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In this contribution, a new simultaneous amplitude and phase 

approximation for wave digital lattice structures is introduced. It is 

relying on the orientation of one of the two branch polynomials to adjust 

the amplitude, while the other is oriented to adjust the phase. The 

approximation process starts with proper initial settings for the two 

branch polynomials according to the given amplitude and phase 

specifications. Then, the two branch polynomials are generated 

alternatively. This means that during one polynomial is generated to 

approximate the amplitude or the phase, the other polynomial is fixed. By 

iterating this alternative procedure, the two polynomials and consequently 

the amplitude and phase converge to their optimal response. Interpolation 

method combined with the Remez-exchange algorithm is employed for this 

purpose. Finally, the filter structure is synthesized and the wave digital 

realization is reached.          

 

KEYWORDS: wave digital filters, lossless lowpass lattice structures, 

simultaneous approximation. 

 

1. INTRODUCTION 

In literature [1-3], several design methods are available for wave digital lattice 

filters with only amplitude restrictions. For simultaneously specified amplitude 

and phase, some approximation methods have been established [4-6]. The 

common feature of these methods is the restriction of one of the two branch 

allpass functions to exhibit exact linear phase. The other allpass function is 

employed to control both the amplitude and phase. This needs to over-satisfy 

the amplitude or phase specifications. Consequently, the resulting filter 

structure is degree consuming. Recently, a simultaneous amplitude and phase 

approximation has been delivered [7] for wave digital lattice filters. This 

approximation avoids the restriction of one of the two allpass functions to have 

exact linear phase and guarantees equiripple amplitude and phase 

characteristics. It is relying on translating the amplitude and phase 

specifications into corresponding specifications for the difference and sum 
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phase functions of two branch polynomials. Then, these difference and sum 

phase functions are approximated alternatively and iteratively until they 

converge into their optimal responses. 

In this contribution, a new simultaneous amplitude and phase 

approximation is presented for wave digital lattice filters. It is relying on the 

orientation of one of the two branch polynomials to adjust the amplitude, while 

the other is oriented to adjust the phase. The approximation process starts with 

proper initial settings for the two branch polynomials according to the given 

amplitude and phase specifications. Then, the two polynomials are generated 

alternatively. This means that during one polynomial is generated to 

approximate the amplitude or the phase, the other one is fixed. By iterating this 

alternative procedure, the two polynomials and consequently the amplitude and 

phase converge into their optimal responses. Finally, the filter structure is 

synthesized and the wave digital realization is obtained by applying two-port 

parallel adaptors. The method is compared with the previous design methods 

from different points of view.        
 

2. THE THEORITICAL BASIS 

Let amplitude and linear phase specifications be given and it is required to 

approximate them simultaneously by a wave digital lattice structure. In this 

contribution we will consider typically the lowpass cases. The corresponding 

transmission function is formulated as: 

                              
)(g

)(f
)(S21 


                                               (1) 

where =+j is the complex reference frequency variable. For lossless 

lowpass lattice structures [8], f() will be an even polynomial having degree N-

1, where N is the filter degree. On the other hand, g() is a strictly Hurwitz 

polynomial having degree N. For real reference frequencies, the transmission 

function is expressed as: 

                             e )(jB)(A)j(S21
                                 (2) 

Consequently, A() and -B() are the amplitude and phase functions 

respectively. The polynomial g() can be decomposed as: 

                                  )(g2)(g1)(g                                       (3) 

where g1() and g2() are strictly Hurwitz polynomials having degrees n1 and 

n2 respectively : 
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Now let the phase functions exhibited by g1(j) and g2(j) be 1() and 

2() respectively. Mathematical processing yields: 
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 A() = Cos[2() - 1()]                  (5) 

 

      B() =  2() + 1()                                                    (6) 

 

Inversely,  
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Consequently, Equations (5,6) express the amplitude and phase functions 

A() and B() in terms of the two branch polynomials phase functions 1() 

and 2(). On the other hand, Equations (7,8) express the two branch 

polynomials phase functions 1() and 2() in terms of the amplitude and 

phase functions A() and B().  

The approximation is relying on the orientation of g2() to adjust the 

amplitude , while g1() is oriented to adjust the phase. The approximation 

process starts with initial proper settings for g2() and g1() according to the 

given amplitude and phase specifications. Then, the two polynomials are 

generated alternatively. This means that during the polynomial g2() is 

generated to approximate the amplitude , the polynomial g1() is fixed.. 

Inversely, during the polynomial g1() is generated to approximate the phase, 

the polynomial g2() is fixed. By iterating this iterative procedure, the two 

polynomials and accordingly the amplitude and phase converge into their 

optimal response. Finally, the filter structure is synthesized and the wave digital 

realization is obtained. 
 

3. THE APPROXIMATION PROCEDURE 

The approximation procedure can be summarized in steps as follows: 

1- Set initial value for the filter degree N. Consequently the degrees n1 and n2 

can be determined according to Eq. (4). The initial value of N can be chosen to 

be equal to the degree of a lattice structure satisfying the amplitude 

specifications only [1]. 

2- An initial settings for g1() and g2() is carried out as follows: 

At a set of digital frequency points (n1 points) get the amplitude and phase 

specifications. Translate these specifications into corresponding phase 

specifications for 1 and 2 by applying Equations (7,8). Then, g1() can be 

generated. The additional phase specification value for g2() (which lies in the 

stopband) is obtained from the generated g1() and the corresponding 

amplitude specification value according to Eq. (5). Then, g2() can be 
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generated. The initial selected frequency points can be distributed over the 

passband and stopband such that they appear in each band in an equidistant 

arrangement with the band edges be fixed points. This has been detected to be 

sufficient for the convergence process. Note that the digital interpolation digital 

frequencies are reflected into the reference domain by applying the bilinear 

transformation [9]: 

       )2/tan(,,
1
1 Te pTz

z
z  

                      (9)   

where p=+j is the complex frequency variable in the digital domain and T is 

the sampling period.  

3- Now, the polynomial g1() is fixed. The polynomial g2() is newly 

generated to optimize the amplitude response. This is achieved by applying the 

Remez-exchange algorithm [10] to change the set of interpolation frequencies 

for g2() according to the amplitude response and by applying Eq. (5). .   

4- Now, with the amplitude specifications become satisfied, the polynomial 

g2() is fixed. The polynomial g1() is newly generated to optimize the phase 

response. This is achieved by applying the Remez-exchange algorithm to 

change the set of interpolation frequencies for g1() according to the phase 

response and by applying Eq. (6). 

The generation of g1() and g2() can be carried out by solving a set of 

linear equations to determine the coefficients. However, a recursive procedure 

which was delivered by Henk [11] is applied.  According to this procedure, the 

phase function is specified by its values and/or higher derivatives at a set of 

frequencies. Note that a k deviation from the specified phase value is possible, 

where k is integer. The polynomial is generated by recurrence formulae whose 

coefficients are calculated by a recursive algorithm. Let the number of the 

prescribed derivatives be mi  at a specified reference frequencyi
, where  

ri0   and 00  . Without counting the zero-phase requirements at the 

origin, the number of the phase constraints is  r
0mirn  . A secondary 

set of frequencies vs  is introduced with ns0   comprising each 

frequency i
 ( mi1 ) times. The ordering of the i

 frequencies in forming 

the set s  is arbitrary except that 0 =0. Then, the polynomial which 

generally can be denoted by )(Qn  is generated according to the following 

recurrence formulae: 

1)(Q0  , 

 0)(Q1
, 

1k),(Q 1k)2
k
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where: 
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with the following initial conditions : 
 

)(B)(X 1  , 

 /)(A)(X0                                           (12) 
                                      

The functions )(A   and )(B   are related to the polynomial )(Qn     

according to   :  
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 where    is the error function: 
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5- The steps (3,4) are iterated alternatively until both the amplitude and phase 

specifications become satisfied. If the degree is not sufficient, it is increased by 

two and we return into step (2). 

6- From the resulting two polynomials g1() and g2() , synthesize the filter 

as follows: 
 

4. THE SYNTHESIS PROBLEM 

From the resulting two branch polynomials, the resulting two branch allpass 

functions are formulated:  

    
)(

)(
)(S2)(

)(
)(S1 g2

g2

g1

g1








           (14) 

These two allpass functions are factorized into sections of first and second 

orders. A section of first order is formulated as: 

                              





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i)(Si                                                (15) 

The wave digital realization of this section results in a two-port parallel adaptor 

with coefficient value [1]:  
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A section of second order is formulated as: 
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The wave digital realization of this section results in a pair of two-port 

parallel adaptors with coefficient values [1]: 
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5. DESIGN EXAMPLE 

The presented approximation method will now be applied through a design 

example. Suppose we are given the following amplitude and phase 

specifications: 

 The passband is extending from 0 to 4.5 kHz with maximum allowed 

loss = 0.01 dB.  

 The stopband is extending from 6.5 to 9.5 kHz with minimum allowed 

loss=30 dB. 

 The passband phase is required to be linear with allowed deviation from 

linearity =  0.1 rad. 

 The sampling frequency = 19 kHz. 

 The initial settings for the two polynomials g1() and g2() are obtained 

from the following interpolation values for A and B: 
 

  FREQ. 

KHZ Cos 1 (A) 
B DEVIATION FROM 

LINEARITY RAD. 

1.5 

3 

4.5 

6.5 

8 

0.04797559 

-0.04797559 

0.04797559 

1.539168 

1.602424 

0.1 

-0.1 

0.1 

1.9 

- 

 

Then, by applying Equations (7,8), the corresponding phase specifications 

for the two polynomials g1() and g2() are computed and the initial settings 

for the two polynomials are determined as: 
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7916716.0367241.32757282.43520103.34)(g1 

8669953.0

076206.42597234.534812870.54308646.35)(g2




 

Then, by following the approximation procedure according to steps (3-5), 

the final interpolation values for the two polynomials reached after 8 iterations 

are: 
 

FREQ. KHZ 1   RAD. 

1.1875 

3.55775 

4.5 

6.5 

0.80827 

2.325049 

3.002257 

4.479437 

  

FREQ. KHZ 2 RAD. 

1.32525 

3.78575 

4.5 

6.5 

7.8755 

0.946291 

2.434206 

3.050233 

6.018604 

6.941248 

These interpolation values result in the following final settings for the two 

polynomials: 

7946849.03401510.32748461.43490021.34)(g1 

890694.0

061367.4284473.5344198.54309255.35)(g2



 Accordingly, 

the resulting loss response is shown in Figs.(1,2). The resulting phase response 

is shown in Fig.(3). The phase deviation from linearity is shown in Fig.(4).  

To obtain the wave digital realization, the two polynomials are factorized 

into first and second order sections: 

)121259.1389198.12)(678601.1)(422223.0()(g1   

)379331.1471994.02(

)858311.1489772.22)(34749.0()(g2



  
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Fig. 1 The resulting loss response 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 The passband loss 
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Fig. 3 The resulting phase response  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 The phase deviation from linearity 

 

Accordingly, by applying Equations (15-18), the wave digital realization 

will be as shown in Fig.(5), with the following adaptor coefficient values: 
 

               1=  0.4062493                                 2= -0.2533416 

               3= -0.2085372                                 4= -0.05716358 

               5=  0.4842410                                  6= -0.06891054 

               7= -0.3002862                                  8= -0.6689301 

               9= -0.1594276                                    
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Fig.5. The wave digital realization. 
 

6.   CONCLUSIONS  

Now, we will compare the delivered method with previous approximation 

methods [4-7]  

1- The methods of references [4-6] are relying on the restriction of one of the 

two branch polynomials to exhibit exact linear phase. The other polynomial is 

employed to control both the amplitude and phase. Generally, this needs to 
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over-satisfy the amplitude or phase specifications which results in non-

economic degrees. For the specifications considered in the example given 

above, the method of references [5-6] offers solution of degree 11. 

2- The method of reference [7] is relying on the alternative and iterative 

approximation of the difference and sum phase functions of the two branch 

polynomials. In the phase of approximating the difference phase function, the 

sum phase function is fixed and the amplitude is adjusted. In the phase of 

approximating the sum phase function, the difference phase function is fixed 

and the phase is adjusted.  In each phase, the two branch polynomials are newly 

generated. For the specifications considered in the example given above, this 

method [7] offers a solution of degree 9.  

3- The delivered method in this contribution is relying on the alternative and 

iterative approximation of the two branch polynomials g1() and g2() . In the 

phase of approximating g2(), the polynomial g1() is fixed and the amplitude 

is adjusted. In the phase of approximating g1(), the polynomial g2() is fixed 

and the phase is adjusted. 

 

REFERENCES 

 

1. Gazsi,”Explicit Formulas for Lattice Wave Digital Filters”, IEEE  Trans. 

on Circuits and Systems, vol. CAS-32, pp.68-88, Jan.       1985.                                     

2. M. Yaseen and T. Henk, ”Synthesis Methods for Wave Digital Filtrs  
Exhibiting Arbitrary Amplitude Characteristics”, Proc. of the 6-th        

European Conference of Signal Processing (EUSIPCO’92) vol. II,  pp. 

961-964, Brussels, Belgium, August 24-27, 1992. 

3. Fettweis,”Wave Digital Filters, Theory and Practice”, Proc. IEEE, vol. 74, 
pp. 270-327, Feb. 1986. 

4. Kunold,”Linear Phase Realization of Wave Digital Filters”, Proc.     IEEE 
ISCASSP-88, IEEE, NewYork, 1988, pp. 1455-1458. 

5. M. Abo-Zahhad , M. Yaseen and T. Henk, " Design of  Lattice Wave 

Digital Filters with Prescribed Loss  and Phase Specifications", Proc. of the 

European conference of Circuit Theory and Design (ECCTD'95), vol. 2, 

pp. 761-764, Istanbul, Turkey, Aug. 27-31, 1995.  

6. M. Abo-Zahhad, M. Yaseen and T. Henk, ”Arbitrary Amplitude and Linear 
Phase Approximations of Non-Prototype Ladder and Lattice Wave Digital 

Filters”, the International Journal of Circuit Theory and Applications, vol. 

24, no. 6, pp. 605- 620, Nov.-Dec. , 1996.   

7. M. Yaseen, “On the Simultaneous Amplitude and Phase     Approximations 
of Wave Digital Lattice Filters”, the I.J. of Circuit Theory and 
Applications, vol. 31, pp. 465-472, 2003. 

8. V. Belevitch, Classical Network Theory, Holden-Day, 1968. 



Mohamed Yaseen and Usama Sayed Mohammed 488 

9. A.V. Oppenheim and R.W. Schafer, Digital Signal Processing, Prentice-

Hall, 1975. 

10. G. C. Temes and J. C. Bincham, ”Iterative Chebyshev Approximation 

Technique for Network Synthesis”, IEEE Trans. On Circuit Theory, vol. 

14, no. 1, pp. 31-37, 1967. 

11. T.  Henk, ”The generation of Arbitrary Phase Polynomials by Recurrence 

Formulae”, International Journal of Circuit Theory and Applications, vol. 

9, pp. 461-478, 1981. 
 

 

 

"تقريب جديد متزامن ƃلمرشحات اƃرقميه اƃموجيه ذات اƃهياƂل اƃشبƂيه أعتمادا على 
 يه"اƃتقريب اƃمتبادل واƃمتƂرر Ƃƃثيرات اƃحدود اƃفرع

   

يقدم اƅبحث طريقة فعاƅة ƅتصميم اƅمرشحات اƅرقمية اƅموجية ذات اƅهياƄل اƅشبƄية وذات نطاق اƅتمرير 
 بمواصفات سعة وطور خطى اختياريين . Lowpass wave digital lattice filtersاƅمنخفض 

ددات اƅحدود Ƅƅل من متع Iterativeو اƅمتƄرر  Alternativeتعتمد اƅطريقة على اƅتقريب اƅتبادƅى 
. يتم توجيه Ƅثيرة اƅحدود اأوƅى ƅضبط داƅة اƅسعة بينما يتم  Two branch polynomialsاƅفرعيتين 

فى اƅبداية وطبقا ƅلمواصفات يتم اختيار ابتدائى Ƅƅل من  توجيه Ƅثيرة اƅحدود اƅثانية ƅضبط داƅة اƅطور .
متعددات اƅحدود . بعد ذƅك يتم تقريب متعددة اƅحدود ااوƅى ƅضبط داƅة اƅسعة بينما يتم تثبيت منعددة 
اƅحدود اƅثانية . فى اƅمرحلة اƅثانية يتم تقريب متعددة اƅحدود اƅثانية ƅضبط داƅة اƅطور بينما يتم تثبيت 

بتطبيق مرحلتى اƅتقريب تبادƅيا وتƄراريا يحدث تقارب Ƅƅل من داƅتى اƅسعة و اƅطور نحو  اأوƅى .
فى اƅنهاية بتم  وضعهما اأمثل بحيث يفيان باƅمواصفات .بشرط أن يƄون اختيار اƅدرجة Ƅافيا .

اƅحصول على Ƅل من داƅتى اامرار اƅمطلق ويتم اƅحصول على اƅهيƄل اƅمرجعى واƅحصول على دائرة 
 اƅمرشح فى اƅحيز اƅرقمى . 


