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ABSTRACT - The main roles which are the concern of a clinical
anaesthetist are those of drugs induced unconsecésmss muscle
relaxation, and analgesia. The first two roles arencentrated in the
operating theatre, while the third role is mainlpncerned with post-
operative conditions. Unlike, measurement of uncoosness and
analgesia the measurement of muscle relaxatioogqe® is considerable
easier via monitoring of evoked electromyogram (BEM{gnals. Among
the features characterizing this process, time yatainitiation of muscle
relaxation is perhaps the most challenging onesTime delay resulted
from the drug circulation around the body and véoa of the cardiac
output. Another problem called nonlinearity misnhaticat is resulted from
the wide variability of identified models and theonlinearity in the so-
called pharmacodynamics for relaxant drugs behavidrs nonlinearity is
due to the large inter-individual and intra-indiwidl variability of the
patient's parameters. These challenges can beddeatth quantitative or
qualitative techniques. The former was proved @utife in trying to
overcome these challenges. This paper proposescpuedself-organizing
Auto Regressive eXogenous (PSO-ARX) scheme to vd#al such
challenges with ease. This is due to two notaldéufes of the proposed
scheme one is its plastic structure and the otkatsi small computation
required compared with Generalized Predictive Coh{lGPC) schemes.
Simulation results reflect the superiority of thregmsed PSO-ARX scheme
with respect to such schemes.

KEY WORDS: Neural networks, Medical systems, Self-organizing
controllers

1. INTRODUCTION

Anaesthesia is the science of removing sensationawdl reaction to, a surgical
operation. Modern general anaesthesia comprise®nsoousness (or depth of
anaesthesia), muscle relaxation (or paralysis),aaadgesia (or pain relief). The first
two operations are concentrated in the operatiagtth, whereas the third operation is
mainly concerned with post-operative condition [Each of these operations has been
considered in recent years as possible sosnéor automated drugnfusion via

1591



1592 Nabila M. El-Rabaie ; Hamdi A. Awad and Tarek A. Mahmoud

feedback control strategy. The main problem indhay—induced depth of anaesthesia
and muscle relaxation is the measurement of thecali signs, which can be used
online to the controller [2]. Depth of anesthesidard to define and hence to measure
accurately, while, the measurement of the musdaxaton level is considerable
easier. A common approach of the measurement ofrthscle relaxation is the
monitoring of evoked electromyogram (EMG) signaloduced at the hand via
stimulation above the wrist. This stimulation emsuthat all the nerve fibers are
recruited, while suitable processing of the reswl&MG provides an analogue signal
inversely proportional to the level of relaxati@j.[

Among the features characterizing biomedicateys, time delay is perhaps the
most challenging one. Two sources of such delag,i®the drug concentration around
the body and the other is the variation of the ie@rdutput. Designing controllers to
overcome time delays has always presented a sa&falienge for engineers. Also this
challenge grows even bigger when the value oftthie delay is unknown or is prove
to variations. PID controllers, whose benefits atél generally utilized within
industry, can prove ineffective in trying to ovemo® this problem [4]. Smith predictor
[5] has been shown to be very advantageous; however its performance may deteriorate
considerably in the presence of a large processiatch. That has always been one of
the major problems in this paper. Generalized [etiwdi Control (GPC) schemes have
also proposed to deal with challenges [6], howekieir performance can prone also
ineffective in trying to overcome these challengBslf-organizing techniques are
promising ones to deal with such circumstances.ofdingly, this paper proposes
Predictive Self-Organizing Auto Regressive—eXogendiPSO-ARX) scheme to
overcome such challenges easily.

This paper can be organized as follows. SecBoformulates our problem. It
describes the mathematical model of the musclexattn process and the main
characteristics of this process. Section 3 deserthe proposed PSO-ARX scheme.
Section 4 depicts simulation results using the psep scheme. Section 5 concludes
the topics discussed in this paper.

2. THE PROBLEM FORMULATION

To facilitate the design of advanced controlletsjsi necessary to have a good
mathematical model of the process. In order totiflethe muscle relaxation process
associated with drugs, pharmacological modellingasimonly used to describe the
metabolism of such drugs. The pharmacological nimdelcomprises two main
categories known as pharmacokinetics and pharmaenaigs. The former studies the
relationship that exists between drug dose and dongentration in the blood plasma.
Interpretation of this relationship can give a neatlatical meaning via the concept of
compartmental models. While, the latter concerrth wie drug concentration and the
effect produced. One of the common drugs usediigrdperation is the atracurium
drug, which is a non-depolarising fact acting agand has gained popularity over
pancuronium and d-tubocurarine [3].
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2-1. Pharmacokinetics
Basically, the pharmacokinetics studies what th#gylmoes to the drug. In other words,
after the drug injection, the plasma concentratibatracurium declines rapidly in two
exponential phases corresponding to distributiod alimination [7]. Therefore, a
conventional two-compartmental model is used byiragldn elimination path from the
peripheral compartmental as depictedrig.1. Suppose is the drug concentration at
time t, X its rate of change, andis the drug input, then:
X1 = —(Kio + Ki2) X1 + Ka1Xz +U
X2 = KioXs — (Koo + Ko1) X2

(1)

Using Laplace transform, equation (1) can be réevrigs:
SX1 = —(Kio + Ki2) X1 + ko1 X2 +U

_ (2)
SXz = K2 X1 = (Kao + Ka1) X2

Xi(s) _ S+ Kzo + ka1
U(s) (S ko *+ki2)(s+Kkao +Ka1) — kizkas

3)

The mean values for the pharmacokinetics paramaterf3]:
Kiz + ko = 026min~t

K21 + koo = 0094min-t

Ki2K21 = 0015min—2

Substituting in equation (3) leads to:

Xi(s) _  994(1+1064s)
U(s) (@+ 308s)(L+ 3442s)

(4)

which describes the pharmacokinetics of the musabxation system relating to the
drug atracurium in a transfer function.

Drug input K1z b/‘

Drug exchange

| Compartment > Compartment
- (1) ) ! 2
" l
Kio Kzo
T Drug elimination T

Fig. 1: A two compartmental model for atracurium drug.
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2-2. Pharmacodynamics

In this phase, to identify the drug effect, a thamimpartment known as the "effect
compartment" has been introduced to the atracukumatics. It is connected to the
central compartment by a first-order rate conskant whereas the rate constdap
characterises the drug dissipation from the effechpartment , as depicted fig. 2.

In this latter compartment, the drug concentratbange is governed by the following
equation:

Xe = KieXs — KeoXe (5)

Using Laplace transforms yields:
Kie xl(S)

Xe(s) = (6)
S+ Keo
Effect Compartment
«— p
Compartment Keo
—>
B
K Drug exchange
1E
Drug input K1z A >
—) COmpartment Q) l Compartment (2)
l Kot l
KlC Kgg
T Drug elimination T

Fig. 2: Modification of the atracurium kinetics.

The Hill equation [7-9] may be used to relate th#eat to a specific blood
concentration of drug:
Emax
1+ Xe G0)*
Xe?

Eert = (7)

where Ecs , Emax and Xg (50) are the drug effect produced (paralysis),ntiaimum

drug effect ( 100% paralysis), and the drug comegioh of at 50% effect. The mean
values of the pharmacodynamics are [3]:
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Keo = 0208min-1,

Xe (60) = 0404gml2,

a = 298

Kie =104min~?

Combining equations (6) and (4) and normalizingdpen loop gain at 1.0 leads to:
Xe _ KL+ T9e =

= (8)
U @+ Ts)d+ Ts)1+ Tss)

whereK =1.0, T;=4.81 min,T,=34.42,T,=3.08 min, T,= 10.64 min andr =1min.
Finally, the overall nonlinear model obtained byntning equation (8) together with
Hill equation (7) as depicted Fig. 3.

E

U Paralysis
: -Tg X a level
(drug input k1 (1+T4a ge E Xe .

A 4

—> Xea+Xe (50)7

L+ TS)A+T,8)(L+T,9)

Fig. 3: Nonlinear model of the muscle relaxation process.

Figure 4 shows a series of Hill equations for different gmaeters of @ and
Xe (60). For nominal Hill equation values, a linearizedngéor operating points
ranges from 0.85 to 0.95 for paralysis can leadiffaculties due to the curved shapes
around this region. Also, the patient-to-patientapaeter variability can affect the
nonlinearity shape (uncertainty) by making it sexer more flat. All these
considerations make the muscle relaxation procesera challenging one. Time
delay, nonlinearity mismatch, and uncertaintieswath process are challenges problem
have to be overcome.

3. THE PROPOSED PSO-ARX CONTROL SCHEME

The schematic diagram of the proposed PSO-ARX obattheme is shown iRig. 5.

At instancek, the ARX Local Model (ARX-LM) —based predictiverdroller predicts
the controller parameters of the controller, them ¢ontroller update it self to generate
the optimal control signal. The controller send thignal to the process and its output
is compared with the ARX-LM network to estimate tray set of parameters and then
the controller repeat its function.

The self-orgnizing ARX-LM network plays an importamle in this scheme to deal
with the challenges mentioned in section 2. Tliewieng subsection describes briefly
the structure and the learning phases of the eraglagtwork [10].
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Fig. 4: Graph showing the shape of the various nonlinearity curves used
in the process model.
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Fig. 5: The proposed PSO-ARX control scheme.

3-1. The Structure of the Self-Organized ARX-LM Network

This network consists of a set of TSK fuzzy rulgg][fertilized by wavelet functions
[12]. Each wavelet determines the contributionhef ¢corresponding TSK fuzzy model.
These sub-models are merged to generate the fit@ltoof the proposed network. It
consists of five layers as depictedrig. 6 that can be described as follows:

Layer -1: A node at this layer just transmits the input ealto the next layer.

Layer - 2: This layer consists of two groups, universes stdliirse of the input fuzzy
variables and their wavelets. The former coveruhieerses of discourse of the input

variables by a set of triangular-shipped func}@p&i (% ). Thatis:
i
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() =1- 2574

ij

Hy ©)

whereA' is the |" fuzzy set of the"l input variablex , andg; , and J; are the center

and width of this fuzzy set.

The latter is a wavelet function generated by iitatand translating the mother
2

wavelet functiom(x) = (L— xz)exp(—x?) . That is :

®,(X) = ljh(ij) (10)

X, —m;

Xk , Nis the number of their inputs) andd are the translation and
jk

dilation parameters respectively.

whereZ, =

Input term

Input Linguistic node:

= ¢ .....

X1

Rule nodes Eertilization Output node

l node:

f1(X)

X2

Ym

Input wavelet nodes

Fig. 6: The structure of the self-organized ARX-LM network.
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Layer -3: The firing strength can be obtained using Larsprisluct [13] as follows:
w'= rl ,uAij(Xi ) (11)
j:

where, its normalized value is:

(12)

Layer -4: A node at this layer is a sub-model that merges rtbrmalized firing
strength of a TSK fuzzy rule with a wavelet. That i

yi'= 0, (X)w' (13)

Layer -5: Based on the approximate Center Of Area (COA) zisfigation method,
the crisp outpuy,, can be deduced. That is:

a.
Y = 2@ f;(X)@;(X) (14)
i=1
The network described above performs the followirg:
R :IFxisA' and.. and xsA' THEN y=f(X). ® (X) (15)
where,

f, (X)is a linear function of the TSK model. That is:
f.(X)=w Ox, +w, Ox, +. . .+w 0x, (16)
and, @, (X) is the wavelet function defined in (10).
Reforming (16), results an ARX-LM defined below:
fiO)=w, CUk=D+. . +w, CUk-1)+w, Cyk=D+ . . .+ Oyk-9 (17)
Substituting (17) in (14), results:
y. (K =b Duk-D+. . .+b Cuk-r)+a Oyk-D+ . . .+a 0Oyk-s (18)

where,
q ) ) a . )
b => w00, (X)@', i=1,2,..r, a, =) w}, 00 (X)w’ (19)
j=1 j=1

h=1,2,...s andq is the number of rules generated, anginds are the orders of the
plant input and output respectively. Equation (f&)resents the ARX-LM with the
input and output vectors defined below:
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X=[u(k-1)uk-2)...uknyk1yk-2).., .yk s andY=[y (K)]'

Learning of the ARX-LM network consists of twathases, structure learning and
parameter learning. The former structure is then@oistone to develop an optimal
ARX-LM network. It should determine the optimal nben of the fuzzy clusters of
each fuzzy variable, the wavelet nodes, and theyfuzles. The fuzzy ART algorithm
[14] was employed to determine the above threenpeiters. The RLS method was
employed in the latter learning phase of this nekwBmploying the ART and the RLS
algorithms to develop ARX-LM network, resulted mple self-organizing network for
modeling and control dynamic systems.

3-2. The Proposed PSO-ARX Control Scheme

The basic idea behind the proposed algorithm id ft&a model structure can

instantaneously be self-organized to deal withdh&llenges mentioned in section 2.
To clarify this idea, consider a single-input andgke-output discrete time system
whose model prediction over the costing horizoretimis given by:

yo(t+1)=ay(t)+. . +3y(t+l-s)+ bu(t)+. .. +u(tr+l) +e(t)
yp(t+i)=aiy(.t+i-1)+. . +ay(tH-s)+ hu(tH) +. .. +hu(tH-r) +e(t) (20)

Yo(t +nz) = ay( t+n-l )+ 3y(tnys )+ b u(tng-l) +. ..+ bu(t-r+ng )+ e(t)

where e{) represents the modeling error, apf + i) is thei™ predicted output. It has
been assumed that the modeling error is constamttbe entire prediction horizon and
the values of uf(+ m1) is equal zero over the control horizom Accordingly, the
above equations can be reformed as follows:

Y(t)=P X(t)+Q U(t)+R gt) (22)
where, Y(t)=f(t+1) . . .yp(t+n2)]T, denotes a vector of the model predicted outputs
over the prediction horizon, X(t)=[y(t) y(t-1) . y(t+1-s) u(t-1) ... u(t+1 -rj]is a
vector of the past plant and controller outputs] Biit )=[ u(t) ... u(t+m-1J]is a
vector of the future outputs of the controller.eTimatrices P, Q, and R are given
below.

qll o -- 0
pll “' pl(s+r—1) q q 0
P: . . ’ 21 ' 22 , R_[rl- rn ]T
Q= 2
pn21 "' pn2(5+r—1)
O Om: o Armm
_qn21 qn22 qnzm_
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The general aim of the predictive control scheémthat the future outputs on the
considered horizon should follow a pre-determinefitrence trajectory and, at the
same time, the necessary control effort should menmzed. A typical cost function
includes increments of the control signal, the ardignal itself or neither of them.
Accordingly, it can be defined as follows [15]:

_ 2 - 112
Ior _igl[Yp(t-H)_yd (t+i)] (22)

where y, (t) is the reference trajectory used over the pregfidtiorizon. The optimal
controller output is found by minimizing the abaaest function such that.

0J "
p -0
ou

Differentiating the cost function defined in eqoati(22), leads to the following
optimal solution:

U (t) =[QTQI1QT [W(t) - PX(t) - Ret)] (24)

23]

4. SIMULATION RESULTS

This simulation utilized the continuous muscle xation model depicted ifig. 3.
The initial condition was 0% relaxation and the-geint command signal was 0.80
(20% EMG) for the first 100 minuets, 0.95 (5% EMG) the next 100 minuets, 0.90
(10% EMG) for a further 50 minuets and finally Q8% EMG) to the end of the
simulation. The simulations were divided into tb#dwing three tasks.

e Simulation Task-I: The Nominal Case

The first task concerns with the controller perfanoe when the plant has the nominal
parametersi =1.0, min,T; = 4.81 min,T, = 34.42,T; = 3.08 min,T, =10.64min.,

7 =1min ,a =2.98 andXg(50) = 0.404).

e Simulation Task-1l: Nonlinearity mismatches

The second task concerns with the controller perémice when a nonlinear mismatch
between the actual system's nonlinearity and tlmbsbe model occurs. Hence the
model assumed a nonlinear Hill equation describgd: 5=2.98 andXg(50)=0.404,
whereas the system had a nonlinear Hill equatioscrdeed by o =4.0 and
Xe(50)=0.505.

» Simulation Task-Ill: Uncertainties

Uncertainty can be seen as an existing nonlineariti time variant processes whose
dynamics are not fixed; unknown time delay and mearities mismatch. The third
task concerns the controller performance when ystes was exhibiting large or
unknown dead time and taking into account the nealiity mismatch. Hence, the time
delay in equation (8) was increases to 4 min aeditbnlinearity mismatch described
in the second task was considered.
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Figure 7 depicts the controller response when the firsk tmas considered. The
control scheme governs the muscle relaxation psoakisough the set-point command
is near the saturation region of the syst€igure 8 depicts the performance of the
proposed control scheme with existing the nonlitganismatch described in the
second task. Finally, the performance of the abisitheme with existing uncertainties
described in the third task is depicted FAiy. 9. Simulation results show that the
controller has efficient performances in spite afge delay time, nonlinearity
mismatch and model uncertainties.

In order to clarify the vision, the performarafethe proposed PSO-ARX scheme is
compared with GPC algorithms described in [3] i& sense ofSE (integral of square
error) andTAE (integral time of the absolute error) defined quations (26) and (27),
respectively.

ISE= Tez(t) (26)
ITAE = Tt le(t) (27)

wheree(t) are the error between the system output anddbi&ed set-point .
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Fig. 7: The response of the muscle relaxation process using the proposed PSO-ARX
(Simulation task-I).
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Fig. 8 : The response of the muscle relaxation process using the proposed PSO-ARX
(Simulation task-II).
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Fig. 9: The response of the muscle relaxation process using the proposed PSO-ARX
(Simulation task-I11).

Table 1 lists thelSE andITAE values using the three algorithms with the firsd #he
third simulation tasks. As shown in the tabled&E andITAE values obtained with the
proposed PSO-ARX are lower than those obtainedgusire GPC and NGPC
algorithms respectively. For instant, tHé\E criteria, which tend to penalize responses
for poor set-point tracking, are much lower witle tiew proposed controller than with
the GPC and NGPC algorithms.

Table 1: A comparison between the proposed PSO-ARX controller scheme
and the GPC schemes [3].

The PSO-ARX
Simulation o] Sahere The GPC scheme| The NGPC scheme
Task
ISE ITAE ISE ITAE ISE ITAE
The first task 3.32 289.35 6.6 440 5.9 367
The third task 4.63 463.43 8.9 954 9.0 663

4. CONCLUSIONS

This paper proposed the PSO-ARX control scheme dal avith the following
challenges: variation of time delay, nonlinearitysmatch, and uncertainty. These
challenges were resulted from the large inter-iiggial and intra-individual variability
of the patient's parameters. The basic idea bethi@doroposed algorithm is that its
model structure can promptly be self-organized thase the challenges phased.
Simulation results show that the proposed PSO-ABrol scheme is superior to the
GPC and NGPC. They proved that the proposed scleraepromising scheme for
controlling more complex and multivariables metigystems.
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