital lattice
filters with only amplitude restrictions. For simultaneously specified amplitude
and phase, some approximation methods have been established [4-6]. The
common feature of these methods is the restriction of one of the two branch
allpass functions to exhibit exact linear phase. The other allpass function is
employed to control both the amplitude and phase. This needs to over-satisfy
the amplitude or phase specifications. Consequently, the resulting filter
structure is degree consuming. Recently, a simultaneous amplitude and phase
approximation has been delivered [7] for wave digital lattice filters. This
approximation avoids the restriction of one of the two allpass functions to have
exact linear phase and guarantees equiripple amplitude and phase
characteristics. It is relying on translating the amplitude and phase
specifications into corresponding specifications for the difference and sum
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phase functions of two branch polynomials. Then, these difference and sum
phase functions are approximated alternatively and iteratively until they
converge into their optimal responses.

In this contribution, a new simultaneous amplitude and phase
approximation is presented for wave digital lattice filters. It is relying on the
orientation of one of the two branch polynomials to adjust the amplitude, while
the other is oriented to adjust the phase. The approximation process starts with
proper initial settings for the two branch polynomials according to the given
amplitude and phase specifications. Then, the two polynomials are generated
alternatively. This means that during one polynomial is generated to
approximate the amplitude or the phase, the other one is fixed. By iterating this
alternative procedure, the two polynomials and consequently the amplitude and
phase converge into their optimal responses. Finally, the filter structure is
synthesized and the wave digital realization is obtained by applying two-port
parallel adaptors. The method is compared with the previous design methods
from different points of view.

2. THE THEORITICAL BASIS

Let amplitude and linear phase specifications be given and it is required to
approximate them simultaneously by a wave digital lattice structure. In this
contribution we will consider typically the lowpass cases. The corresponding
transmission function is formulated as:

fow) (1)
g(w)

where y=X+j¢ is the complex reference frequency variable. For lossless
lowpass lattice structures [8], f(y) will be an even polynomial having degree N-
1, where N is the filter degree. On the other hand, g(y) is a strictly Hurwitz
polynomial having degree N. For real reference frequencies, the transmission
function is expressed as:

S21() = Ap)e B (2)
Consequently, A(¢) and -B(¢) are the amplitude and phase functions
respectively. The polynomial g(y) can be decomposed as:
g(y) =g1(wgo (W) 3)
where g;(y) and gx(y) are strictly Hurwitz polynomials having degrees n; and
n, respectively :

So21(w) =

Now let the phase functions exhibited by gi(j¢) and g>(jo) be 0:(¢) and
02(¢) respectively. Mathematical processing yields:
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A(9) = Cos[02(¢) - 0:1(p)] 5)

B(9) = 62(¢) + 61(¢) (6)
Inversely,

05 (d) = B(¢)+cO2s—1[A(¢>] )

01(d) = B(¢)—cO2s—1[A(¢)] )

Consequently, Equations (5,6) express the amplitude and phase functions
A(¢) and B(¢) in terms of the two branch polynomials phase functions 0;(¢)
and 0(¢). On the other hand, Equations (7,8) express the two branch
polynomials phase functions 6;(¢) and 0,(¢) in terms of the amplitude and
phase functions A(¢) and B(¢).

The approximation is relying on the orientation of g»(y) to adjust the
amplitude , while g;(y) is oriented to adjust the phase. The approximation
process starts with initial proper settings for g>(y) and g;(y) according to the
given amplitude and phase specifications. Then, the two polynomials are
generated alternatively. This means that during the polynomial g (y) is
generated to approximate the amplitude , the polynomial g;(y) is fixed..
Inversely, during the polynomial g;(y) is generated to approximate the phase,
the polynomial gy(y) is fixed. By iterating this iterative procedure, the two
polynomials and accordingly the amplitude and phase converge into their
optimal response. Finally, the filter structure is synthesized and the wave digital
realization is obtained.

3. THE APPROXIMATION PROCEDURE

The approximation procedure can be summarized in steps as follows:

I-  Set initial value for the filter degree N. Consequently the degrees nl and n2
can be determined according to Eq. (4). The initial value of N can be chosen to
be equal to the degree of a lattice structure satisfying the amplitude
specifications only [1].

2- Aninitial settings for g;(y) and g,(y) is carried out as follows:

At a set of digital frequency points (n; points) get the amplitude and phase
specifications. Translate these specifications into corresponding phase
specifications for 0; and 0, by applying Equations (7,8). Then, g;(y) can be
generated. The additional phase specification value for g>(\) (which lies in the
stopband) is obtained from the generated g;(y) and the corresponding
amplitude specification value according to Eq. (5). Then, gi(y) can be
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generated. The initial selected frequency points can be distributed over the
passband and stopband such that they appear in each band in an equidistant
arrangement with the band edges be fixed points. This has been detected to be
sufficient for the convergence process. Note that the digital interpolation digital
frequencies are reflected into the reference domain by applying the bilinear
transformation [9]:

Guie] e ebT gmrmard ©

where p=c+jo is the complex frequency variable in the digital domain and T is
the sampling period.

3- Now, the polynomial g;(y) is fixed. The polynomial g,(y) is newly
generated to optimize the amplitude response. This is achieved by applying the
Remez-exchange algorithm [10] to change the set of interpolation frequencies
for g>(y) according to the amplitude response and by applying Eq. (5). .

4- Now, with the amplitude specifications become satisfied, the polynomial
2>(y) 1s fixed. The polynomial g;(y) is newly generated to optimize the phase
response. This is achieved by applying the Remez-exchange algorithm to
change the set of interpolation frequencies for g;(y) according to the phase
response and by applying Eq. (6).

The generation of gl(y) and g>(y) can be carried out by solving a set of
linear equations to determine the coefficients. However, a recursive procedure
which was delivered by Henk [11] is applied. According to this procedure, the
phase function is specified by its values and/or higher derivatives at a set of
frequencies. Note that a kn deviation from the specified phase value is possible,
where k is integer. The polynomial is generated by recurrence formulae whose
coefficients are calculated by a recursive algorithm. Let the number of the
prescribed derivatives be pj at a specified reference frequency(bi, where

O0<i<r and g =0- Without counting the zero-phase requirements at the
origin, the number of the phase constraints is p = r + 26 mj - A secondary
set of frequencies vg 1is introduced with O0<s<n comprising each
frequency ¢ i (I+m;) times. The ordering of the d; frequencies in forming
the set vg is arbitrary except that v ()=0. Then, the polynomial which
generally can be denoted by Qn (y)is generated according to the following
recurrence formulae:
Qo(w) =1,
Q(w)=ap+Ww:

Qi +1W) = ak Q (W) + (yZ +vD) Qp _j(w). k=1 (10)
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where:
Oq(:Xk—1.(Jv1<+1)’k2(_~,,
XkOvk +1
— 11X + X1 _ 11
X1 (y) = ok —1Xk 21(\v)2 k 2(W),k21 (11)
Yo+ vy

with the following initial conditions :
X—1(w)=By)-
Xow) =AW /vy (12)
The functions A(\) and B(\) are related to the polynomial QW)
according to :
Even(Q, (v)) B(y)
where § is the error function:

D"y n 5,
~ BEven(Q, (wy | VTV

5- The steps (3,4) are iterated alternatively until both the amplitude and phase
specifications become satisfied. If the degree is not sufficient, it is increased by
two and we return into step (2).

6- From the resulting two polynomials g;(y) and g»(y) , synthesize the filter
as follows:

g

4. THE SYNTHESIS PROBLEM

From the resulting two branch polynomials, the resulting two branch allpass
functions are formulated:

g1(—y) gr(—y)
g1(v) 2 (y)
These two allpass functions are factorized into sections of first and second
orders. A section of first order is formulated as:
—Y+B;
y+B;

The wave digital realization of this section results in a two-port parallel adaptor
with coefficient value [1]:

S1(y)=— So>(y) = (14)

Si(w)= (15)
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1_Bi
L — 16
Y4 L4p: (16)
A section of second order is formulated as:
2
Yo —ajy+B;
Sj(W)=—F—"—-+ J (17)
Yo tajy+p;

The wave digital realization of this section results in a pair of two-port
parallel adaptors with coefficient values [1]:

o1 1-B;

=3 .= 18

5. DESIGN EXAMPLE

The presented approximation method will now be applied through a design
example. Suppose we are given the following amplitude and phase
specifications:
e The passband is extending from O to 4.5 kHz with maximum allowed
loss =0.01 dB.
e The stopband is extending from 6.5 to 9.5 kHz with minimum allowed
loss=30 dB.
e The passband phase is required to be linear with allowed deviation from
linearity = = 0.1 rad.
e The sampling frequency = 19 kHz.
e The initial settings for the two polynomials g;(y) and g>(y) are obtained
from the following interpolation values for A and B:

FREQ. 1 B DEVIATION FROM
KHZ Cos ~(A) LINEARITY RAD.
15 0.04797559 0.1
3 -0.04797559 0.1
45 0.04797559 0.1
6.5 1539168 1.9
8 1.602424 )

Then, by applying Equations (7,8), the corresponding phase specifications
for the two polynomials g;(y) and g>(y) are computed and the initial settings
for the two polynomials are determined as:
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g1 (w) =y 443520103 34757282y 2 +3.367241y +0.7916716
25 (y) =y +3308646y* + 548128703 + 5597234y 2 + 4.076206 y

+0.8669953

Then, by following the approximation procedure according to steps (3-5),
the final interpolation values for the two polynomials reached after 8 iterations
are:

FREQ. KHZ 0, RAD.
1.1875 0.80827
3.55775 2.325049
4.5 3.002257

6.5 4.479437
FREQ. KHZ 0, RAD.
1.32525 0.946291
3.78575 2.434206
4.5 3.050233

6.5 6.018604
7.8755 6.941248

These interpolation values result in the following final settings for the two
polynomials:

g1 (W) = y* +3.490021y3 + 4.748461y2 + 33401510y +0.7946849
25 () =y +3.309255y* +5.44198 > + 5.84473 2 + 4.061367 Accordingly

+ 0.890694

the resulting loss response is shown in Figs.(1,2). The resulting phase response
is shown in Fig.(3). The phase deviation from linearity is shown in Fig.(4).

To obtain the wave digital realization, the two polynomials are factorized
into first and second order sections:

g (W)=(y +0.422223)(y +1.678601)(y> +1.389198y +1.121259)
g5 (W =y +0.34749)(y 2 + 2.489772y +1.858311)
(w2 +0.471994y +1.379331)
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Fig. 1 The resulting loss response
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Fig. 2 The passband loss
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Fig. 4 The phase deviation from linearity

Accordingly, by applying Equations (15-18), the wave digital realization
will be as shown in Fig.(5), with the following adaptor coefficient values:

vi= 0.4062493 o= -0.2533416
v3=-0.2085372 v4=-0.05716358
ys= 0.4842410 ve= -0.06891054
7= -0.3002862 vs= -0.6689301
vo= -0.1594276
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Fig.5. The wave digital realization.

6. CONCLUSIONS

Now, we will compare the delivered method with previous approximation
methods [4-7]

1- The methods of references [4-6] are relying on the restriction of one of the
two branch polynomials to exhibit exact linear phase. The other polynomial is
employed to control both the amplitude and phase. Generally, this needs to
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over-satisfy the amplitude or phase specifications which results in non-
economic degrees. For the specifications considered in the example given
above, the method of references [5-6] offers solution of degree 11.

2- The method of reference [7] is relying on the alternative and iterative
approximation of the difference and sum phase functions of the two branch
polynomials. In the phase of approximating the difference phase function, the
sum phase function is fixed and the amplitude is adjusted. In the phase of
approximating the sum phase function, the difference phase function is fixed
and the phase is adjusted. In each phase, the two branch polynomials are newly
generated. For the specifications considered in the example given above, this
method [7] offers a solution of degree 9.

3- The delivered method in this contribution is relying on the alternative and
iterative approximation of the two branch polynomials g;(y) and g>(y) . In the
phase of approximating g>(y), the polynomial g;(y) is fixed and the amplitude
is adjusted. In the phase of approximating g;(y), the polynomial g»(y) is fixed
and the phase is adjusted.
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