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A proposal for closing the Reynolds-averaged energy equation is
presented at the two—equation level of turbulence modeling. The eddy
diffusivity for heat is proposed as a function of the local energy of

turbulence, k, and the local temperature time scale, T., instead of using

t’
mixed time scale, T, . The proposed two-equation heat transfer model

solves two differential equations, one for the temperature variance, kt,

and the other for the temperature time scale, T,. The near—wall limiting

.-
behavior of turbulent quantities associated with heat transfer has been
captured with the proposed model. Therefore, an additional term is
included in the temperature variance equation to improve the prediction

of near—wall behavior. Moreover, an exact and noval equation for the
temperature time scale, T,, is introduced in this study. The proposed

kr — T, heat transfer model does not suffer from numerical stiffness
problems since natural boundary conditions for the variables kt and T,

are used ( kt =7,=0 at y=0). The proposed model is assessed by
application to fully—developed turbulent channel flows under different
wall thermal conditions with different values of Reynolds numbers. The
results for all cases examined showed good agreement with those of the
direct numerical simulation data.

KEYWORDS: Turbulent Flow, k—s Model, k—kL Model, kz —&,

Model, Fully—Developed Turbulent Channel Flow, Wall Thermal

Conditions.
NOMENCLATURE
A;, B; : temperature field model constants Cp, Cp, Cr: velocity field model constants
Cp; : temperature field model constant Cp, : temperature field model constant
Cp, : temperature field model constant Cp, : temperature field model constant
Cyw : velocity field model function G, : temperature field model constant
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¢, :specific heat at constant pressure fy : velocity field model function
fuke :temperature field model function fp; : temperature field model function
fp, : temperature field model function fp : temperature field model function
fp, : temperature field model function f,, : velocity field model function
f,, : temperature field model function h : channel half—-width
k : turbulence kinetic energy kt : temperature variance, [ 2 / 2
L : turbulence length scale P, p : mean and fluctuating pressures
Pr : molecular Prandtl number Pr, : turbulent Prandtl number
qw : wall heat flux T : mean temperature
t : temperature fluctuation or time f, : friction temperature, ¢, / pcyu,
U : mean velocity in x direction U . - mean bulk velocity
U - Kolmogorov velocity scale u : fluctuating velocity in x direction
u. : friction velocity, /7, / p V : mean velocity in y direction
v : fluctuating velocity in y direction X : stream—wise coordinate

%
y : distance from the wall Yy : dimensionless distance from wall.

Greek Symbols

o, o, : molecular and eddy diffusivities for heat
¢ : dissipation rate of k

g : dissipation rate of k;

0 : momentum thickness of boundary layer

v, v, : molecular and eddy viscosities

p : density

Ok, Ok : velocity field model constants

Oh , Oq1, O : temperature field model constants

T : mixed time scale, +/ 7,7,

T, , T time scales of velocity and temperature fields, k / g,kt / &, , respectively
T, . wall shear stress.

Dimensionless Parameters

Re; : channel flow Reynolds number, uTh / 1%

Re : Reynolds number, 2U mh / 1%

R, : turbulence Reynolds number, \/E Llv

R, : turbulence Reynolds number, k 7, / 14

Reg : momentum thickness Reynolds number for boundary layer, U 69 / 1%

Subscripts
e : boundary layer edge
w : wall value
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Superscripts

+ . . . . .
( ) : normalization by wall variables, i.e., u, for mean velocity, ur2 forkor uv, v/ u,
4 .. . 2 7 L2
for L or y, u,’/v for dissipation rate of k, v/ u,” for t, or 1, t, for T,t ; for kr ,

and uTZ tTZ / V for dissipation rate of kt.

i ) : time mean value

1. INTRODUCTION

The turbulence model for heat transfer is a set of differential equations which,
when solved with the mean-flow and turbulence Reynolds stresses equations, allow
calculations of relevant correlations and parameters that simulate the behaviour of
thermal turbulent flows. Like the classification of turbulence models for the Reynolds
stresses, the phenomenological turbulent heat transfer models are clssified into zero-
equation, two-equation, and heat-flux equation models.

The zero-equation heat transfer model is a typical and most conventional
method for analyzing the turbulent heat transfer, in which the eddy diffusivity for heat

Q, is prescribed via the known eddy viscosity V,together with the most probable
turbulent Prandtl number Pr,, so that ¢, = v, / Pr, [1-3]. Thus, in this formulation the

analogy is assumed tacitly between turbulent heat and momentum transfer and the
turbulent Prandtl number Pr, needs to be prescribed. @~ However, shear flow
measurements [4,5] and direct simulation data [6,7] showed that an analogy between
heat and momentum transfer as represented by a constant turbulent Prandtl number
could not adequately reflect the physical phenomenon of heat transport, even for
simple wall shear flows. Furthermore, these data [4-7] showed that the turbulent
Prandtl number Pr,, instead of being constant, increased towards a wall. Its value at the
wall was determined to be about 1.1 and exceeded the 0.7-0.9 value normally assumed
for wall shear flow calculations. In other words, there are so many ambiguous points
in Pr, itself, and none of the empirical formulae for Pr, can work universally [8].

The heat-flux equation model ought to be more universal, at least in principle.
In this model, however, correct modelling of the scalar-pressure gradient correlation
term and the dissipation term is generally critical in obtaining correct heat flux values
[9,10]. Efforts are directed toward developing new models, especially of the scalar-
pressure gradient correlation term to improve the overall accuracy of existing models.
Although the developed models demonstrated improvements in thin shear flows, they
sometimes gave poor predictions compared to those obtained by the previous models in
general cases [11,12]. Thus, the heat-flux equation model needs further study and
refinements.

Two-equation kt — &, heat transfer models have been improved [1, 2, 13-18]

since Nagano and Kim [3] proposed the first model for wall turbulent shear flows. A
common feature of these models, however, is that damping functions to take account of
the wall blocking on temperature fluctuations are invoked in their formulations.
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However, many important technological applications require the integration of heat
transfer models directly to a solid boundary, particularly in problems where wall
transport properties are needed. It was established that the two-equation heat transfer
model is a powerful tool for predicting the heat transfer in flows with almost complete

dissimilarity between velocity and thermal fields [13-18]. Two-equation kz — &, heat
transfer model has major problem associated with it. It arises from the lack of natural
boundary conditions for the temperature variance dissipation rate &,, which has
caused modelers to use a boundary condition results numerical stiffness in calculations
(the boundary condition that ties &, to higher—order derivatives of the temperature

variance kt [1, 2, 13-17]). It should be mentioned here that, such problems of

boundary conditions are also associated with the near—wall k—¢ model for velocity
field [19, 20]. Moreover, another defect in all two-equation heat transfer models
published in the literature is the characteristic time scale used in evaluating the eddy

diffusivity for heat «,. All these models used the mixed time scale 7, , which is

almost equal to the geometric mean of 7 ,and 7,in simple shear layers

(Z' m =TT, ) Since the interactions between momentum and heat transport are
already included in the characteristic velocity scale, an appropriate time scale would be

only given by the scalar time scale 7,. Therefore, models along alternative lines

‘-
continue to be proposed.

Problems associated with the published kt — &, models can be largely

remedied by solving a modeled transport equation for the scalar time scale 7,. The

‘-
reason for this choice is attributed not only to the natural boundary condition for 7,

(7, =0 at the wall) but also to the balance of terms at the wall in the modeled transport

equation for 7,. These features are primarily responsible for the development of a

new heat transfer model having more computationally robust performance.

In the present paper, the author attempts to construct a new reliable k, -7,

turbulence heat transfer model using direct numerical simulation (DNS) databases for
wall turbulence with heat transfer. In this model, a noval exact transport equation of

T, is derived based on the exact transport equations for k, and &,. Therefore, the
eddy diffusivity for heat, ¢,, can be determined from the solutions of transport

equations for kt and 7,. The near—wall behavior of heat transfer turbulence is

accurately incorporated in the present model. Meanwhile, the model should not suffer
from numerical instabilities and should be capable of predicting the turbulent heat
transfer over a wide range of Reynolds number. The present model is evaluated
through its application to fully—developed turbulent channel flow with heat transfer
at low Reynolds number under different wall thermal conditions. Comparisons are
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made with the predictions of other published kt — &, models to assess the present

model performance.

2. TWO-EQUATION MODEL FOR THE VELOCITY FIELD

Recently, Youssef [21] proposed a new k-kLL two-equation model of
turbulence for velocity field which reproduces the correct near-wall asymptotic
relations of turbulence. This k—kLL model has been assessed by application to fully-
developed turbulent channel flows at different Reynolds numbers and flat-plate
boundary layer flow. Therefore, for the calculation of velocity field in the present
study, k-kL. model of Youssef [21] will be used in which the following governing
equations may be rewritten as follows:

oU, _0 (1)
Ox;
DU, oP 0 ou, oU,| —
— L=t 1% L+ —uu; (2
Dt ox; Ox; ox; Ox ’
A L5
Dk_0o (v+iJ% —uiuj%—{CDk—+2va%} 3)
Dt 0x; o ) Ox; Ox L X,
DKL _ (H v, jakL ¢y L Wi |_[c, +C [k @
Dt Ox; O ) Ox; Ox;
with
S . oU,;
—uu; =V, %+—" —zkd.j Q)
ox;  Ox 3
and
v, =fuNk L (©)

where D/ Dt implies the substantial derivative. In Eq. (3), X, represents the distance

normal to the wall. The constants and functions in the used k—kLL model are
summarized in Table 1 [21].

Table 1. Constants and functions in the used k—kL model.

Ok CD OkL CP CT
1.2 0.1 1.2 0.77 0.055
f, exp [—(y*/12)"7]

f, [1—exp(—y*/26.5)]x[1—exp(—y*/45)]x{1+1.25 exp[— (R/0.05)"] / R’}
Cw 1.8[1+1.5exp (—y'/45)] (L/y)’
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3. TWO-EQUATION MODEL FOR THE THERMAL FIELD

A temperature field can be obtained by solving the energy equation. When
temperature is regarded as a passive scalar, the energy equation is expressed as follows

[3]:
DT _ 0 o oT —u_.t 7
Dt ox;| o /

However, Eq. (7) is not closed since it contains an unknown turbulent heat flux u jt .

The turbulent heat flux u jt is described using the concept of eddy diffusivity for heat

«, by the following simple gradient form [3]:

—uit=a, ®)

— oT

X

In a mannar similar to that used in defining turbulent eddy viscosity V,, the

eddy diffusivity for heat ¢, is expressed as a function of the state of velocity and

temperature fields. Dimensionally, &, is the product of a velocity scale and a length

. L. . . 1/2 . .
scale. A characteristic velocity scale for turbulent flow is k' ~. If the interactions
between momentum and heat transport are to be modeled properly, an approperiate

length scale would be given by multiplation of the velocity scale, k”z , and a time
scale. Generally, the time scale is considered one of three options, namely, the time
scale of thermal field, the time scale of velocity field, and the geometric mean of both.

Therefore, it is interpreted that @, o k T where T is the characteristic time scale.
The time scale of the thermal field 7, can be evaluated from the temperature variance
k , and its dissipation rate &, , while the time scale for the velocity field is determined
from k and its dissipation rate &. In the proposed model, the scalar time scale T,is

adopted in calculating the eddy diffusivity for heat. Hence, &, may be modeled as:
a,=C, fkr, )

where C ,1s the model constant, and f/l is the model function, which has some

properties in common with fﬂ in equation (6), as will be described later. In Eq. (9),

the time scale of the thermal field 7, is obtained from a new differential equation. The

exact transport equations for kt and &, are expressed symbolically as follows [16]:

Dk,
Dt

:Dkz+Tkt+Pkt_gz

(10)
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ll))g’:Da+Ta+P;+Pj+P;+P;—\Pa (11)
t

The different terms on right-hand sides in Egs. (10) and (11) are identified as:

Molecular diffusion of kt :

0’k
Dy =a-—t (12)
XX
Turbulent diffusion of k P
Ou k,
h,=——1 (13)
A
Mean gradient production of k P
— T
P ——u: L (14)
7 ox
J
Molecular diffusion of &,
2
D,=« 0, (15)
Ox ;0x ;
Turbulent diffusion of &, :
ou .,
T, = _G—Jt (16)
X
Mean gradient production of &, :
ou; ot oT
P =g L (17)
Ox; Ox; OX;
or ot oU,
Pl=2q———! (18)
Ox; Ox; Ox;
Gradient production of &;:
o 0°T
P}=2aqu,~~ (19)
0x;. OX ;0%
Turbulent production of &, :
ou; ot ot
Pl ="2a—t——"— (20)

Ox;. 0x; Ox;
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Destruction of &,

2 )
v =22 2! @1)
0x;.0x ;

where k; =Z2/2and 8; =a(8t/8xk)2.

From basic definition of 7, = kt / &, , one could derive the exact transport equation for

7, as follows:

D, _4 (D_ktj _ T_t2 (%j (22)

Dt k\ Dt) k \ Dt
Substitution from Egs. (10) and (11) in Eq. (22), we finally obtain
Dt, 1 T T
f=—t kt +_tTkt +—+ kt -1
Dtk k, .
2 72
= g—k—’[Ta+P;+P;+P;+P;—‘Pa] 23)

t t

4. MODELING OF 7, EQUATION

The turbulent diffusion term of k,, Tkl,is usually modeled by using the
gradient-type diffusion model as follows:
0 | a, Ok,

T, =— 24)
ox; | o), Ox;

therefore, the term TtTkt / kt in the righ-hand side of Eq. (23) is further approximated
to yields

T, %, 0 |a 0k |_ 0 |¢q 01

—T, (25)
3 kt

_k, Ox; | 0y, Ox; _axj o}, Ox;

It should be mentioned here that the molecular diffusion of kt need not to be modeled,

while, and the mean production term of kz in Eq. (14) may be rewritten after

substitution for the turbulent heat flux © jt , Eq. (8), as follows:
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_ N2
— oT oT
Py=—ut—=q| — (26)
Ox; Ox;
The molecular diffusion of &,in Eq. (15) is rewritten as:
e o* (k
D, =« L=« L (27)
Ox ;0x ; ox ;0x; \ 7,

Mathematical manipulation for Eq. (27) yields

D

a 0% 2adr, ok ok °r, 20k (07,
= -= — + (28)
7, 0x;0x; 1, Ox; Ox; T, OX;0X; T

3
. oy
The turbulent diffusion term of &,, Tg, in Eq. (16) will be modeled by the gradient

transport hypothesis assuming that the turbulent transport processes parallel the
molecular ones (i.e., each turbulent transport term is coupled with a molecular

diffusion term of the same general form). Therefore, ng i1s modeled in the form
a, Ok, Or, ok, Ot, O,

T,=-2 +2 (29)
7 t}c. Ox; Ox;  t)c,, Ox; OX,

where (o and O ., are constants. It should be mentioned here that the modeled form

of the turbulent diffusion term T&T in Eq. (29) is some what similar to the modeled

form of the turbulent diffusion term of € used for k—t turbulence model for velocity
field [19, 20].

Now turning to the production and destruction terms in Eqgs. (17-21). The
production term P; is negligibly small in comparison with P;,P; ,P; , and
lPa terms, therefore, it will be ignored in the proposed model. The other terms

P; , P; , P; ,and W, can be modeled in a way similar to the model of Nagano et al.
[2] and the model of Nagano and Kim [3] as follows:

ujt T k, — oU,
P‘; "'P; "'P; -, :_CPlfPIT_Jg_CPZfPZﬁuiuj o
t j t J
k k
—Cp1fp1 _; —Cpofpr—" (30)
t TMTI‘

Substituting Egs. (12), (25,26), and (28-30) into Eq. (23), without going into
mathematical details here, the final modeled equation of the temperature time scale 7,

is given as:
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Dz, © [ a, \or, 2( a, j@k, o,
=—||la+—+ |—L|+—|a+—L | —L—L
Dt 0x; o, )0x; | k o, ) Ox; Ox,
—\2
2 @, |0t 01, r,a, | T
ot | (1= Cpy fy )
T, o,, ) Ox; 8x k, 8xj
oU ’
T ; T
CpofpaVi | == | +Copifp1 +Cpafpr ——1 G
k 8xj T,

In Eq. @31, fp.fpyrsfp;» and fp, are the model functions and

CPl , sz , CDl , CD2 ,0,,0,1,and O, are the model constants. Determination of
these functions and constants will be discussed later. In order to construct a rigorous
two-equation heat transfer model based on the temperature variance kz and the

temperature time scale 7, (kt -7, model), it is essential to reproduce the correct
behavior for near-wall features. Therefore, the wall limiting behavior of the different

terms in kt and 7, equations will be explored in the next section.

5. NEAR-WALL LIMITING BEHAVIOR

Viscosity and molecular conduction become dominant in the close vicinity of a
stationary wall. Also, anisotropy increases due to the presence of the wall. In case of a
uniform wall temperature, a fluctuating temperature near the wall may be expressed
using the Taylor expansion as [3]:

t=ay+by* +cy’ +... (32a)
* =a’y* +2aby’ + Qac+b*) y* +.. (32b)
> =a’y +2aby +(2ac+b2)y +.. (32¢)

where a=a(x,z,t),b=b(x,z,t),and ¢ =c(x,z,t). Thus, expressions of
k ,and &,in the immediate neighborhood of the wall may be given by

2 2

k,=t_2/2:%y2+677y3+(a_c+%)y4+... (33a)
o o (at]
&=a —— |=a| —
Ox; Ox; oy

=a a’ +4a aby + a(6ac +4b*) y* +... (33b)

From Eq. (33) it is easily demonstrated that temperature time scale 7, is given by
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k, > ab

g == D3 (34)
& 20 qa?

For velocity field, with no-slip condition at the wall, the fluctuating velocities near the

wall are expanded by Taylor series around the wall as follows[19]:

u=by+cy +dy +... (35a)
v= oy +d,y +.. (35b)
W=by+c,y’ +dy +... (35¢)

where bi =bl-(x, Z,1), C; = cl.(x, Z,t),and di zdi(x, Z,t). The application of
the conitinuity equation eliminates bz- From Eq. (35), we can easily derive the

following expressions

E:blczy%r(c]cz+b1d2)y4+... (36a)
e TRt SR
=] 20 90 | (52 4 12 ) dulByey + By +.. G60)

Ox; Ox;

ko1 bc, +byc,
Tu:—:—yz—(ll_2 3_2)y3+
& 2v vib +b;

The transport equation of the temperature variance kt used in the proposed model is

(36d)

rewritten as follows:

Dk k
L= Dy T+ By = (37)

7

From Egs. (32-35), it is straightforward under uniform wall temperature to show that
near a wall,

vt=ac,y’ +(ad, +bc,)y* +... (38a)

2 _ o g2
D, =« ok, =aa’ +6aaby +12a ac+Z y2+... (38

Ox ;0x 2

727
T, - 0 &6[@ _ 4a”ac, y3+... (38¢)
ox;\ o, Ox; o,
2

B, =q, STT =ac,y’ + (ad2 +bc, )y4 +... (38d)
J
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ﬁ=occ7+4oza_by+oc(6a_c+4b_2)y2+... (38¢)

2

The most essential factor that determines the character of a temperature field is the

turbulent heat flux u jt. Accordingly, the quality of the modeling of the function

fﬂ in equation (9), which was introduced mainly to improve the near-wall behavior of

u jt , influences the overall quality of the proposed turbulence model. As seen from
Egs. (34), (36b), and (38a) together with Egs. (8) and (9), the model function f,1 has

to satisfy f/l o y_1 . This may be referred to as the condition of limiting behavior of

wall turbulence. Therefore, we adopt the following function for f/1 :

A

where y* = ugy/ V. The most important feature of the proposed k, — 7, heat

transfer model is the introduction of the Kolmogorov velocity scale,
%
u, = (ve)''* =(0.1v k' /L)l/4 , in determining y instead of using the friction

velocity U_, to account for the near-wall and low-Reynolds-number effects in both

attached and detached flows [15]. Near the wall, we have R, =(kz,/v)=0 (y4) ,

so that Eq. (39) satisfies the condition of the limiting behavior of wall turbulence.
Generally, the relative thickness of the conduction-dominating sublayer to that of the
viscous sublayer near the wall changes with the molecular Prandtl number Pr [3].

Thus, even at the same distance from the wall y, the value of f, must change

according to the corresponding thickness of the conductive sublayer if the Prandtl
number changes. Considering these requirements, the best values for the constants

A and B are chosen as 20/ VPrand 1//Pr, respectively, for the proposed heat
transfer model.

It is clearly seen from Egs. (38b) and (38e) that the molecular diffusion and
dissipation terms of kt , Dkz and kt / T, , respectively, balance each other at the wall
only. As a corollary, to improve the near-wall region behavior, it is necessary to add a
correction term FE « to equation (37). The term E « 18 proposed as follows:

0 ok k

Ekt:_a Sk aa “=2a fou— (40)
Y Y j

where fwkt is a damping function which is introduced so that the proposed form of

E « 18 relevant only to the wall vicinity. The damping function fwkt is found to be
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Fue =expl (R, /5)° | (4D)

The damping function f,,=1.0 at R, =0(at the wall) and f,,, —> O away from the

wall as it is obvious from Eq. (41). In the near-wall region, one can easily use Eq.
(33a) to find that E « 1 Eq. (40) as

o _ 2
E,, =—-2aaby—-6a ab+% Y+ (42)

Obviously, from Egs. (38b), (38e), and (42), summation of Dkz and kz /T , exactly
balances with Ekt in the vicinity of the wall up to the first order of y. From these

considerations, we finally obtain the governing equation of k, for the present kz -7,

as follows:
2
Dk, 0 ( a, j ok, oTr |k,
=—la+—L |—Li+a| — | — L
Dt 0Ox; oy, ) Ox; Ox T,
S P Pt P @)
8xj 8xj X;

The turbulent diffusion constant 07 is assigned the value of 1.0 as recommended by
Nagano and Kim [3]. The eddy diffusivity for &, is determined from Eq. (9) using the
damping function f/l from Eq. (39).

We now proceed to determine the model constants and the model functions
used in equation (31), 7, —equation. First, C , 1s chosen to be 0.11 as suggested by

Nagano and Kim [3], while, C p1 and C po are determined with reference to Abe et
al.’s [15] suggestion and have the values of 2.0 and 0.9, respectively. The constants
C pp and C po are to be determined with the aid of the relation for the ‘constant-stress
and constant-heat-flux layer’ [1-3,18]. When the velocity field is calculated using
k — £ model and the temperature field is predicted using kr — &, model, this relation

1s written as:

2
Cp—Cpy = m{cp2 —Cpy + (k7P (44)

i)

Thus, substituting the standard values of Cﬂ =0.09, time scale ratio R

(= T, / Z‘t)z 0.5, turbulent Prandtl number Pr, = 0.9, von Karman constant for the
velocity field x =0.4, and turbulent diffusion constant for & Oy= 1.0 as well as
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Cp, =2.0and Cp, =0.9 as already determined into equation (44), we obtain the
following relation:

Cp,=2.3-Ch, (45)
After examining the calculated results and according to Eq. (45), the optimum values
of C p and C poare 1.9 and 0.4, respectively. It should be mentioned here that Abe et

al. [15] used CPl =1.9and Cp, = 0.6in their heat transfer turbulence model.
Concerning the turbulent diffusion constants 0., and O ,,, we set both of them to the

same value of 0.6 with the aid of DNS data of Kasagi et al. [7]. By investigating
equation (30), the wall limiting behavior reveals that the functions f, and f},, are

both proportional to y2 . These functions can be proposed in the following form:

I :{l—exp(— W 2)}2 (46)
fon =1-expl-(R, /5 |=1- f,5, @7)

Also, near-wall analysis of other terms in equation (30) reveals that the generation
terms can be of order yand the proposed kt — 7, model does not suffer from any

instability, though it uses the model functions of f,, = fp, =1.0

In summary, our new kt — 7, model of turbulence is assumed to be governed

by Eq. (43), kr —equation, and Eq. (31), 7, —equation, along with the auxiliary

relation in Eq. (9). However, in order to calculate the turbulence quantities associated
with thermal field, these equations must be solved simultaneously together with the
energy equation, Eq. (7). The constants and functions in the proposed two-equation
heat transfer model are summarized in Table 2.

Table 2. Constants and functions in the proposed kt — 7, model

A?L B?L C}\ CDI CD2 CP] Cp2 O-h O-Tl GTZ
20/~/Pr 1/N/Pr o011 20 o9 | 2 04 10 06 06
f, = {1-exp(—y /A))}[1 + By/Rp ] for={1—exp[—y /2 1}’
fu = exp{ — (Rw/S)"’ } fop = 1 — i
fp] = 10 fp2 = 10

6. SOLUTION PROCEDURE

Reliable DNS databases for fully-developed two-dimensional channal flows
are available at two values of Re_ under different wall thermal conditions,

Re, =150(Kasagi et al. [7]), and Re, =180 (Kim and Moin [6]). Therfore, in the

present study, attention is focused upon these two test cases to judge the validity of the
proposed two-equation heat transfer model. The governing equations are of parabolic
nature and can be transformed into algebraic equivalents by using discretization
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process. A control volume finite difference procedure by Patankar [22] is used to
solve these algebraic equations by using a TDMA algorithm (TriDiagonal Matrix
Algorithm). The nonuniform grid technique is used in which the grid in the normal
direction was given by the following formula:

. 2

y; =h[(j-D1 -1)] (48)
where j is the grid index, h is the channel half—width, and J is the total number of grid
points in y direction. A number of 201 grid points was allocated in the computational
domain to assure that the solution is independent of the grid point numbers in a normal
direction.

It should be noted that for the tested channel flows, since the flow is fully
developed, it is not necessary to solve the discretised equations in the stream-wise
coordinate x and the calculations are carried out at the same location where the initial
data profiles are supplied. Concerning the velocity field, the discetised equations for
U, k, and kL are solved simultaneously in one loop in an iterative procedure. By the
end of each iteration, the output results are under—relaxed to be used as initial data for
the next iteration and judgement of convergence is performed. This procedure is
continued until satisfying a specified convergence criterion for U, k, and kL
simultaneously to get the final results for the velocity field. After that, the same

procedure is applied for the discetised equations of 7', kz’ and 7,to get the final

results for the thermal field.

The wall boundary conditions (at y = 0) are: U = k = kL. = 0 for the velocity
field. For the thermal field, on the other hand, the wall thermal boundary conditions are
either constant wall temperature or constant wall heat flux. The wall thermal boundary

conditions are kz =T, =0 and the values of T or q,,is prescribed using
experimental or DNS data at the wall [16]. At the center of channel,

6U/8y:6k/8y= 5kL/6y=a'f/ay:akt/8y:aTt/8y=O are specified

[18].
A criterion for convergence may be given by
Max | Z*'/Z' - 11< 107 (49)

where Z stands for U, k, kL, T, kt, and 7,. The index i denotes the number of

iterations. All calculations were performed using double precision arithmetic on an
IBM compatible (500 MHZ Pentium) PC computer.

7. RESULTS AND DISCUSSION

7.1. Velocity Field

For reliable evaluation of the turbulent heat transfer, it is crucial to use
turbulence models which can predict both the velocity and temperature fields with high
accuracy. In other words, for the accurate prediction of heat transfer in turbulent flows,
we need to use turbulence models which fulfil the following requirements [15]: (1) The
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correct near-wall limiting behavior is reproduced for both the velocity and the
temperature fields. (2) The temperature-field time scale is appropriately taken into
account. (3) The flow fields can be simulated with sufficient accuracy.

In an earlier paper [21], the author proposed a new rigorous two-equation k-kL.
model of turbulence for near-wall and low-Reynolds number flows. The proposed
model can reproduce correctly the near-wall limiting behavior. The proposed model
has been assessed by application to fully-developed turbulent channel flows at different
Reynolds numbers and flat-plate boundary layer flow. Sample of the calculated results
using k-kL model is shown below in Figs. 1-6.

It is clearly seen in Figs. 1 and 2 that the overall agreement between k-kL. model
predictions and DNS data of Kasagi et al. [7] is excellent. The budget of kinetic
energy for channel flow at Re,=180 is compared in Fig. 3 with DNS data of Kim et al.
[23] and shows good agreement. Figure 4 shows excellent agreement between the
predicted results of kinetic energy, k, using k-kI. model and the DNS data of Kim
[24]. The last assessment of k-kI. model mentioned here is that the case of calculation
of flat—plate boundary layer flow at Reyq=1410 as shown in Figs. 5 and 6. The
predicted results of kinetic energy and time scale of velocity field are good in accord
with DNS data of Spalart [25]. In view of this, it can be concluded that the k-kI. model
of Youssef [21] is internally consistent and asymptotically correct as a wall is
approached and, therefore, it was selected for the calculation of velocity field in the
present study.

20 ‘ ‘
N — k-kL Model [21]

* Kasagietal [7 ; g
15— e T R o s
of o — — T S — ]
sl ]
N ;

0.01 0.1 1 10 100 1000

+

y

Fig. 1. Comparison of mean velocity for channel flow at Re.=150.
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Fig. 2. Profile of time scale in channel flow at Re .=150.
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Fig. 3. Budget of kinetic energy for channel flow at Re,=180.
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Fig. 4. Profile of kinetic energy for channel flow at Re,=395.
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Fig. 5. Comparison of kinetic energy profile with DNS at Rey=1410.
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Fig. 6. Comparison of time scale profile with DNS at Re,=1410.

7.2. Thermal Field

Now focusing on the predicted results of the proposed kt — 7, model of

turbulence for thermal field. Calculations of the present model are evaluated agianst
direct simulation data with constant wall temperature of Kim and Moin [6] and with
isoflux boundary condition of Kasagi et al. [7]. The former study is carried out at
Re, =180(Re=6600) and a molecular Prandtl number Pr=0.71. On the other

hand, the study of Kasagi et al. [7] is carried out at Re_ =150(Re =4560) and the

same Pr. It should be mentioned here that the DNS data of Kasagi et al. [7] have
been obtained for fully-developed channel flow with isoflux wall thermal condition.
However, the isoflux condition conventionally means that the time-averaged wall heat-
flux does not change in the streamwise direction in a two-dimensional flow. This

condition is equivalent to af/ ox = afw/ 8x=8fm/6x=constant. For more

assessment of the present kt — 7, model, the present calculations of temperature field
are also compared with the predictions of another two models of temperature field of
type kz — &, . These two models have been proposed by Nagano et al. [2] and Abe et

al. [15]. Since the calculated velocity field properties by using k-kL. model of Youssef
[21] have been validated against different direct numerical simulation data, this model

is used in the present study not only with the present kt — T, model but also with the

other two kt — &, models.
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The results for the isoflux turbulent channel flow case at
Re, =150(Re =4560) and Pr=0.7lare presented in Figs. 7-12. Mean

temperature profiles are plotted in Fig. 7. In the viscous sublayer, all calculated
profiles agree well with the DNS data of Kasagi et al. [7], while away from the wall,
poorer performance among all model calculations is calculation with Nagano et al. [2]
model. Figure 8 shows the predicted temperature variance profile compared with DNS
data of Kasagi et al. [7] and with the other model calculations. It is obvious in Fig. 8
that the present prediction is in good agreement with DNS data; however, all other
model calculations exhibit a discrepency with the DNS data not only in the near-wall
region but also away from the wall. Examining the present model calculations, the

correct near-wall limiting behavior kt+ o y+2 is clearly emphasized as given by Eq.

(33a). Figure 9 shows an acceptable agreement between the calculated results by
using the present model and Nagano et al’s model, while under prediction for the
turbulent temperature time scale with Abe et al’s model is clearly shown. The
predicted results of wall-normal turbulent heat flux are compared with the DNS data in
Fig. 10 and show excellent agrement except the peak with Nagano et al.’s model yields

overprediction. The underprediction of temperature variance kz shown in Fig. 8 with

Nagano et al. and Abe et al. models yiels same trend for the dissipation rate &, as seen

in Fig. 11. Since the budget for temperature variance is reported in ref. [7], detailed
comparison is carried out for this case only and is shown in Fig. 12. What should be
noticed in Fig. 12 is that the production rate balances with the dissipation rate away
from the wall, while the turbulent diffusion plays an important role as the wall
approached. In the viscous sublayer, the molecular diffusion and the dissipation are
dominant and the general level of agreement with the DNS data of Kasagi et al. [7] is
found to be excellent.

As another test case, we assess the constructed two-equation kt — 7, model in
a turbulent channel flow with constant wall temperature case. The results provided by
DNS calculation of Kim and Moin [6] at Re_ =180(Re=6600) and a molecular

Prandtl number Pr=0.71 offers an opportunity to test the validity of the proposed
model. Comparisons of the predicted mean temperature and temperature variance with
DNS data of Kim and Moin [6] are shown in Figs. 13 and 14, respectively. Also,

included here in these comparisons are the calculations for the kz — &, models of

Nagano et al. [2] and Abe et al. [15]. Figure 13 shows the predicted mean temperature
profile compared with the DNS data of Kim and Moin [6] and the predictions of the
other kt — &, models. All calculated results are in perfect agreement with the DNS
data in the viscous sublayer, while show underprediction in the logarithmic layer of
channel. As already shown in Fig. 8, the present prediction of the temperature variance
shown in Fig. 14 is in excellent agreement with DNS data; however, all other model

calculations exhibit a discrepency with the DNS data not only in the near-wall region
but also away from the wall. Also, what can be seen from Fig. 14 is that, the present

. e . . + +2 .
model calculations satisfies the correct near-wall limiting behavior kz 'y " as given
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by Eq. (33a). Examining the calculated results in the present study, the proposed
model is more stable than the other models since it uses the natural boundary

conditions for the variables kt and 7 P
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Fig. 7. Mean temperature comparison for the isoflux wall thermal case.
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Fig. 8. Comparison of temperature variance for the isoflux wall thermal case.
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Fig. 9. Comparison of temperature time scale for the isoflux wall thermal case.
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Fig. 10. Comparison of normal heat flux for the isoflux wall thermal case.
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Fig. 12. Comparison of the budget of temperature variance for the

isoflux wall thermal case.
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Fig. 13. Mean temperature comparison for the constant wall temperature case.
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8. CONCLUSIONS

In this study, we have constructed a new rigorous two—equation heat transfer
model of turbulence of type kt —7,. In the present model, the turbulent heat flux in
the Reynolds-averaged energy equation is calculated from the eddy diffusivity for heat,
Q, , and the gradient time mean temperature. The eddy diffusivity for heat is proposed

as function of local energy of turbulence, k, and local temperature time scale, 7,,

instead of using mixed time scale, 7, , which is composed of time scales of the

m b
velocity and temperature fields. The proposed two-equation heat transfer model solves
two differential equations, one for the temperature variance, kt , and the other for the

temperature time scale, 7,. Since both kt and 7, has natural boundary condition

P
arising from the no—slip condition, the numerical stiffness problems associated with
kt — &, models are not found. The near—wall limiting behavior of turbulent quantities

associated with heat transfer has been captured with the proposed model. Therefore,
an additional term is included in the temperature variance equation to enhance the
prediction of near—wall behavior. Moreover, an exact and noval equation for the

temperature time scale, 7., is introduced. The present model is assessed by

t 9
application to calculate channel flows under different wall thermal conditions with
different Reynolds numbers. Comparisons between the present kt — 7, model, the

other published kt — &, models, and the available DNS database were made. In all
the flow cases examined, it is revealed that, strong capability of the present model in
predicting accurately the DNS database, while, the other kt — &, models included in

the comparisons failed to do so particularly in the near—wall region. Moreover, the
governing equations of the present model are simple, and free of numerical stiffness.
From these standpoints, the proposed model may be regarded as a two—equation heat
transfer model of turbulence.
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