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It is shown that the principle of the argument is the basis for the
Mikhailov’s stability criterion for linear continuous systems. Mikhailov’s
criterion states that a real Hurwitz polynomial 5(s) of degree n satisfies

the monotonic phase increase, that is to say the argument of 5(jw) goes

through n quadrants as w runs from zero to infinity. In this paper, the
generalized Mikhailov criterion where a real polynomial of degree n with
no restriction on the roots location is considered. A method based on the
argument is used to determine the number of roots in each half of the s-
plane as well as on the imaginary axis if any.

INTRODUCTION

The Mikhailov stability criterion [1, 2, 3] states that a real polynomial 6(s) of degree
n is Hurwitz stable if and only if the argument 8(w) of &(jw) changes monotonically

increasing from 0 to .
Consider a real polynomial of degree n

S(s)=agps" + alsn_1 + +a,s+a, (1)

o(s) =a0H(s —-5;)

i=1

n
S(iwy=ag [ [Gw—s:)
i=1
The roots of this polynomial can be real and complex conjugate as shown in
Fig.(1).
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Fig. (1) Root Location
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For a Hurwitz polynomial with all its roots s; (i=1 n) real negative
(s; =a;) or some complex conjugate roots having negative real values, i.e.
S;,Siy1 =a; T jb; , a; <0, the argument of o(jw) is

_ SN w ) e, we b
O(w)=Arglo(jw)]= Z(tan - 'j+ Z[tan a

i=1 i) o+

j =>6m @
i=1

Let Aj O(w) denotes the net change in the argument @(w) as w increases
from zero to infinity. For a Hurwitz polynomial this monotonic change is nz/2 i.e.

A% O(w) = % 3)

The plot of S(jw) known as the (Mikhailov vector) with w increases from

zero to infinity turns counterclockwise for positive argument and goes through n
quadrants in turn as shown in Fig.(2).
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Fig. (2) Mikhailov plot

THE GENERALIZED MIKHAILOV CRITERION:

Assume that the polynomial S(s) of degree n has [ roots in the open left half plane
(LHP), r roots in the open right half plane (RHP), y pairs of roots on the imaginary axis

and k roots at the origin. In [1], it was shown that Aj 0(w)=(n—2r)% for a

polynomial of degree n which has r roots in RHP and no roots on the imaginary axis.
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Taking into consideration that when w changes from zero to infinity the vector
(jw—s7) in Fig.(1-b) will rotate counterclockwise an angle &) =x/2, while the

vector (jw—s,) will rotate clockwise an angle 6, =—7/2.

In [4], it was shown that the Mikhailov plot gives information about the roots
distribution of &(s), when it is not Hurwitz, as follows:

The even-odd decomposition

o(s)=0, (sz) + 59, (s2)
Then
S(jw) =8, (—w?) + jws, (—w?)
=R(w)+ jI(w) (4)
with R(w), [(w) are real polynomials in w.
Let the non-negative real zeros of I(w) be

O=wp<w <wy < <wy

with respective multiplicities k;, i=0,1, ,¢ and let w,,; =co. Then in [4], it was

given that:
A. degree [5(s)] is even, the polynomial signature o =[/—r can be calculated as
follows:

o=l-r= Sign[l (ko) (WO)](Sign[R(kO_D (WO)]— Sign[R(wl )]) 5

1
+> Sign[l(k’) (w; )](Sign[R(wl- )]- Sign[R(w;,p)))
i=1

B. degree [5(s)] is odd, then

o=l-r= Sign[l(ko) (wo )](Sign [R(ko_l) (WO)]— Sign[R(wl )]) (6)
-1

+> Sign[l”‘f’ (w; )](Sign[R(wi )] - Sign[R(wip)])+ Sign [1 ®) (w, >]* Sign[R(w;)]
i=1

k

where 1 (w,)= d—];[I(W)]w:wU , and
dw"i
k.
. d"
R" (W) = T [R(W)] w=w,
dw"i

In this paper we will use the change in argument #(w) of Eq.(2) to determine

the number of roots in the LHP, RHP and on the imaginary axis. Consider the
following cases:



198 Awad I. Saleh; Mohamed M. M. Hasan and Noha M. M. Darwish

1. No imaginary axis roots (with [/ roots in the LHP and r roots in the RHP)

(n=Il+r)
© T, T
then Ag O(w)y=—1—-—
00w =l
V4 ni
=—n-2r)+— 7
2( ) 5 (7)

. . . nrw
The argument is monotonic but Ajj O(w) is less than BN

2. Roots allowed at the origin, i.e. 8(07)=60(0") or 6’0, ;t<90+ . For a single

root at the origin, A(:;_ O(w) = Arg[5(j0H)]— Arg[5(j07)]= % —(- %) =7,
and if this root is of multiplicity k then,
0" ﬂ
AN Ow)=2k—=k 8
o (w) 5 =k 8)

The 0~ is used in the case of roots allowed at the origin to take into
consideration the discontinuity in the argument &(w) at the origin.
3. Roots allowed on the imaginary axis except at the origin
i =JWi»  Sip1 =—JW;
+

Ow;, )#0(w; )ie. & _#6 , ,and A_O(w)=x
Wi Wi w:

L

If this pair of imaginary root is of multiplicity y then,

N
A" O(w) =y ©)
Wi
In general, the order of the characteristic equation n will be equal to sum of the
number of all the previous different kinds of roots as follows:

n=l+k+2y+r (10)

o0 -7 _
AO_H(w)—z(n+k 2r) (11)

o0 k-
or A%, 0(w)—2(n k—2r) (12)

If there are no roots at the origin, the change can be written from 0 as (0~ =0").
In the following sections, we will illustrate the suggested method by some
examples with no restrictions on the roots location.

EXAMPLE (1)
Given, 8(s)=(s> + s> +25+2) =(s> +2)(s +1)
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The Mikhailov vector o(jw) is

S =2-w?)+ jw(2—w?)=R(w)+ jI(w)
The Mikhailov plot is shown in Fig.(3), where
Rw)=(@2-w?),

Iw)=w(2—-w?), and

O(w) = tan”! {LW)}
R(w)

Rw)=0 at w=+2
Iw)=0 at w=0, £ 2
Since I(w)=R(w)=0 at w= V2 (positive real root), this indicates that

1- The characteristic equation have roots at * j\/z

2- The argument will have a discontinuity of 180 atw = V2

From the phase plot in Fig. (4), we found that,
AGOW)=37/2=270

© 9=3"% " (n_2/)="(3_
Lo AT =37 2(n 2r) 2(3 2r)

. r=0 (no roots in the right half of the s-plane).

2. (90+ = 190, S k=0

3. 0 . #60 _ where wizx/i
Wi Wi
A" O(w)
Wi

y=| ——no =2 (onepairofrootsatij\/i)
7 /s

We can justify this information directly without drawing the phase plot as follows:

w(2—w?)

O(w) = tan_l{
2-w?)

} and H(Wi)ztan_] (\/5)

at w; =\/5_, H(Wi_):tan_l(wi_) and

2

2 +
at w;" =27, O(w, ) =tan"! Wi 2= (w7 —tan' Vi (—¢)
Q- (&)
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where ¢ = (wiJr)2 -2,

i.e. H(Wﬁ) =tan" ! (wﬁ) but it is in the third quadrant , i.e. H(wﬁ) =0(w; )+7m
(This is clear from Fig. (4)). But n=[+k+2y+r,then 3=[+0+2+0 .. [=1
Then the signature o (o) is () =1-r=1-0=1.

However due to the discontinuity of 180° at w =+/2 , i.e. due to the roots at + j\/E , the

system is on the margin of the stability.
Using the formula of Eq.(6), we can get the same result as follows:

[-r= Sign[l ® (0)](Sign[R(0)] — Sign[RW/2))+ Sign[l D2 )]- Sign|R(V2)|
=1(1-0) + (~1)x0=1

| {imaginany part)

Iy

T T T T ! ! T T T
I I I I i I I I I
2 1.5 -1 1.5 ] 0.5 1 1.5 2 2.5 3

R (real part)

Fig. (3) The Mikhailov plot
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S0 T . T T . T T . T

The net angle change around | __________ ________ ]
w = 4/2 rad/sec is 180 :

FPhase
=
!
—

100 e

w (radfsen)

Fig. (4) The phase plot

EXAMPLE (2)
Given, 5(s)=(s’ +s° +6s5° +6s* +125> +125% +85+8) =(s2 +2)° (s +1)
The Mikhailov vector &(jw) is

Sw)=8—12w? +6w* —w® + jw@—12w? + 6w* —w®) =R(w) + jI(w)
The Mikhailov plot is shown in Fig.(5), where

Rw)=8—-12w? + 6w* —n® |

Iw)y=w@—12w? +6w* —w®), and

I(w)
o]
IW=RW) =0 at w==%+2, 22, £2

Since I(w)=R(w) =0 at six common zeros, these roots * j\/E are imaginary roots
of multiplicity three.

From the phase plot in Fig. (6) and let w; = V2, we found that ,

O(w) = tanl[
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O(w) at w=w; =54737 ,andat w= Wi+ the Mikhailov vector will rotate

counterclockwise an angle of 3x180 =540 due to the roots + V2 with multiplicity
three.

AG O(w) = 7% =%(n - 2r)=%(7 —2r) - r=0 (noroots in the RHP).
We can justify these information directly without drawing the phase plot as follows:
2.3
_ 2- _
O(w)=tan ! % and 6(w;)=tan 1(\/5)
(2-w7)

Sowt(-e)’
(-&)°

ie. O(w;T)=tan '(w;") butitis in the third quadrant , i.e. O(w;")=6(w; ) +37

(This is clear from Fig. (6)).

This is also clear since I(w)=R(w)=0 at the common zero * V2 with multiplicity

three.

AGOW)=T7/2=630

From the previous information, y=3,k=0,/=1 .. [-r=1-0=1

Using the formula of Eq.(6), we can get the same result as follows:

at w; =27, 9(wf)=tan_1(wf) and at w;”" =\/§+, O(w; ") =tan

I-r= Sign[1<1) (O)](Sign[R(O)] — Sign[RW/2)))+ Sign[l(z) 2 )]- sign|R(V2 |

=11-0)+(-)x0=1
4 T T T T T T T
) Poonmeenee- R RRRTEES LR g T R AR .
] e poeromenoses oo i
At L S SR -
= A -
1]
(=
&
.E T 4 e Uy F -
o
[IN]
£
=] T LT TTEFEITRRPF PEFRETT R SRR SRR -
T S S At S .
L R .
1 Uy U SO e o
16 I | | i | I I
8 g 4 ) i) 2 4 g 8

R (real part)

Fig. (5) The Mikhailov plot
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700 :

00 oo ]
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Fig. (6) The phase plot
Notes:

1- Comparing the Mikhailov vectors o(jw) of both examples (1) and (2) in

Fig.(3) and Fig.(5), although the two systems are of different orders, the two
Mikhailov plots are similar. It is the argument rather than the Mikhailov vector
that illustrates the stability as well as the roots location.

2- It is clear that, if some of the roots of the characteristic equation of order n are
located in the LHP, and others on the imaginary axis (no roots in the RHP)
then,

nmw
AG O(w) =—
2
However, the change in argument #(w) in this case is non-monotonic and we
can conclude the following:
+
i. A discontinuity at the origin, A(())_ O(w)=knm indicates that

there is a root at the origin with multiplicity k. The system is
unstable for any value of k.

+
ii. A discontinuity at w;, A" O(w)= yx indicates that there is
i

a pair of imaginary roots at w; with multiplicity y. If y = 1,



204 Awad I. Saleh; Mohamed M. M. Hasan and Noha M. M. Darwish

the system is marginally stable and if y > 1, the system is
unstable.

EXAMPLE (3)

Given, 5(s)=s(s* =25 + 652 -85 +8) =52 (s> +4) (s> =25 +2)

The Mikhailov vector o(jw) is

Sw) = w2 (—w* +6w? —=8) + jw> (8 —2w?) = R(w) + jI(w)
The Mikhailov plot is shown in Fig.(7), where
Rw)=w?(—w* +6w? —8) ,

Iw)=w> (8 -2w?), and

O(w) = tan”! [M}
R(w)

Rw)=0 at w=0,0, +2, +2
Iw)=0 at w=0,0,0, 2

Since I(w)=R(w)=0 at w=0,0, 2 (nonnegative real roots), this indicates that

1- The characteristic equation has multiple roots (two at the origin), and two pure
imaginary roots at £ j2

2- The argument will have a discontinuity of 27/2 at w =0, and a discontinuity
of 7 atw=2

From the phase plot in Fig. (8), and let w; =2, we found that,

1. 60 )=-x, 00 )=xr, and O(x)=rx
then Aogflg(w)=7r—(—ﬂ')=2ﬂ' and A°g+¢9(w)=7r—7r=0 )
0+
AO_H(W) o

2. k=|—|=—=2
b2 T

3. AT 9(w)—2(n+k 2r) 2(8 2r)=2n

. r=2 (Two roots in the RHP).
The system is unstable.

or if we use the equation AO(; O(w) = % (n—k—2r)= % (4-2r)=0,

then r =2, the same as before.



THE MIKHAILOV STABILITY CRITERION REVISITED..... 205

+

A" O(w)

4, 0 ,#0 _, y= AL P (one pair of roots at * j2)
Wi Wi V4 V4

Since n=[l+k+2y+r
then 6=[+2+2+2 .. [=0

and the signature o (9) is
c0)=l-r=0-2=-2

Using the formula of Eq.(5), we can get the same results as follows:

l—r= Sign[l(3) (0)](Sign[R(2) (0)]— Sign[R(2)])+ Sign[l(l) (2)](Sign[R(2)] — sign[R(=0)])
=1(=1-0)+ (=0 - (-1))=-2

| {imaginary part)

B (real part)

Fig. (7) The Mikhailov plot
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26l T T T T ) T T T T

FPhase

The net angle change around  |..___.. S i
w =2 rad/sec is 180

Fig. (8) The change in phase plot

CONCLUSION

In this paper the generalized Mikhailov Criterion is revisited, where a real polynomial
of degree n with no restriction on root location is considered. It is the change in
argument &(w) that differentiate between stable, marginally and unstable systems. As

stated in [1], [3], AOS O(w) =% is a required condition for the system to be stable

provided that the increase in @(w) is monotonic. For systems with roots on the
imaginary axis including the origin and other roots in the LHP, the argument &(w) has
a discontinuity at the origin and the system is unstable. If the argument has
discontinuity at other frequencies, then the system can be marginally stable or unstable
depending on the multiplicity of the imaginary roots. A method is given to determine
the number of roots on the imaginary axis depending on this discontinuity besides the
number of other roots in the LHP and the RHP. The number of roots on the imaginary
axis equals the number of the common zeros of the real polynomials R(w) and I(w)
after the even-odd decomposition of o(w).

The proposed method is a simple one and determines the number of roots in
each half of the s-plane as well as on the imaginary axis if any.
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The discussions made above concerning the common zero between R(w) and
I(w) will be used in another paper to determine the range of stabilizing values of the
parameters of the different controllers.
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