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ABSTRACT 

Hardware implementation of Artificial Neural Network (ANNs) depends mainly on the efficient 

implementation of the activation functions. Field Programmable Gate Array is the most appropriate 

tool for hardware implementation of ANNs. In this paper we introduce FPGA-based hardware 

implementation of ANNs using five different activation functions. These implemented NNs are 

described using Very High Speed Integrated Circuits Hardware Description Language (VHDL) and 

carried out by Digilent Basys 2 Spartan-3E FPGA platform from Xilinx. The performances of the 

implemented NNs were investigated in terms of area efficient implementation, and correct 

prediction percentages for solving XOR, and Full-Adder problems.  

Keywords: Artificial system, VHDL, FFNN, FPGA, Back-propagation, Activation function. 

1. Introduction 

Neural networks (NNs) are widely used in many areas, both for systems development and 

applications. NNs are frequently used to solve numerous problems that cannot be handled by 

other hard computing methods. The artificial neural network (ANN) has been used in many 

applications in the field of science and technology [1]. The ANN capabilities such as 

mapping, modelling and classifying the nonlinear systems encouraged the researchers to 

construct artificial intelligent (AI) systems that utilize the current progress in high speed 

computing. If the practical implementation of high speed and cheap artificial neural 

computation systems are possible; many real time applications will be resolved. To achieve 

this goal, numerous proposals have been presented on the implementation of ANNs [2].  

ANNs implementations can be categorized into: Software (SW) implementations and 

Hardware (HW) implementations [3]. The SW implementations offer flexibility (easy to 

implement), and reliability but provide poor performance. The implemented ANNs that use 
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SW approach are simulated, trained, verified, and tested using the general purpose 

sequential (Von-Neuman) computers for modelling a variety of NNs.  

The HW implementations are generally difficult and consuming more time to be built 

but provide better performance in comparison with SW versions [4].  

There are analog, digital and hybrid system architectures offered for the HW 

implementations of ANNs. Analog architectures are more accurate, but difficult to be 

implemented and have some of problems with weight storage. Digital architectures have 

the advantages of high flexibility, high accuracy, better replicability, low noise sensitivity, 

better testability, and weight storage does not become a problem. 

The digital HW implementations of ANNs can be classified as (i) Field Programmable 

Gate Array (FPGA)-based HW implementations (ii) Digital Signal Processors (DSP)-based 

HW implementations (iii) Application Specific Integrated Circuits (ASIC)-based HW 

implementations. A DSP based HW implementation is sequential and therefore does not 

maintain the parallel architecture of the ANs in a specific layer. ASIC- based HW 

implementation does not support user re-configurability [5].  

FPGA is a suitable HW tool for implementing ANNs, because it preserves the 

Parallelism characteristic of the neurons in the layer and provides flexible reconfiguration. 

Parallelism, modularity and quick dynamic adaptation of both ANNs weights and 

topologies are three computational characteristics, usually related to ANNs. 

In this paper five FPGA-based Feedforward Neural Networks (FFNNs) have been 

described (coded) using VHDL, and implemented using Xilinx Spartan-3E FPGA platform, 

for solving XOR problem (as a case study) with less implementation area and acceptable 

prediction error percentages. The learning process follows the chip-in-the-loop learning 

mechanism which entails both the implemented ANN for carrying out the computations and 

Back Propagation (BP) learning algorithm for updating the ANN's weights. 

The rest of the paper is arranged as follows: Section 2 reviews the basics of artificial 

neuron networks, challenges of ANN hardware implementations, and ANN hardware 

realizations techniques. Section 3 introduces the most common learning mechanisms. 

Section 4 summaries the hardware implementation Issues. Section 5 explains what 

activation function is, activation functions' characteristic, and implemented activation 

functions. Section 6 explores Implementations' conditions and results. We conclude in 

section 7. Finally future work is introduced in section 8. 

2. Artificial neural networks 

ANNs offer the mathematical representation of the biological neural system. A 

biological neuron in Fig. 1.a, receives incoming signals through its dendrites, and passes 

these signals to the body of cell. Axon transmits the signals to the synapses, which are the 

bonds of the axon of the cell with the dendrites of another cell [6]. The artificial neuron is 

shown in Fig. 1.b, can be considered as a data processing unit in three stages; weighing its 

input values, summing them all and filtering them using the activation function. 
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Fig. 1. Structural diagrams of biological neuron and artificial neuron. 

ANNs can be divided into two main categories: Feedforward Networks (FFNNs), and 

Recurrent Networks (RNNs). In FFNNs the computations are executed in a layer-by-layer 

fashion as shown in Figure 2. RNNs have an interconnected network structure including 

cycles (feedback loops) as shown in Figure 3. This permits it to show dynamic temporal 

behavior. Unlike FFNN, RNNs use its internal memory to process arbitrary input 

sequences [7]. This enhances the applicability of RNNs to numerous tasks such as non-

segmented, associated handwriting recognition or voice recognition. 

 

 

 

 

 

ANNs can be trained using one of two training approaches; supervised training algorithm or 

unsupervised training algorithm. Supervised training algorithm requires a trainer to present 

both inputs and actual outputs (i.e. input/output training pattern) which aid the trainer to 

determine the correct relationships between the training patterns of a given problem a priori. 

Unsupervised training algorithm does not require the trainer to provide the expected results [8]. 

The Backpropagation (BP) training algorithm is a method for updating the weights of 

the multilayer FFNNs. The BP training algorithm simulates a given function by changing 

the internal weights of the input signals to obtain the accepted output signal. In the 

supervised learning method, the error between the estimated output of the system and the 

actual output is presented to the system and used to update its state [8, 9]. 

2.1. Challenges of ANN hardware implementations 

In artificial neural systems, synapse acts as a network wiring. The number of synapses 

is scaled quadratically with the number of neurons, which will not be practical for wiring 

[10]. Today's integrated circuit manufacturing technologies are basically multi-layered 2D 

structures, which further limits the possibility of a complete connection. Therefore, most 

implementations restrict the wiring to some neighborhood of each neuron [11].  

Synaptic weights must be defined accurately so as to ensure good convergence of the 

training algorithms. Due to the training process synaptic weights can be updated more and 

more time before the optimal performance is achieved, and the training process is stopped. 

Neuron, where most of the mathematical operations such as summation of weighed inputs 
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and calculation of nonlinear activation function are performed. Activation function is the most 

important component in the neuron structure. There still open questions about what is the most 

appropriate activation function for FPGA-based ANNs? what is the robust activation function? 

and what is the activation function that achieves the lowest implementation area?  

2.2. ANN Hardware realizations 

2.2.1. General purpose parallel computers  
Most modern AI systems are considered to run on the sequential (Von Neumann) computer 

architectures. The performance of these architectures degrades quickly as knowledge is added 

to these computer systems, also these architectures do not perform well in real time 

applications. To speed up the implementation of AI programs, several methods have been 

identified. Parallel computing (Parallelism) was used to speed up existing AI systems [12]. 

Fine-grain parallel implementations on massively parallel computers [13] can either be 

single-instruction stream, multiple-data stream (SIMD), or multiple-instruction stream, 

multiple-data stream (MIMD). Hence their drawback is the connectivity of standard neural 

models that influenced in costly information exchanges.  

Parallel implementations of Coarse grain are mostly applied to neural training, so their 

effectiveness depends on the sequence of standard learning algorithms such as stochastic 

gradient descent [14]. In addition, massive parallel computers are expensive resources and 

cannot be used in embedded systems. Such solutions are not preferred for neural structures 

and complex neural calculations or training methods [15]. 

2.2.2. Analog Application Specific Integrated Circuits (A-ASIC) 
Many analog HW implementations have been performed. They are very fast, dense and 

low-power, but they suffer from some of specific problems such as low precision, 

inefficient data storage, un-robust [16], and difficulties in on-chip learning [17]. ASIC is 

not cheap or flexible solution, and its development is tedious [18]. ASIC is very confusing 

for users who are not analog technology minded. 

2.2.3. Digital application specific integrated circuits (D-ASIC) 
Many digitally ICs have been used in the design of ANNs. D-ASICs offer higher 

accuracy, higher robustness, and can process efficiently all the required neural computations. 

A lot of efforts are needed to design working D-ASICs, and it's extremely expensive when a 

small number of ICs are needed (ASIC shortcomings). Usually, D-ASICs are used to 

implement limited parts of NNs in order to be embedded in neurocomputer systems [19]. 

Nevertheless, the structure of this NN can't be mapped directly onto the IC [20]. 

2.2.4. Field programmable gate arrays (FPGA) 
 FPGA is a type of programmable logic (PLD) devices, which offer design flexibility 

like software, but with performance rates closer to D-ASICs [21]. In addition to the ability 

to be reconfigured frequently after being manufactured, hardware designers have been used 

FPGAs as a prototyping tool. Due to enhanced performance, FPGAs have grown over the 

years, and therefore they are used in reconfigurable computing applications.  

FPGAs are chosen for the ANNs implementation due to the following reasons: 

 FPGAs contain a large number of logical gates, ranging from tens of thousands to 

several million the logic gates. 



543 
Mohamed H. Essai, and Marina Magdy, Efficient hardware implementations of feedforward ………. 

 FPGAs can be configured to modify the logical function when embedding in the system. 

 FPGAs have a short cycle of design, which leads to a cheap logic construction. 

 FPGAs have a parallel computing environment. 

 FPGAs have powerful design entry (HDL, or schematic), synthesis, and simulation tools. 

The ANNs architectures should be entered schematically or algorithmically at the initial 

stage of the FPGA-based system design. When an ANN-based FPGA system is developed, 

indicate the ANN architecture from a symbolic level. This level enables us to use VHDL, 

which is a type of the hardware description programming languages [22]. VHDL supports 

many levels of instructions and enables you to accurately describe electronic circuits, from the 

simplest combinational logic circuits such as adders and comparators to the microprocessors. 

Table 1, outlines the advantages and disadvantages of the commonly used solutions for 

ANNs implementation. Each solution is estimated approximately for each realized aspect. 

Architecturally, FPGAs can be described as an array of separated configurable logic 

blocks (CLBs) that can be interconnected in a general way and programmed by the user. 

FPGAs contain three main blocks, which are CLBs, I/O blocks and connecting blocks, 

these blocks are used to describe any FPGA, since these blocks vary from one FPGA 

vendor to another. Logical blocks carry out a logical function. The connection blocks 

connect the logic blocks to the I/O blocks [23].  

In particular, Xilinx traditionally produces FPGA based on SRAM; so-called because of 

programmable resources for these types of FPGAs, are controlled by static RAM cells. 

Table 1.  

Suitable / unsuitable devices for implementing neural networks [21]. 

       Device 

 

Comparison 

A- 

ASIC 

D- 

ASIC 

FPGA Processor  

Based 

Parallel 

computer 

Speed highly 

convenient 

very 

convenient 

convenient inconvenient convenient 

Area highly 

convenient 

very 

convenient 

convenient inconvenient very 

inconvenient 

Cost very 

inconvenient 

very 

inconvenient 

very 

convenient 

very 

convenient 

very 

inconvenient 

Design time very 

inconvenient 

very 

inconvenient 

very 

convenient 

very 

convenient 

convenient 

Reliability very 

inconvenient 

convenient very 

convenient 

very 

convenient 

very 

convenient 

Fig. 4, shows the basic construction of the Xilinx FPGA [24]. It consists of a 2D array 

of CLBs. Horizontal and vertical Interconnectors (routing channels), are found between the 

rows and columns of CLBs.  Note that the CLBs and routing architectures are different for 

each FPGA generation and family. In this paper Digilent Basys 2 FPGA development 

board was used, this board built around a Xilinx Spartan -3E FPGA and an 

Atmel AT90USB2 USB controller as shown in Fig. 5. 
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Fig. 4. General Architecture of Xilinx FPGAs. 

 

 

 

 

 
 

Fig. 5. The Digilent Basys 2 board block diagram and features. 

3. Learning mechanisms  

A common learning mechanism for most ANNs covers both the training and recall 

phases. In the training phase, the network weights are updated in accordance with the 

application. In the case of the perceptron, this involves using the backpropagation 

algorithm on a classified training set; in the case of associative memory this involves 

adjusting the weights to ensure the necessary memories act as local attractors. 

At the recall phase, the new inputs are guarantee, and the network is allowed to balance 

(single-pass forward for the perceptron and evolution to equilibrium for associative 

memory, for example). Although the recall phase is always performed on the physical 

network itself, the training phase can be performed previously. 

There are three crucial training mechanisms [10]:    

1) Off-chip learning involves the execution of the learning phase using software based-

simulated network. This makes it possible to make learning calculations faster and 

more accurate than can be carried out with the help of a HW network. However, 

manufacturing alteration of the HW is not considered. 

2) Chip-in-the-loop learning includes both the HW network and external SW 

calculations. It depends on the software to execute the learning algorithm but uses 

the HW network to perform the calculations. In the case, for example, of the 

backpropagation algorithm, the forward pass is performed by the network, while 

weight updates are performed in the software. Therefore, the accuracy of the 

computation is not limited to the hardware capabilities, but the actual behavior of the 

network is still taken into account. 

3) On-chip learning, this approach uses only a hardware chip for training. The On-chip 

learning is slower and less accurate in calculating the weights than the other two 
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methods. This method does not include external manipulations at the learning stage 

in advance, and this makes it more realistic for embedded equipment, and networks 

designed with this approach will be able to update their training throughout the 

entire time. However, the design is inherently more complex and less flexible, since 

the algorithm that performs the training must be implemented on hardware. 

4. Implementation issues 

FPGA-based NN implementations should deal with the problems of the digital HW 

implementations of NNs' applications such as, topology-related issues and area-related 

issues. Many efforts have been made to solve such these issues, and the related issues 

become more acute due to the specific limitations of FPGAs. 

We focus on area saving issues that can be solved by [21]:   

 An activation function optimized implementation (for example, a cord-like 

algorithm or piecewise polynomial approximation, can be controlled by fast 

multipliers or look-up tables). The choice of the optimal implementation of the 

activation function depends on some characteristics of the application such as the 

required accuracy or the required chip (in, on, or off) training. 

 Bit serial arithmetic may be standard or optimized or serial arithmetic online. The 

best choice of which arithmetic approach is more appropriate for digital HW 

implementations of NNs is discussed previously in [25] but determining the type 

of FPGAs is not taken into account, and online arithmetic is not considered. It is 

well known that serial arithmetic requires more clock cycles and it is 

recommended to be used with the pipelined operators. 

 Arithmetic based on pulses; provides tiny operators, so a medium sized NN can be 

completely constructed entirely on a single FPGA, but restrictions on the routing 

of FPGA don't allow the implementation of the large NNs.  

In the context of area-related implementation issues, in this paper, we are planning to 

implement more efficient neural networks that achieve high precision, with less area 

occupation on FPGA. Thus, five feedforward neural networks have been designed using 

five different activation functions. The performance efficiency of the implemented FFNNs 

will be investigated through solving the problems of XOR, and Full-Adder.  XOR gate is 

used frequently in building arithmetic logic circuits such as adders, computational logic 

comparators and error detection circuits such as parity checker. Also, Adders are important 

in computers and other digital systems in which numerical data are processed.  

5. Activation function 

The activation function is one of the most important components of the ANN. It basically 

determines whether the neuron should be activated or not. Regardless of whether the 

received information by the neuron relates to the given information or it should be ignored. 

                            𝑌 = 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 (∑(𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑖𝑛𝑝𝑢𝑡) + 𝑏𝑖𝑎𝑠)                                 (1) 

If the activation function does not exist, the weights and bias will simply perform a 

linear transformation. It is easy to solve the linear equation but its ability to solve complex 

problems is limited. In the absence of the activation function, NN acts as a linear-

regression model. The activation function performs a nonlinear conversion to the input, 

which allows it to learn and execute more complex tasks. It is desirable that NNs deal with 
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complex tasks, such as image classifications and language translations. Such tasks are 

never being performed by linear transformations. 

Using the differentiable nonlinear activation functions make the use of the back-propagation is 

feasible where the gradients and errors are provided in order to update both weights and biases [26].  

Typically, activation functions can be classified into two types. The first type is a linear 

activation function, where it is a simple linear function of the form ( )f x x . Basically; 

the input passes to the output without any variation.  

The second type is the non-linear activation functions which are used to separate the 

data that is not linearly separable and are the most used activation functions. A non-linear 

equation manipulates the mapping from inputs to outputs. Sigmoid, tanh, relu, lrelu, 

prelu, and swish are examples of the non-linear activation functions.  

Activation functions properties can be summarized as follows [27]: 

 Nonlinear - Two-layer NN with non-linear activation function acts as a universal 

function approximator.  

 Continuously differentiable – This is a preferable feature for enabling optimization 

methods that based on gradient.  

 Range – If the activation function has a finite range, the gradient training methods tend 

to be more stable. While if the activation function has an infinite range, the training 

process becomes more effective, in this case lowering the training rates is significant.  

 Monotonic – If the activation function has a monotonic behavior, the error surface 

of a single-layer model will be convex. 

5.1. Implemented activation functions  

5.1.1. Sigmoid activation function   
A sigmoid function is a mathematical function having an "S" shaped curve (sigmoid 

curve). It is a special case of the logistic function. It is commonly used in ANN, due to its 

monotonous character and the ability to derivation which make them suitable for training 

algorithms. Its usages in neural network are: 

1. Activation function that transform linear inputs to nonlinear outputs. 

2. Bound output to between 0 and 1 so that it can be interpreted as a probability. 

3. Make computation easier than arbitrary activation functions. 

This function takes the input and squeezes the output into the range 0 to 1, according to 

the following expression:   

                                        
xe

xsigmoid



1

1
)(

                                                    (2)                                             

The log-sigmoid activation function is usually used in multilayer NNs that are trained 

using the backpropagation learning algorithm [28]. 

5.1.2. Hard limit activation function 
Artificial neurons that contain this function can classify the inputs into two different 

categories. The implemented hard limit activation function follows the next expression: 
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                                                              (3) 

5.1.3. Symmetrical hard limit activation function 
In the symmetrical hard limit activation function, if the function argument is less than 0 

then the output of the neuron is -1, if the function is greater than or equal to 0 then the 

output of the neuron is 1. Symmetrical hard limit function can be defined as follows: 

                                    














01

01

netif

netif

y

                                                             (4) 

5.1.4. Saturating linear activation function 
This type of nonlinear activation functions is also referred to as piecewise linear 

function. It has either a bipolar or binary range for the saturation limits of the output. The 

symmetric saturation function is described as follows: 

                          















00

11

netif

net

netif

y                                                              (5) 

5.1.5. Symmetrical saturating linear activation function 
In the symmetrical saturating linear activation function, if the function argument is less than -1 

then the output of the neuron is -1, if the function is greater than 1 then the output of the neuron is 

1, if the function is greater than or equal to 1 and less than or equal -1 then the output of the 

neuron is as the same as the input. The symmetrical saturating function is described as follows: 

                                   
















11

11
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netifnet

netif

y

                                                     (6) 

5.1.6. Positive linear activation function 
This function returns the output of the neuron to input if the function argument is 

greater than or equal to 0, if the function is less than 0 then the output of the neuron is 0. 

                                  

0 0

0

if net

y

net if net




 
                                                              (7)                                                                                

All the aforementioned activation functions can be summarized pictorially in Fig. 6. 
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Fig. 6. The waveforms of Sigmoid, hard limit, symmetrical hard limit, saturating linear, 

symmetrical saturating linear and positive linear activation functions. 

6. Implementation results      

The XOR problem can be illustrated in Fig. 7. The implemented FFNN architecture for 

solving this problem consists of 3 layers (input, hidden, and output layers), and 2 hidden neurons. 

The implemented FFNN architecture also is called Multilayer perceptron (MLP) model as shown 

in Fig. 8. In the context of implementation, the following approach was followed: 

1. Initializing MLP and assign random values [-1, 1] to the weights.  

2. Calculating the weighted sum of the inputs at the neurons of hidden layer using 

sigmoid activation function in backpropagation learning algorithm. 

3. Running the calculated value through different activation functions.  

4. Following the same steps for the output layer using the outputs of the hidden layer as 

inputs for the output layer. 

5. Calculating deltas values for the output and hidden layer. 

6. Updating the weights using the delta values.  

7. The training parameter (η) = 0.5.  
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Fig. 8. MLP model for XOR Problem. 

In this section five FPGA-based FFNNs will be coded using VHDL and implemented 

using Digilent Basys 2 Spartan-3E FPGA platform from Xilinx. The Basys 2 board is a 

circuit design and implementation platform that can be used to build real digital circuits. 

Basys2 is constructed around a 100,000-gate Xilinx Spartan-3E FPGA and an Atmel 

"AT90USB2" microcontroller. Basys 2 board is shown in Fig. 9. 

The implemented activation functions are hard limit, symmetrical hard limit, saturating 

linear, symmetrical saturating linear and positive linear activation functions.  

Once the design is coded, the top module is synthesized and verified for its timing and 

functionality using Xilinx ISE (Integrated Synthesis Environment) Design Suite (ver.14.7) 

software tool. Fig. 10 displays the generated RTL schematic of the coded NN model for 

XOR problem.  Once the process of timing and functionality verifications are completed 

and the bit-stream file is generated then this file will be downloaded to FPGA to 

implement the software design in hardware.      

 

 

 

 

 

Fig. 9. The Basys 2 board. 

Our implementations follow the chip-in-the-loop learning mechanism which entails 

both the hardware network for carrying out the computations and Back Propagation (BP) 

learning algorithm for updating the NN weights. Sigmoid activation function was utilized 

by backpropagation learning algorithm to get weights and biases values which are as 

follow b1= 0010000, w10 = 1101000, w11= 0010000, w12= 0010000, b2 = 0010000, w20 = 

1111000, w21= 0010000, w22 = 0010000, b3 = 0010000, w30 = 1111000, w31 = 1100000, 

w32 = 0010000. These values were used through the examination of the introduced five 

nonlinear activation functions. 

For each implemented ANN, set of (64) input pairs [in1, in2] combinations were used 

for testing, where each of in1 and in2 contains 3-bits. The main of each implemented ANN 

is to predict the correct response for each input combination.  
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Table 2 exhibits the implementation utilization for each implemented ANN, where each 

one uses one of the five examined activation functions. Table 3 displays the performance 

comparison between examined activations functions in terms of correct predictions 

percentages for XOR problem. 

 

 

 

 

 

 

Fig. 10. The RTL schematic of the MLP model for XOR problem at using any of the 

implemented activation functions. (RTL: register transfer logic) 

Table 2.  
Implementation Utilization Summary of the Examined Activation Functions for XOR Problem. 

Logic Utilization 

Utilization 

Saturating 

Linear 

Hard 

Limit 

Symmetrical 

Saturating 

Linear 

Symmetrical 

Hard Limit 

Positive 

Linear 

Number of Slice Flip Flops 7% 6% 7% 6% 8% 

Number of occupied Slices  15% 14% 16% 14% 17% 

Number of Slices containing 

only related logic 
100% 100% 100% 100% 100% 

Total Number of 4 input LUTs 12% 11% 13% 11% 14% 

Number of BUFGMUXs 4% 4% 4% 4% 4% 

              Table 3.  
               Performance comparison between examined activations functions in terms of      

              correct and incorrect predictions percentages for XOR problem.  

Activation Function Correct Prediction Percentage 

Saturating Linear 87.5% 

Hard Limit 84.357% 

Symmetrical Saturating Linear 62.5% 

Symmetrical Hard Limit 60.937% 

Positive Linear 56.25% 

It is clear from the tabulated results that the saturating linear activation function 

outperforms all examined activation functions by 87.5% correct prediction percentage, while 

its implementation occupies 15% of the available slices on the used FPGA platform. Also, it 

is notable the superiority of the hard limit activation function which provides 84.357% of 

predictions are correct and occupies 14% of the available slices on the used FPGA platform. 

The rest of the examined activation functions provide poor performance in comparison with 

the aforementioned peers. Also, it is clear from Table 2 that all implemented FPGA-based 

FFNNs have reasonable implementation areas in range from 14% to 17%.  
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Neural Networks can be used efficiently in simulating the behavior of the digital 

circuits, and hence the various related applications. The behaviors of digital circuits are 

required to be implemented in hardware form as solutions to specific problems. In order to 

study the workability, and reliability of FPGA-based ANNs, another case will be 

investigated, which is Full-Adder circuit. 

A logic circuit for a full-adder is shown in Fig.11, and the truth table in Table 4 shows 

the basic operation of a full-adder. The implemented FFNN architecture for solving full-

adder problem consists of 3 layers (input, hidden, and output layers), and 3 hidden neurons 

as shown in Fig.12. The generated RTL schematic of the coded NN model for full-adder 

problem is shown in Fig.13. The weights and biases values for full-adder problem can be 

summarized as follow:  b1= 0010000,w10 = 0000101, w11= 0110010, w12= 1101010, 

w13=0110001, b2= 0010000, w20 = 0000000, w21=1001000, w22= 0001100, w23= 1001000, 

b3= 0010000, w30= 1101100, w31= 0000000,  w32= 1101011, w33= 0000000, b4= 0010000, 

w40 = 1110010, w41 = 0010101, w42= 1101110, w43= 1100101, b5= 0010000, w50 = 

0000000, w51 = 1111101, w52= 0010011, w53 = 0000000. 

Table 5 introduces the performance comparison between examined activations 

functions in terms of correct predictions percentages for full-adder problem. The 

introduced results in Table 5 demonstrate the superiority of both saturating linear and hard 

limit activation functions over the rest of examined activation functions. 

Implementation utilization summary of all examined activation functions for full-adder 

Problem is given in Table 6. It is clear that all implemented FPGA-based FFNNs have 

good implementation areas in range from 49% to 52%.  

 

 

 

 

Fig. 11. Logic circuit for a full-adder 

                                    Table 4.  
                                    Full-Adder truth table. 

Inputs Output 

A B Cin Cout S 

0 0 0 0 0 

0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 1 
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Table 5.  
Performance comparison between examined activations functions in terms of correct 

and incorrect predictions percentages for full-adder problem.  

Activation Function 
Correct prediction 

percentage for Cout 

Correct prediction 

percentage for S 

Saturating Linear 83.5% 86.5% 

Hard Limit 80.5% 82.5% 

Symmetrical Saturating Linear 64% 64.5% 

Symmetrical Hard Limit 60.5% 62% 

Positive Linear 59.5% 59.5% 

Table 6.  
Implementation Utilization Summary of the Examined Activation Functions for Full-

Adder Problem. 

Logic Utilization 

Utilization 

Saturating 

Linear 

Hard 

Limit 

Symmetrical 

Saturating 

Linear 

Symmetrical 

Hard Limit 

Positive 

Linear 

Number of Slice Flip 

Flops 
23% 22% 23% 22% 24% 

Number of occupied Slices  50% 49% 51% 49% 52% 

Number of Slices containing 

only related logic 
100% 100% 100% 100% 100% 

Total Number of 4 input 

LUTs 
44% 43% 45% 42% 46% 

Number of BUFGMUXs 4% 4% 4% 4% 4% 

The most vital component of a neuron is the activation function. In the FPGA-based 

ANNs, it is not so easy to implement the most commonly used sigmoid activation 

functions, because it consists of an infinite exponential series and this is considered as a 

difficult challenge faced by designers [29]. So, the designers try to deduce approximations 

for sigmoid functions to be used with FPGA designs.  

There are many practical approaches to approximate sigmoid functions, such as Piece-wise 

linear approximation that describes a combination of lines in the form of y=ax+b which is used 

to approximate the sigmoid function; and lookup tables, in which uniform samples taken from 
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the centre of a sigmoid function can be stored in a table for look up. The regions outside the 

centre of the sigmoid function are still approximated in a piece-wise linear fashion [30]. 

Our main contribution is to introduce computationally simplified alternatives of sigmoid 

function, which can be directly implemented using FPGA, and at the same time offer an area-

efficient implementation. The examined activation functions are already known in software-

based ANNs, but are not commonly used; also they are not used in hardware-based ANNs. 

The obtained results are satisfactory and give a clear view of the parallel processing 

capabilities of FPGAs. These capabilities can be exploited to construct robust ANNs, 

which in turn can be used efficiently in real-time applications.   

7. Conclusion 

In this paper, the XOR and Full-Adder problems were used as benchmarks for 

comparing the performance of FPGA-based ANNs. The performances of the implemented 

NNs were investigated in terms of area efficient implementation, and correct prediction 

percentage using five different activation functions.  

Both saturating linear and hard limit activation functions aided to build two efficient ANNs which 

are achieved superior performance and support designs with reasonable implementation areas. 

Where the implemented FPGA-based ANNs contain only one hidden layer that contains only 

2 (for XOR problem), or 3(for full-adder problem) hidden neurons, exceptional consideration 

must be paid to an area-efficient implementation when implementing large FPGA-based ANNs. 

8. Future work 

Our Future research should further build and investigate another NNs types such as 

Recurrent NN, Convolutional NN, and Radial Basis Function NN, in order to get the most 

powerful NN type that adequate for practical implementation of FPGA-based ANNs. 
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 المادية للشبكات العصبية ذات التغذية  للمكوناتالتنفيذ الكفء 

 البوبات المنطقية القابلة للبرمجةستخدام مصفوفة االأمامية ب

 الملخص العربي

تنفيذ المكونات المادية للشبكات العصبية الاصطناعية يعتمد فى الاساس على تنفيذ دوال التفعيل بكفأه. 

اداه مناسبة لتنفيذ المكونات المادية للشبكات   (FPGA)وتعتبر مصفوفة البوابات ىالمنطقية القابلة للبرمجة 

طناعية. فى هذه الورقة البحثية نقدم تنفيذ المكونات المادية للشبكات العصبية الاصطناعية العصبية الاص

وذلك باستخدام خمس دوال تفعيل مختلفة. وذلك يمكن وصفه من خلال لغة وصف  ((FPGAمرتكزه على 

 Digilent) وتنفيذه على شريحة (VHDL)المكونات المادية للدوائر متناهية الصغر ذات السرعات العالية 

Basys 2 Spartan-3E FPGA from Xilinx) تم قياس اداء الشبكات العصبية المصممة من ناحية المساحة .

ه الشبكات العصبية وايضا نسبة الصواب والخطأ فى حل هذ  من التصميم FPGA))المستغلة على شريحة 

   .(Full-Adderالكامل )و المجمع  )  (XOR المصممة لمشكلتى

 

 

 

 


