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A proposal for closing the Reynolds-averaged energy equation is 

presented at the twoequation level of turbulence modeling.   The eddy 

diffusivity for heat is proposed as a function of the local energy of 

turbulence, k, and the local temperature time scale,  t , instead of using 

mixed time scale, m . The proposed two-equation heat transfer model 

solves two differential equations, one for the temperature variance, tk , 

and the other for the temperature time scale, t .  The nearwall limiting 

behavior of turbulent quantities associated with heat transfer has been 

captured with the proposed model.  Therefore, an additional term is 

included in the temperature variance equation to improve the prediction 

of nearwall behavior.  Moreover, an exact and noval equation for the 

temperature time scale, t , is introduced in this study. The proposed 

ttk   heat transfer model does not suffer from numerical stiffness 

problems since natural boundary conditions for the variables tk  and t  

are used ( tk = t =0 at y=0). The proposed model is assessed by 

application to fullydeveloped turbulent channel flows under different 

wall thermal conditions with different values of Reynolds numbers.  The 

results for all cases examined showed good agreement with those of the 

direct numerical simulation data.  

 

KEYWORDS: Turbulent Flow, k Model, kkL Model, ttk   

Model, FullyDeveloped Turbulent Channel Flow, Wall Thermal 

Conditions.  

 

NOMENCLATURE 
A, B : temperature field model constants    CD, CP, CT : velocity field model constants        

CD1  : temperature field model constant          CD2 : temperature field model constant              

CP1  : temperature field model constant           CP2 : temperature field model constant  

CW   : velocity field model function                  C : temperature field model constant 

 
1877 



M. S. Youssef 
________________________________________________________________________________________________________________________________ 

 

1878 

cp     : specific heat at constant pressure             fw : velocity field model function                    

fwkt   : temperature field model function           fD1 : temperature field model function             

fD2  : temperature field model function              fP1 : temperature field model function             

fP2  : temperature field model function               f  : velocity field model function                    

f    :  temperature field model function                h : channel halfwidth                                     

k : turbulence kinetic energy                           tk : temperature variance, 22
t                      

L : turbulence length scale                               P, p : mean and fluctuating pressures                

Pr : molecular Prandtl number                         Prt : turbulent Prandtl number                 

qw : wall heat flux                                             T : mean temperature                                      

t : temperature fluctuation or time                    rt : friction temperature, rpw ucq             

U : mean velocity in x direction                      mU : mean bulk velocity                                

U : Kolmogorov velocity scale                      u : fluctuating velocity in x direction               

u : friction velocity,  /w                        V : mean velocity in y direction                       

v : fluctuating velocity in y direction               x : streamwise coordinate                               

y : distance from the wall                              
*

y : dimensionless distance from wall. 
 

Greek  Symbols 
, t : molecular and eddy diffusivities for heat     

 : dissipation rate of k                                       

t : dissipation rate of kt 

 : momentum thickness of boundary layer 

, t : molecular and eddy viscosities 

 : density                                                          

k, kL : velocity field model constants  

h , 1, 2 : temperature field model constants 

m : mixed time scale, tu  

u , t: time scales of velocity and temperature fields, ttkk  , , respectively 

w : wall shear stress. 
 

Dimensionless  Parameters 

Re : channel flow Reynolds number,  hu  

Re : Reynolds number, hUm2  

Rt : turbulence Reynolds number, /Lk  

Rh : turbulence Reynolds number,  tk  

Re : momentum thickness Reynolds number for boundary layer, eU   
 

Subscripts 
e : boundary layer edge                                           

w : wall value 
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Superscripts 

   : normalization by wall variables, i.e., u for mean velocity, u
2
 for k or uv , / u     

            for L or y, u
4
/ for dissipation rate of k, / u

2
 for u or t , t for T , 

2
t for tk ,      

            and 
22

tu  for dissipation rate of tk . 

     : time mean value 

 
1. INTRODUCTION 
 

The turbulence model for heat transfer is a set of differential equations which, 

when solved with the mean-flow and turbulence Reynolds stresses equations, allow 

calculations of relevant correlations and parameters that simulate the behaviour of 

thermal turbulent flows.  Like the classification of turbulence models for the Reynolds 

stresses, the phenomenological turbulent heat transfer models are clssified into zero-

equation, two-equation, and heat-flux equation models. 
 

The zero-equation heat transfer model is a typical and most conventional 

method for analyzing the turbulent heat transfer, in which the eddy diffusivity for heat 

t is prescribed via the known eddy viscosity t together with the most probable 

turbulent Prandtl number Prt, so that 
ttt Pr  [1-3].  Thus, in this formulation the 

analogy is assumed tacitly between turbulent heat and momentum transfer and the 

turbulent Prandtl number Prt needs to be prescribed.  However, shear flow 

measurements [4,5] and direct simulation data [6,7] showed that an analogy between 

heat and momentum transfer as represented by a constant turbulent Prandtl number 

could not adequately reflect the physical phenomenon of heat transport, even for 

simple wall shear flows.  Furthermore, these data [4-7] showed that the turbulent 

Prandtl number Prt, instead of being constant, increased towards a wall.  Its value at the 

wall was determined to be about 1.1 and exceeded the 0.7-0.9 value normally assumed 

for wall shear flow calculations.  In other words, there are so many ambiguous points 

in Prt itself, and none of the empirical formulae for Prt can work universally [8].   
 

The heat-flux equation model ought to be more universal, at least in principle.  

In this model, however, correct modelling of the scalar-pressure gradient correlation 

term and the dissipation term is generally critical in obtaining correct heat flux values 

[9,10].  Efforts are directed toward developing new models, especially of the scalar-

pressure gradient correlation term to improve the overall accuracy of existing models.  

Although the developed models demonstrated improvements in thin shear flows, they 

sometimes gave poor predictions compared to those obtained by the previous models in 

general cases [11,12].  Thus, the heat-flux equation model needs further study and 

refinements.  
 

Two-equation ttk   heat transfer models have been improved [1, 2, 13-18] 

since Nagano and Kim [3] proposed the first model for wall turbulent shear flows. A 

common feature of these models, however, is that damping functions to take account of 

the wall blocking on temperature fluctuations are invoked in their formulations.   



M. S. Youssef 
________________________________________________________________________________________________________________________________ 

 

1880 

However, many important technological applications require the integration of heat 

transfer models directly to a solid boundary, particularly in problems where wall 

transport properties are needed. It was established that the two-equation heat transfer 

model is a powerful tool for predicting the heat transfer in flows with almost complete 

dissimilarity between velocity and thermal fields [13-18].  Two-equation ttk   heat 

transfer model has major problem associated with it.  It arises from the lack of natural 

boundary conditions for the temperature variance dissipation rate t , which has 

caused modelers to use a boundary condition results numerical stiffness in calculations 

(the boundary condition that ties t to higherorder derivatives of the temperature 

variance tk  [1, 2, 1317]). It should be mentioned here that, such problems of 

boundary conditions are also associated with the nearwall k model for velocity 

field [19, 20].  Moreover, another defect in all two-equation heat transfer models 

published in the literature is the characteristic time scale used in evaluating the eddy 

diffusivity for heat t .  All these models used the mixed time scale m  , which is 

almost equal to the geometric mean of u and t in simple shear layers 

 tum   .  Since the interactions between momentum and  heat transport are 

already included in the characteristic velocity scale, an appropriate time scale would be 

only given by the scalar time scale t .  Therefore, models along alternative lines 

continue to be proposed. 
 

Problems associated with the published ttk  models can be largely 

remedied by solving a modeled transport equation for the scalar time scale t .   The 

reason for this choice is attributed not only to the natural boundary condition for t  

( t  = 0 at the wall) but also to the balance of terms at the wall in the modeled transport 

equation for t .  These features are primarily responsible for the development of a 

new heat transfer model having more computationally robust performance.      
  

In the present paper, the author attempts to construct a new reliable ttk   

turbulence heat transfer model using direct numerical simulation (DNS) databases for 

wall turbulence with heat transfer.  In this model, a noval exact transport equation of 

t  is derived based on the exact transport equations for tk and t .  Therefore, the 

eddy diffusivity for heat, t , can be determined from the solutions of transport 

equations for tk  and t . The nearwall behavior of heat transfer turbulence is 

accurately incorporated in the present model.  Meanwhile, the model should not suffer 

from numerical instabilities and should be capable of predicting the turbulent heat 

transfer over a wide range of Reynolds number. The present  model  is  evaluated  

through  its  application  to  fullydeveloped  turbulent channel flow with heat transfer 

at low Reynolds number under different wall thermal conditions. Comparisons are 
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made with the predictions of other published ttk   models to assess the present 

model performance. 

 

2. TWO-EQUATION MODEL FOR THE VELOCITY FIELD 
 

Recently, Youssef [21] proposed a new k-kL two-equation model of 

turbulence for velocity field which reproduces the correct near-wall asymptotic 

relations of turbulence.  This kkL model has been assessed by application to fully-

developed turbulent channel flows at different Reynolds numbers and flat-plate 

boundary layer flow. Therefore, for the calculation of velocity field in the present 

study, k-kL model of Youssef [21] will be used in which the following governing 

equations may be rewritten as follows: 
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and 
 

                                      Lkft                                                 (6) 

where DtD  implies the substantial derivative. In Eq. (3), 2x  represents the distance 

normal to the wall. The constants and functions in the used kkL model are 

summarized in Table 1 [21]. 

 

Table 1.   Constants and functions in the used kkL model. 
 

k CD kL CP CT 

1.2 0.1 1.2 0.77 0.055 

fw exp [(y
+
/12)

0.5
] 

f [1exp(y
+
/26.5)][1exp(y

+
/45)]{1+1.25 exp[ (Rt/0.05)

2
] / Rt

0.5
} 

CW 1.8 [1 + 1.5 exp ( y
+ 

/ 45 )] (L / y)
5
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3.  TWO-EQUATION  MODEL  FOR  THE  THERMAL  FIELD 
 

A temperature field can be obtained by solving the energy equation. When 

temperature is regarded as a passive scalar, the energy equation is expressed as follows 

[3]: 

       


















 tu
x

T

xDt

TD
j

jj

                                        (7) 

However, Eq. (7) is not closed since it contains an unknown turbulent heat flux tu j . 

The turbulent heat flux tu j  is described using the concept of eddy diffusivity for heat 

t by the following simple gradient form [3]: 

    

j

tj
x

T
tu




                                                        (8) 

 

In a mannar similar to that used in defining turbulent eddy viscosity t , the 

eddy diffusivity for heat t is expressed as a function of the state of velocity and 

temperature fields.  Dimensionally, t is the product of a velocity scale and a length 

scale.  A characteristic velocity scale for turbulent flow is 
2/1

k .  If the interactions 

between momentum and heat transport are to be modeled properly, an approperiate 

length scale would be given by multiplation of the velocity scale, 
2/1

k , and a time 

scale.  Generally, the time scale is considered one of three options, namely, the time 

scale of thermal field, the time scale of velocity field, and the geometric mean of both. 

Therefore,  it is interpreted that    t    k where  is the characteristic time scale.  

The time scale of the thermal field t  can be evaluated from the temperature variance 

tk  and its dissipation rate t , while the time scale for the velocity field is determined 

from k and its dissipation rate  .  In the proposed model, the scalar time scale t is 

adopted in calculating the eddy diffusivity for heat.  Hence, t may be modeled as: 
 

                                    tt kfC                                                            (9) 
 

where C is the model constant, and f  is the model function, which has some 

properties in common with f  in equation (6), as will be described later.  In Eq. (9), 

the time scale of the thermal field t is obtained from a new differential equation.  The 

exact transport equations for tk and t are expressed symbolically as follows [16]: 

 

tktktkt
t PTD

Dt

Dk                                              (10) 
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ttttttt
t PPPPTD
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The different terms on right-hand sides in Eqs. (10) and (11) are identified as: 
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Destruction of t : 
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where 22'
tkt  and  2'

kt xt  . 
 

From basic definition of ttt k   , one could derive the exact transport equation for 

t as follows: 
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Substitution from Eqs. (10) and (11) in Eq. (22), we finally obtain  
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4.  MODELING OF t EQUATION 

 

 The turbulent diffusion term of tk , ktT , is usually modeled by using the 

gradient-type diffusion model as follows: 
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therefore, the term tktt kT / in the righ-hand side of Eq. (23) is further approximated 

to yields 
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It should be mentioned here that the molecular diffusion of tk need not to be modeled, 

while, and the mean production term of tk  in Eq. (14) may be rewritten after 

substitution for the turbulent heat flux tu j , Eq. (8), as follows: 
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The molecular diffusion of t in Eq. (15) is rewritten as: 
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Mathematical manipulation for Eq. (27) yields 
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The turbulent diffusion term of t , tT , in Eq. (16) will be modeled by the gradient 

transport hypothesis assuming that the turbulent transport processes parallel the 

molecular ones (i.e., each turbulent transport term is coupled with a molecular 

diffusion term of the same general form).  Therefore, tT is modeled in the form 
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where 1 and 2  are constants.  It should be mentioned here that the modeled form 

of the turbulent diffusion term  tT in Eq. (29) is some what similar to the modeled 

form of the turbulent diffusion term of  used for k turbulence model for velocity 

field [19, 20].  
 

Now turning to the production and destruction terms in Eqs. (17-21).  The 

production term 
3
tP  is negligibly small in comparison with 

421 ,, ttt PPP  , and 

t terms, therefore, it will be ignored in the proposed model. The other terms  

421 ,, ttt PPP  , and t  can be modeled in a way similar to the model of Nagano et al. 

[2] and the model of Nagano and Kim [3] as follows: 
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Substituting Eqs. (12), (25,26), and (28-30) into Eq. (23), without going into 

mathematical details here, the final modeled equation of the temperature time scale t  

is given as: 
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In Eq. (31), 1Pf , 2Pf , 1Df , and 2Df  are the model functions and 

,1PC ,,,,, 1212  hDDP CCC and 2  are the model constants. Determination of 

these functions and constants will be discussed later.  In order to construct a rigorous 

two-equation heat transfer model based on the temperature variance tk  and the 

temperature time scale t ( tk - t model), it is essential to reproduce the correct 

behavior for near-wall features.  Therefore, the wall limiting behavior of the different 

terms in tk and t equations will be explored in the next section. 

 

5.  NEAR-WALL  LIMITING  BEHAVIOR 
 

 Viscosity and molecular conduction become dominant in the close vicinity of a 

stationary wall. Also, anisotropy increases due to the presence of the wall.  In case of a 

uniform wall temperature, a fluctuating temperature near the wall may be expressed 

using the Taylor expansion as [3]: 
 

...32  cybyayt                                                 (32a) 

...)2(2 423222  ybacabyyat                              (32b) 

...)2(2 423222  ybacyabyat                              (32c) 
 

where ),,,( ),,,( tzxbbtzxaa  and ),,( tzxcc  . Thus, expressions of 

tk and t in the immediate neighborhood of the wall may be given by 
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From Eq. (33) it is easily demonstrated that temperature time scale t is given by 
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                                         (34) 

For velocity field, with no-slip condition at the wall, the fluctuating velocities near the 

wall are expanded by Taylor series around the wall as follows[19]: 
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33  ydycyb                                        (35c)                                 

 

where ),,,( ),,,( tzxcctzxbb iiii  and ),,( tzxdd ii  . The application of 

the conitinuity equation eliminates 2b .  From Eq. (35), we can easily derive the 

following expressions 
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The transport equation of the temperature variance tk used in the proposed model is 

rewritten as follows: 

t

t
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                                           (37) 

 

From Eqs. (32-35), it is straightforward under uniform wall temperature to show that 

near a wall, 
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  ...46 4 222  ybacyaba
k

t

t 


                      (38e) 

 

The most essential factor that determines the character of a temperature field is the 

turbulent heat flux tu j .  Accordingly, the quality of the modeling of the function 

f in equation (9), which was introduced mainly to improve the near-wall behavior of 

tu j , influences the overall quality of the proposed turbulence model.  As seen from 

Eqs. (34), (36b), and (38a) together with Eqs. (8) and (9), the model function f  has 

to satisfy f  1
y .  This may be referred to as the condition of limiting behavior of 

wall turbulence.  Therefore, we adopt the following function for f : 
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where  /*
yuy  .  The most important feature of the proposed ttk   heat 

transfer model is the introduction of the Kolmogorov velocity scale, 

4/1)( u
4/15.1 )/ 1.0( Lk , in determining 

*
y  instead of using the friction 

velocity u , to account for the near-wall and low-Reynolds-number effects in both 

attached and detached flows [15].  Near the wall, we have )( )/( 4
ykR th   , 

so that Eq. (39) satisfies the condition of the limiting behavior of wall turbulence.  

Generally, the relative thickness of the conduction-dominating sublayer to that of the 

viscous sublayer near the wall changes with the molecular Prandtl number Pr [3].  

Thus, even at the same distance from the wall y , the value of f  must change 

according to the corresponding thickness of the conductive sublayer if the Prandtl 

number changes.  Considering these requirements, the best values for the constants 

A and B are chosen as Pr/20 and Pr/1 , respectively, for the proposed heat 

transfer model.   
 

It is clearly seen from Eqs. (38b) and (38e) that the molecular diffusion and 

dissipation terms of tk , ktD  and ttk / , respectively, balance each other at the wall 

only. As a corollary, to improve the near-wall region behavior, it is necessary to add a 

correction term ktE  to equation (37). The term ktE  is proposed as follows: 
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where wktf  is a damping function which is introduced so that the proposed form of 

ktE  is relevant only to the wall vicinity.  The damping function wktf  is found to be 
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  5.0
5exp hwkt Rf                                                  (41) 

 

The damping function wktf =1.0 at 0hR (at the wall) and 0wktf  away from the 

wall as it is obvious from Eq. (41).  In the near-wall region, one can easily use Eq. 

(33a) to find that ktE  in Eq. (40) as 
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Obviously, from Eqs. (38b), (38e), and (42), summation of ktD  and ttk / exactly 

balances with ktE  in the vicinity of the wall up to the first order of y.  From these 

considerations,  we finally obtain the governing equation of tk for the present ttk   

as follows: 
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The turbulent diffusion constant h is assigned the value of 1.0 as recommended by  

Nagano and Kim [3].  The eddy diffusivity for t is determined from Eq. (9) using the 

damping function f from Eq. (39). 
 

 We now proceed to determine the model constants and the model functions 

used in equation (31), t equation.  First, C  is chosen to be 0.11 as suggested by 

Nagano and Kim [3], while, 1DC  and 2DC are determined with reference to Abe et 

al.’s [15] suggestion and have the values of 2.0 and 0.9, respectively.  The constants 

1PC and 2PC are to be determined with the aid of the relation for the ‘constant-stress 

and constant-heat-flux layer’ [1-3,18].  When the velocity field is calculated using 

k model and the temperature field is predicted using ttk  model, this relation 

is written as: 

 
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2
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2211
                     (44) 

 

Thus, substituting the standard values of 09.0C , time scale ratio R 

  ,5.0/  tu  turbulent Prandtl number 9.0Pr t
, von Karman constant for the 

velocity field 4.0 , and turbulent diffusion constant for 0.1 ,  t
 as well as 
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0.21 DC and 9.02 DC  as already determined into equation (44), we obtain the 

following relation: 

12 3.2 PP CC                                                   (45) 

After examining the calculated results and according to Eq. (45), the optimum values 

of 1PC and 2PC are 1.9 and 0.4, respectively. It should be mentioned here that Abe et 

al. [15] used 9.11 PC and 6.02 PC in their heat transfer turbulence model.  

Concerning the turbulent diffusion constants 1 and 2 , we set both of them to the 

same value of 0.6 with the aid of DNS data of Kasagi et al. [7]. By investigating 

equation (30), the wall limiting behavior reveals that the functions 1Df and 2Df  are 

both proportional to 
2

y . These functions can be proposed in the following form: 
 

  2*
1 2/exp1 yfD                                               (46) 

 

   wkthD fRf  15exp1
5.0

2
                                     (47) 

 

Also, near-wall analysis of other terms in equation (30) reveals that the generation 

terms can be of order y and the proposed ttk   model does not suffer from any 

instability, though it uses the model functions of 0.121  PP ff . 
  

In summary, our new ttk   model of turbulence is assumed to be governed 

by Eq. (43), tk equation, and Eq. (31), t equation, along with the auxiliary 

relation in Eq. (9). However, in order to calculate the turbulence quantities associated 

with thermal field, these equations must be solved simultaneously together with the 

energy equation, Eq. (7).  The constants and functions in the proposed two-equation 

heat transfer model are summarized in Table 2. 
 

 Table 2. Constants and functions in the proposed ttk  model 

    A                  B        C      CD1       CD2           CP1     CP2     h       1     2  

Pr20   Pr1     0.11     2.0        0.9    
   1.9      0.4      1.0       0.6       0.6 

f = {1– exp(– y
*
/A)}[1 + B/Rh

0.5
] fD1 = {1 – exp[ – y

*
/2 ]}

2
 

fwkt = exp{ – (Rh/5)
0.5

 } fD2 = 1 – fwkt 

fP1 = 1.0
 

fP2 = 1.0 
 
 

6. SOLUTION   PROCEDURE 
 

Reliable DNS databases for fully-developed two-dimensional channal flows 

are available at two values of Re under different wall thermal conditions, 

150Re  (Kasagi et al. [7]), and 180Re  (Kim and Moin [6]).  Therfore, in the 

present study, attention is focused upon these two test cases to judge the validity of the 

proposed two-equation heat transfer model.  The governing equations are of parabolic 

nature and can be transformed into algebraic equivalents by using discretization 
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process.   A control volume finite difference procedure by Patankar [22] is used to 

solve these algebraic equations by using a TDMA algorithm (TriDiagonal Matrix 

Algorithm).   The nonuniform grid technique is used in which the grid in the normal 

direction was given by the following formula: 

      21/1  Jjhy j
                                                (48) 

where j is the grid index, h is the channel halfwidth, and J is the total number of grid 

points in y direction.   A number of 201 grid points was allocated in the computational 

domain to assure that the solution is independent of the grid point numbers in a normal 

direction.       
 

It should be noted that for the tested channel flows, since the flow is fully 

developed, it is not necessary to solve the discretised equations in the streamwise 

coordinate x and the calculations are carried out at the same location where the initial 

data profiles are supplied.  Concerning the velocity field, the discetised equations for 

U, k, and kL are solved simultaneously in one loop in an iterative procedure. By the 

end of each iteration, the output results are underrelaxed to be used as initial data for 

the next iteration and judgement of convergence is performed.  This procedure is 

continued until satisfying a specified convergence criterion for U, k, and kL 

simultaneously to get the final results for the velocity field.  After that, the same 

procedure is applied for the discetised equations of T , tk , and t to get the final 

results for the thermal field.   
 

The wall boundary conditions (at y = 0) are:  U = k = kL = 0 for the velocity 

field. For the thermal field, on the other hand, the wall thermal boundary conditions are 

either constant wall temperature or constant wall heat flux. The wall thermal boundary 

conditions are 0 ttk   and the values of wT  or wq is prescribed using 

experimental or DNS data at the wall [16].  At the center of channel, 

 yU  yk   yTykL 0 yyk tt   are specified 

[18].  
 

A criterion for convergence may be given by  
 

Max | Z
i+1 

/ Z
i
  1 | < 10

-5
                                                  (49)     

 

where Z stands for U, k, kL, T , tk , and t .  The index i denotes the number of 

iterations.  All calculations were performed using double precision arithmetic on an 

IBM compatible (500 MHZ Pentium) PC computer.  

 

7.  RESULTS  AND  DISCUSSION 
 
7.1. Velocity Field  

 

For reliable evaluation of the turbulent heat transfer, it is crucial to use 

turbulence models which can predict both the velocity and temperature fields with high 

accuracy. In other words, for the accurate prediction of heat transfer in turbulent flows, 

we need to use turbulence models which fulfil the following requirements [15]: (1) The 
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correct near-wall limiting behavior is reproduced for both the velocity and the 

temperature fields. (2) The temperature-field time scale is appropriately taken into 

account. (3) The flow fields can be simulated with sufficient accuracy. 
 

In an earlier paper [21], the author proposed a new rigorous two-equation k-kL 

model of turbulence for near-wall and low-Reynolds number flows. The proposed 

model can reproduce correctly the near-wall limiting behavior. The proposed model 

has been assessed by application to fully-developed turbulent channel flows at different 

Reynolds numbers and flat-plate boundary layer flow. Sample of the calculated results 

using k-kL model is shown below in Figs. 1-6.   

 

It is clearly seen in Figs. 1 and 2 that the overall agreement between k-kL model 

predictions and DNS data of Kasagi et al. [7] is excellent.  The budget of kinetic 

energy for channel flow at Re=180 is compared in Fig. 3 with DNS data of Kim et al. 

[23] and shows good agreement.   Figure 4 shows excellent agreement between the 

predicted results of kinetic energy, k,  using k-kL model and the DNS data of Kim 

[24]. The last assessment of k-kL model mentioned here is that the case of calculation 

of flatplate boundary layer flow at Re=1410 as shown in Figs. 5 and 6.  The 

predicted results of kinetic energy and time scale of velocity field are good in accord 

with DNS data of Spalart [25].  In view of this, it can be concluded that the k-kL model 

of Youssef [21] is internally consistent and asymptotically correct as a wall is 

approached and, therefore, it was selected for the calculation of velocity field in the 

present study.  
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Fig. 1. Comparison of mean velocity for channel flow at Re=150. 
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Fig. 2.  Profile of time scale in channel flow at Re=150. 
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Fig. 3.  Budget of kinetic energy for channel flow at Re=180. 
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Fig. 4.  Profile of kinetic energy for channel flow at Re=395. 
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Fig. 5. Comparison of kinetic energy profile with DNS at Re=1410. 
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Fig. 6.  Comparison of time scale profile with DNS at Re=1410. 
  

           
7.2.  Thermal  Field 
 

 Now focusing on the predicted results of the proposed ttk  model of 

turbulence for thermal field.  Calculations of the present model are evaluated agianst 

direct simulation data with constant wall temperature of Kim and Moin [6] and with 

isoflux boundary condition of Kasagi et al. [7].  The former study is carried out at 

180Re  ( 6600Re  ) and a molecular Prandtl number 71.0Pr  .  On the other 

hand, the study of Kasagi et al. [7] is carried out at 150Re  ( 4560Re  ) and the 

same Pr .  It should be mentioned here that the DNS data of Kasagi et al. [7] have 

been obtained for fully-developed channel flow with isoflux wall thermal condition.  

However, the isoflux condition conventionally means that the time-averaged wall heat-

flux does not change in the streamwise direction in a two-dimensional flow. This 

condition is equivalent to  xT   xT w  xT m constant. For more 

assessment of the present ttk   model, the present calculations of temperature field 

are also compared with the predictions of another two models of temperature field of 

type ttk  .  These two models have been proposed by Nagano et al. [2] and Abe et 

al. [15].  Since the calculated velocity field properties by using k-kL model of Youssef 

[21] have been validated against  different direct numerical simulation data, this model 

is used in the present study not only with the present ttk  model but also with the 

other two ttk  models. 



M. S. Youssef 
________________________________________________________________________________________________________________________________ 

 

1896 

 The results for the isoflux turbulent channel flow case at 

150Re  ( 4560Re  ) and 71.0Pr  are presented in Figs. 7-12.  Mean 

temperature profiles are plotted in Fig. 7.  In the viscous sublayer, all calculated 

profiles agree well with the DNS data of Kasagi et al. [7], while away from the wall, 

poorer performance among all model calculations is calculation with Nagano et al. [2] 

model.  Figure 8 shows the predicted temperature variance profile compared with DNS 

data of Kasagi et al. [7] and with the other model calculations.  It is obvious in Fig. 8 

that the present prediction is in good agreement with DNS data; however, all other 

model calculations exhibit a discrepency with the DNS data not only in the near-wall 

region but also away from the wall.  Examining the present model calculations, the 

correct near-wall limiting behavior 
2 

ykt  is clearly emphasized as given by Eq. 

(33a).  Figure 9 shows an acceptable agreement between the calculated results by 

using the present model and Nagano et al’s model, while under prediction for the 
turbulent temperature time scale with Abe et al’s model is clearly shown.  The 
predicted results of wall-normal turbulent heat flux are compared with the DNS data in 

Fig. 10 and show excellent agrement except the peak with Nagano et al.’s model yields 
overprediction.  The underprediction of temperature variance tk shown in Fig. 8 with 

Nagano et al. and Abe et al. models yiels same trend for the dissipation rate t as seen 

in Fig. 11.  Since the budget for temperature variance is reported in ref. [7], detailed 

comparison is carried out for this case only and is shown in Fig. 12.  What should be 

noticed in Fig. 12 is that the production rate balances with the dissipation rate away 

from the wall, while the turbulent diffusion plays an important role as the wall 

approached.  In the viscous sublayer, the molecular diffusion and the dissipation are 

dominant and the general level of agreement with the DNS data of Kasagi et al. [7] is 

found to be excellent. 

 

 As another test case, we assess the constructed two-equation ttk  model in 

a turbulent channel flow with constant wall temperature case.  The results provided by 

DNS calculation of Kim and Moin [6] at 180Re  ( 6600Re  ) and a molecular 

Prandtl number 71.0Pr   offers an opportunity to test the validity of the proposed 

model.  Comparisons of the predicted mean temperature and temperature variance with 

DNS data of Kim and Moin [6] are shown in Figs. 13 and 14, respectively.  Also, 

included here in these comparisons are the calculations for the ttk  models of 

Nagano et al. [2] and Abe et al. [15].  Figure 13 shows the predicted mean temperature 

profile compared with the DNS data of Kim and Moin [6] and the predictions of the 

other ttk  models.  All calculated results are in perfect agreement with the DNS 

data in the viscous sublayer, while show underprediction in the logarithmic layer of 

channel. As already shown in Fig. 8, the present prediction of the temperature variance 

shown in Fig. 14 is in excellent agreement with DNS data; however, all other model 

calculations exhibit a discrepency with the DNS data not only in the near-wall region 

but also away from the wall.  Also, what can be seen from Fig. 14 is that, the present 

model calculations satisfies the correct near-wall limiting behavior 
2 

ykt  as given 
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by Eq. (33a).  Examining the calculated results in the present study, the proposed 

model is more stable than the other models since it uses the natural boundary 

conditions for the variables tk and t . 
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Fig. 7. Mean temperature comparison for the isoflux wall thermal case. 
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Fig. 8.  Comparison of temperature variance for the isoflux wall thermal case. 
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Fig. 9. Comparison of temperature time scale for the isoflux wall thermal case. 
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Fig. 10.  Comparison of normal heat flux for the isoflux wall thermal case. 



A  TWO-EQUATION  HEAT  TRANSFER  MODEL  FOR  WALL…. 
________________________________________________________________________________________________________________________________ 

 

   1899 

0

0.05

0.1

0.15

0.2

0.25

0.01 0.1 1 10 100

Present Model

Abe et al. Model [15]

Nagano et al. Model [2]

Kasagi et al. [7]

 t+

y
+

 
 

Fig. 11. Comparison of the dissipation rate of temperature variance for 
the isoflux wall thermal case. 
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Fig. 12.  Comparison of the budget of temperature variance for the 
isoflux wall thermal case. 
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Fig. 13. Mean temperature comparison for the constant wall temperature case. 
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Fig. 14.  Comparison of temperature variance for the constant wall 
temperature case. 
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8. CONCLUSIONS 
 

 In this study, we have constructed a new rigorous twoequation heat transfer 

model of turbulence of type ttk  .   In the present model, the turbulent heat flux in 

the Reynolds-averaged energy equation is calculated from the eddy diffusivity for heat, 

t , and the gradient time mean temperature. The eddy diffusivity for heat is proposed 

as function of local energy of turbulence, k, and local temperature time scale,  t , 

instead of using mixed time scale, m , which is composed of time scales of the 

velocity and temperature fields.  The proposed two-equation heat transfer model solves 

two differential equations, one for the temperature variance, tk , and the other for the 

temperature time scale, t .  Since both tk  and t  has natural boundary condition 

arising from the noslip condition, the numerical stiffness problems associated with 

ttk  models are not found.   The nearwall limiting behavior of turbulent quantities 

associated with heat transfer has been captured with the proposed model.  Therefore, 

an additional term is included in the temperature variance equation to enhance the 

prediction of nearwall behavior.  Moreover, an exact and noval equation for the 

temperature time scale, t , is introduced.  The present model is assessed by 

application to calculate channel flows under different wall thermal conditions with 

different Reynolds numbers.   Comparisons between the present ttk   model, the 

other published ttk   models, and the available DNS database were made.   In all 

the flow cases examined, it is revealed that, strong capability of the present model in 

predicting accurately the DNS database, while, the other ttk  models included in 

the comparisons failed to do so particularly in the nearwall region.   Moreover, the 

governing equations of the present model are simple, and free of numerical stiffness.    

From these standpoints, the proposed model may be regarded as a twoequation heat 

transfer model of turbulence.    
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 جدارل ص مضطربΔ مامسΔلسرياناΕ ق معادلΔى الثنائ أنتقال حرارةنموذج 

 

يϘدϡ هذا البحث مϘترحΎ إستكمΎل معΎدلΔ الطΎقΔ عϰϠ أسΎس متϭسطΕΎ رينϭلدز ϭمن 
فϰ هذا النمϭذج أن تكϭن اانتشΎريΔ  خال نمذجΔ ثنΎئيΔ المعΎدلΔ لاضطراΏ. يϘترح 

،Ώلاضطرا Δضعيϭالم ΔقΎالط ϰف Δحرارة دالϠل Δاميϭالدk  ، Ϙالمϭ ϰضعϭالم ϰس الزمنΎي
. النمϭذج ثنΎئm ϰ، بدا من أستخداϡ المϘيΎس الزمنϰ المختϠط، tلدرجΔ الحرارة، 

المعΎدلΔ انتΎϘل الحرارة المϘدϡ يحل معΎدلتين تفΎضϠيتين لكل من تفΕϭΎ درجΔ الحرارة، 
kt ،الحرارة Δلدرج ϰضعϭالم ϰس الزمنΎيϘالم ϙكذلϭ ،t ΔϘمنط ϙϭϠمل مع سΎالتع ϡت .
ϭلϬذا  رΏ الجدار لϠكميΕΎ المضطربΔ المصΎحبΔ انتΎϘل الحرارة فϰ النمϭذج المϘدϡ.ق

اشتمΕϠ المعΎدلΔ التفΎضϠيΔ لتفΕϭΎ درجΔ الحرارة عϰϠ حد إضΎفي لتحسين التنبؤ في 
عاϭة عϰϠ ذلϙ، قدمΕ فϰ الدراسΔ الحΎليΔ معΎدلΔ تفΎضϠيΔ  سϙϭϠ منطΔϘ قرΏ الجدار.

. النمϭذج المϘترح tمضبϭطϭ Δجديدة لϠمϘيΎس الزمنϰ المϭضعϰ لدرجΔ الحرارة، 
انتΎϘل الحرارة ا يعΎنϰ من مشكاΕ الجسϭءة العدديΔ حيث يستخدϡ ظرϭف الحد 

 ΕمتغيراϠالطبيعي لkt  ϙكذلϭt  ع Εهذه المتغيرا ϡقي ϡانعدا( ϡييϘأمكن ت   .)ند الجدار
النمϭذج المϘترح بتطبيϘه في قنϭاΕ ذϱ سريΎنΕΎ مضطربΔ تΎمΔ التطϭر ذاΕ ظرϭف 
 Δبϭئج المحسΎالنت ΕرϬلدز. أظϭلعدد رين ΔفϠمخت ϡعند قيϭ جدارϠل ΔفϠمخت Δحراري
بΎستخداϡ النمϭذج المϘدϡ في كل السريΎنΕΎ التϰ تϡ فحصΎϬ تϭافΎϘ جيدا مع نتΎئج المحΎكΎة 

  لعدديΔ المبΎشرة.                                ا
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