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The concept to increase the fundamental naturajueacy (below
which no vibration could occur) of a structure agth as possible is
commonly adopted to make the structure better imadyc environment.
Due to design limitations, the fundamental freqyeat a beam can be
increased via adding additional intermediate poistipports. If the
intermediate supports are rigid, the optimum locas of the supports
should be at the nodal points of a higher vibratimmode without the
supports, and the fundamental frequency is cormedipgly raised. For
elastic supports, which often occurs in practite dbptimum locations are
still the same as the case of rigid supports withh decrease in
fundamental frequency provided that the supporffnsiss exceeds a
certain minimum value. Indeed, the minimum stifn@®diction is very
important in the design of beams, since the bracingupport materials
can be reduced without any loss of performances Phaper investigates
and discusses the minimum stiffness of an inteateedupport through
the span of a beam for maximum value of its fundéahdrequency. In
this study it is assumed that the intermediate suppf the beam is
provided through the span of the beam (at an itleo¥ 0.05 of the span).
The finite element technique is used in the amnalga beam model with
different end conditions. It is found that when ithermediate support is
not at the optimum location, there exists a minimstiffness of the
support to give the fundamental frequency of thelly supported beam
(such minimum stiffness phenomenon also occurshén buckling of
beams). Design curves are obtained to estimataminegmum stiffness of
an intermediate support through the span of a beand the
corresponding fundamental frequency.

KEYWORDS: Minimum stiffness, intermediate support, maximum
fundamental frequency and dynamic environment.

1. INTRODUCTION

Most civil structures such as multistory buildingswers, bridges, and
offshore platforms accumulate damage graduallynduthieir service lives or suddenly
during natural disasters. Monitoring or pditoinspection of structureprovides
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updated information regarding the ability e tstructure to continue to perfoita
desired function. Based on the monitored staterogpiate repair, rehabilitate, and/or
strengthening of structures are decided to keegetb®uctures operational and further
to lengthen their lives. Because the cost for refgamuch lower than the cost for
reconstruction of new structures, repair and/oengthening is vital for civil
infrastructure facilities, which form the lifelirad our countries’ economy.

Indeed, changes in structural physical propertigass§, damping and stiffness)
will cause changes in its modal characteristicsgnant frequencies, mode shapes and
modal damping), [1]. The most useful damage locatitethods (based on dynamic
testing) are probably those using changes in regdnequencies because frequency
measurements can be quickly conducted and are ddtiable. Another advantage is
the global nature that allows the measurement gdimtbe chosen to suit the test
situation. Salawu [2] gave a literature reviewlu# state of the art of damage detection
using changes in natural frequency. Numerous stutiee indicated that an increase
in structural damage reflects a decrease in nafteguencies of the structure. So,
strengthening of such structures is needed to magitheir frequencies. Indeed, the
concept to increase the fundamental natural fregyjuen eigenvalue of a structure as
high as possible is commonly adopted to make thectsire better in dynamic
environment. Adding and/or changing support pas#tiare frequently used when the
size or shape of the structure can not be alteweda design limitations. Actually, the
beam is the main component of most civil structueeg., buildings, bridges, cranes,
etc. So, the fundamental frequency (below whiclviboation could occur) of a beam
is of general significance.

The fundamental frequency can be increased if ambdas additional
intermediate point supports. If the intermediatpmuts are rigid, Courant and Hilbert
[3] showed that the optimum locations of the suppsehould be at the nodal points of
a higher vibration mode without the supports, ahd fundamental frequency is
correspondingly raised. The situation becomes ngoraplicated when the supports
are not perfectly rigid, which often occurs in piee. For elastic supports, Akesson
and Olhoff [4] demonstrated that the optimum lomadi are still the same as the case of
rigid supports, with no decrease in fundamentajudescy, provided that the support
stiffness exceeds a certain minimum value. Suchmmoim stiffness phenomenon also
occurs in the buckling of beams, [5]. Indeed, theimum stiffness prediction is very
important in the design of beams, since the brasmgupport materials can be reduced
without any loss of performance. There exist otheratures on the vibration of beams
with internal elastic supports (e.g. referenced (- Among many researches, only
references [2] and [10] are the sources which dsed the minimum stiffness. In
reference [2], they used the finite element teaaitp find the stiffness criterion for
the cantilever beam. On the other hand, Wang [l€dgnted the optimum location and
the minimum stiffness of internal support for beamith other end conditions. He used
the exact characteristic equation to compute terdéiequencies. However, for some
reasons, the internal support may not be placeddaroptimum location. Up till now,
there is no literature about the minimum stiffnesgternal supports through the span
to maximize the corresponding fundamental frequesnci

The objective of this paper is to investigate aistubs the minimum stiffness
of an intermediate support of a beam for maximuftoevaf its fundamental frequency.
The study includes not only the optimum locations$ &lso various locations through
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the span of the beam (at an interval of 0.05 ofsiben). A careful numerical study is
carried out by using the finite element methodrtalgze dynamic behaviour of a beam
on an internal elastic support to obtain its minmuwstiffness for maximum
fundamental frequency. A comparison between amalytind numerical solutions is
thoroughly studied to verify the accuracy of nuroakiresults. Four steel beam models
with different end conditions are investigated,clBmped-clamped, 2) simply-simply,
3) clamped-simply and 4) clamped-free.

2. THEORETICAL BACKGROUND

2.1. Exact Characteristic Equations

Consider a uniform thin beam with lengthand assumeL is the distance
from the left end of the beam. If the transversgpldicement isv(X)COS(t), the

governing equation for vibration of a slender baesuii1]
Wlll(x)_A‘lW:O, (1)

whereA* = pL*w’ / D is the square of the normalized frequensymass per length,
a = frequencyD = EI = flexural rigidity withE andl being the Young's modulus and
the second moment of the cross section, respegtiVbke general solution to Eq.(1) is
a linear combination okinh(x), cosh@x), sin(Ax), cos(x). The intermediate
support is ak = b. Let the subscript denote the segmef< x < b and the subscript
Il denote the segmelt< x < 1. Thus, the solution for segmelnis

w, (X) = C,[sinh(Ax) - sin(Ax)] + C,[cosh{X) — cosX)], (2a)
w, (X) = C, sinh(Ax) + C, sin(Ax), (2b)
w, (X) = C,[sinh(Ax) + sin(Ax)] + C,[cosh{Xx) + cos{x)], (2¢)

for clamped, simply supported and free left enddaoons, respectively. Similarly, the
solution for segment is

w, (X) = C,{sinh[A(x—1)] —=sin[A(x-1)]}

(3a)
+ C,{cosh[A(x—1)] —cosA(x-1)]},
w, (X) = C;sinh[A(x—-1)] + C, sin[A(x—1)], (3b)
W, (X) = C{sinh[A(x —=1)] +sin[A(x-1)]}
(3c)

+ C,{cosh[A(x-1)] + cospU(x—1)]},

for the above mentioned three kinds of right enddamons. At the locatiorx=b the
two segments are matched for displacement, slopmemt but shear is affected by the
spring support as follows:

w, (b) =w, (b), (4)
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w, (b) = w, (b), (5)
w; (b) = w, (b), (6)
w; (b) = pw, (b) = w (b). (7)

Here, y = cL®/Dis the normalized support stiffness with= spring constant and

andD are as defined above. Equations (2) and (3) ane shibstituted into equations
(4)-(7). For non-trivial solutions, exact charaigic equation is obtained. The
frequency parametet is then solved by a bisection algorithm to anyiréesaccuracy.
The analytical solutions are obtained using MATHEMBA package [12].

In order to find the minimum stiffness of an intemmte support, the
following scheme is used. First consider the beath mo intermediate support. From
Eq.(2) and the appropriate boundary conditionshenright end, we obtain the second
eigenfrequency, say*. Using the corresponding eigenfunction, the wngiterior
nodal location is determined, sayt#t According to references [3] and [4], these are
the maximum fundamental frequency and the optimocation of the interior beam
support. The next step is to $etb* and use the characteristic equation obtained from
equations (2)-(7) to find the minimum stiffness lsdicat A* becomes the fundamental
frequency.

Figure 1(a) shows the relationship betwegrandy for the clamped-clamped
beam.Figure 1(b) shows the similar relationship for the simply-siyngupported
beam. The horizontal lineAf) represents a mode independent of the stiffness,
(antisymmetric mode). The slanted curve is anothede whose frequency increases
with stiffness (symmetric mode). The lowest (fundamal frequency) becomes
constant at the intersection of the two curves. dptamum location and the minimum
stiffness for a various end conditions are givemable 1, [10].
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Figure 1: Analytical results of variation of the two lowest frequencies with respect to
stiffness at b*=0.5: (a) clamped-clamped case; (b) simply-simply case
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Table 1: Optimum location b*, minimum stiffness y* and maximum frequency A* with
various end conditions: C = clamped, S = simply supported, F = free.

Ends C-C S-S C-S C-F
b* 0.5000 0.5000 0.5575 0.7834
A* 7.8532 6.2832 7.0686 4.6941
y* 1834 995.9 1377 266.9

2.2. Accuracy of Numerical Results

We consider a steel beam element to examine thesalesults. This example
is quoted from a simulated study by Abdo [13]. Tleam is assumed to have uniform
cross sectional area and 60 [m] length. The cressomal area of the beam and the
moments of inertia aré=0.07 [nf], andl= 0.040 [], I,= 0.001 [], respectively.
The mechanical properties of the steel beam areind's modulusE=210 [GPa],
Poisson's ratioy=0.3, and the density=7,850 [kg/n]. The modal frequencies of the
beam are calculated numerically using the softwackage MARC/Mentat [14], [15].
Two-node beam element (element 52) with six degofdeeedom per node is used.
The finite element model of the beam consists oé@Gal-length 2-D beam elements
and 61 nodessigure 2 illustrates the finite element model of the steedm.

To verify the accuracy of the numerical simulatitwmo cases of the beam will
be studied; a clamped-clamped beam and a simplyhgisupported beam. First, we
consider the beam without any intermediate supftw. eigenfrequencies of the beam
structure is calculated for the two cases. The regasigenfrequency will be the
fundamental frequency of a beam with one supporhidt span. The next step is to
provide the beam with an elastic support at midnspg®a parametric study will be
carried out to find the minimum stiffness of theddie support which provides the
maximum fundamental frequency of the beam (thersdeigenfrequency of the beam
without any intermediate support). It is assumedt tthe elastic support has a
translational spring which acts only in y-direction
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Figure 2: Finite element model of the steel beam with intermediate support.
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The relationships betweehandy for the clamped-clamped beam and for the
simply-simply supported beam are plottedFig. 3. Indeed, the results are in good
agreement to those obtained analytically in Figldble 2 lists the percentage error of
the optimum location, the maximum frequentyand the minimum stiffnesg* for
various end conditions. It is clear that the petage error is less than 0.0003% for
normalized frequency and less than 0.03% for namedlsupport stiffness. Therefore,
the results are satisfactory for numerical invedian.
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Figure 3: Numerical results of variation of the two lowest frequencies with respect to
stiffness at b*=0.5: (a) clamped-clamped case; (b) simply-simply case.

Table (2): Percentage error of optimum location b*, minimum stiffness y* and
maximum frequency A* with various end conditions: C = clamped,
S = simply supported.

Ends b* pu P

c-C 0.000 -0.00016 | -0.00273
S-S 0.000 0.00002 0.01988
C-S 0.000 -0.00023 0.0276p
C-F 0.000 -0.00015 0.018783

3. RESULTS AND DISCUSSIONS

Let us consider the beam shown Hig. 2 with physical and mechanical
properties as mentioned in Section 2.2. The eiggoincies are studied for the four
cases of the beam; clamped-clamped, simply-simpmped-simply and clamped-
free. First, we consider a rigid support at anrirdkof 0.05 of the span for each case of
the beam and calculate the corresponding fundamdémquency of the rigidly
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supported beam, salf. Next, we replace the rigid support with an dasine at the
same position. Then, the relationship between tivenalized frequencyd and the
normalized stiffness of the elastic suppgris plotted to determine the minimum
stiffness of the intermediate support which prositlee fundamental frequency of the
rigidly supported beam.

3.1. Clamped-Clamped Beam

Let the beam be of lengthandx be the distance from the left end support and
the beam be clamped-clamped at both left and ggts. Because of symmetry, only
one half of the beam is investigated. The elastiermediate support is provided at an
interval of 0.05 of the span. The relationship l@swthe normalized frequenci) @nd
the normalized stiffness of the elastic suppprig plotted to determine the minimum
stiffness of the intermediate support which prositlee fundamental frequency of the
rigidly supported beam.

Figure 4 (a, b, ¢ andd) show the relationship betweeh andy for the
clamped-clamped beam at x=D,10.2, 0.3 and 0.4, respectively. Indeed, because
the values of the normalized stiffness feaxis) are high, they are plotted in log-scale.
In Fig. 4, the horizontal lined*, represents the fundamental frequency of thallygi
supported beam at the corresponding position.dhawn that the frequency increases
with stiffness until it reaches the beam fundamemnéguency at the intersection of the
two curves. Also, it can be seen that frequenceissitive to changes in stiffness for
small values of the support stiffness but not sosiiwe near the fundamental
frequency.

Table 3 lists the values of the normalized frequendy)(and normalized
support stiffnessyt) with respect to the distance from the clampet delge of the
beam. AlsoFigs. 5 and6 plot respectively, the minimum stiffness of areimmbediate
support and the corresponding maximum fundamergguencies through the span of
a clamped-clamped beam. The horizontal ling) (represents the fundamental
frequency of a clamped-clamped beam without anrnmgdiate support. It is apparent
that the optimum location (at which, we can obtaiaximum fundamental frequency
of the beam with minimum stiffness of an elastipmurt) of an intermediate support is
at mid span of the beam. It is of interest to m@nthat the percentage increase in the
normalized fundamental frequency of a clamped-ckompeam with intermediate
support with sufficient stiffness at the optimuncddon is 66.03% greater than that
without intermediate support. Indeed, it can beilyaseen that the corresponding
minimum stiffness of the intermediate elastic suppwreases with being far from the
mid span towards the end supports of the beam. wWeEnwethe corresponding
fundamental frequency deceases as the intermesligigort moves far from the mid
span towards the end supports and approachesfttia¢ anstiffened beam near the
end supports of the beam. So, intermediate elagfiports not at the optimum location
require much stiffness and provide less fundamdrggluency and not so useful near
the end supports.
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Figure 4: Numerical results of variation of the frequency with respect to
intermediate support stiffness: (a) x = 0.1L; (b) x = 0.2L; (¢) x = 0.3L; (d) x = 0.4L

Table 3: Normalized frequency (4*) and normalized support stiffness (y*) with respect
to the distance from the left edge of the clamped-clamped beam.

x/L | 0.05| 0.10| 0.15) 0.20 0.25 0.30 0.35 040 0}45 Q.

A* 1 4.916] 5.127| 5.366| 5.637| 5.946| 6.298| 6.699| 7.146| 7.600| 7.853

N 2.250| 7.190| 4.090| 2.955| 2.415| 2.115| 1.880| 1.555| 8.550| 1.834
7 e6 eb5 eb5 e5 eb5 e5 eb5 e5 e4 e3
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Figure 5: Minimum normalized stiffness of an intermediate support through the
span to obtain the maximum fundamental frequency of a clamped-clamped beam.
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Figure 6: Maximum normalized fundamental frequency of a clamped-clamped
beam supported on an intermediate rigid support through the span.

3.2. Simply-Simply Supported Beam

In the same manner, let the beam be of lehgihdx be the distance from the
left end support and the beam be simply-simply etegd at both left and right ends.
Because of symmetry, only one half of the beam nigestigated. The elastic
intermediate support is provided at an intervaDdi5 of the span. The relationship
between the normalized frequency) (and the normalized stiffness of the elastic
support ¢) is plotted to determine the minimum stiffnesstiod intermediate support
which provides the fundamental frequency of thedgsupported beam. Indeed, the
plots at each 0.@50f the span are similar to those obtainedim 4 for the clamped-

clamped beam.
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Table 4 lists the values of the normalized frequendy)(and normalized
support stiffnessyt) with respect to the distance from the left edbthe beam. Also,
Figs. 7 and8 illustrate respectively the minimum stiffness of iatermediate support
and the corresponding maximum fundamental freqesnthrough the span of a
simply-simply supported beam. The horizontal linig) (represents the fundamental
frequency of a simply- simply supported beam withau intermediate support. Again,
it is clear that the optimum location of an intediae support is at mid span of the
beam. It is of interest to note that the percentaggease in the normalized
fundamental frequency of a simply-simply suppoieadm with intermediate support
with sufficient stiffness at the optimum locatios 100.0% greater than that without
intermediate supportigure 7 shows that the minimum stiffness of the intermegdiat
elastic support decreases as the intermediate duges far from the end support and
vice-versa. The variation of normalized stiffnes$arge near the end support (QL05
to 0.19.), becomes small in the range (Q.1%® 0.4Q.) and becomes steep near the
middle of the span (0.400.50L). On the other handFig. 8 shows that the
fundamental frequency increases as the intermedigbport goes far from the end
support to the middle of the beam (optimum locgtidwmain, if the elastic support is
not provided at the mid span, we obtain less furedad frequency which requires
much stiffness of the intermediate support.

Table 4. Normalized frequency (4*) and normalized support stiffness (y*) with respect
to the distance from the left edge of the simply-simply supported beam.

x/L | 0.05| 0.10| 0.15| 0.20 0.25 030 0.35 040 0{45 Q.50

A* | 4.065| 4.224| 4.407| 4.616| 4.855| 5.129| 5.439| 5.780| 6.111| 6.283

N 1.070| 3.580| 2.125| 1.580| 1.330| 1.183| 1.050| 8.435| 4.235| 9.961
’ e6 e5 e5 e5 e5 e5 e5 e4 e4 e2
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Figure 7: Minimum normalized stiffness of an intermediate support through the span to
obtain the maximum fundamental frequency of a simply-simply supported beam.
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Figure 8: Maximum normalized fundamental frequency of a simply-simply
supported beam supported on an intermediate rigid support through the span .

3.3. Clamped-Simply Supported Beam

In the same manner, let the beam be of lehgihdx be the distance from the
left end support. Assume the beam to be clampd#ukedeft end and simply supported
at right end. The elastic intermediate supportrisvidled at an interval of 0.05 of the
span in addition to the optimum location of theeimediate support at 0.5375The
relationship between the normalized frequemtiyand the normalized stiffness of the
elastic supportyf is plotted to determine the minimum stiffnesstioé intermediate
support which provides the fundamental frequencythef rigidly supported beam.
Indeed, the plots at the intermediate supportaifainterval of 0.06) are similar to
those obtained iRig. 4 for the clamped-clamped beam.

Table 5 lists the values of the normalized frequendy)(and normalized
support stiffnessyt) with respect to the distance from the clampecdeeanfggthe beam.
Also, Figs. 9 and 10 show respectively the minimum normalized stiffnegsan
intermediate support and the corresponding maximuonmalized fundamental
frequencies with respect to the distance from tamped edge of the clamped-simply
supported beam. The horizontal ling)(represents the fundamental frequency of a
beam without an intermediate support. It is cldwat tthe optimum location of an
intermediate support is at 0.587%om the clamped edg&igure 9 shows that the
minimum stiffness of the intermediate elastic suppwreases with being far from the
optimum location towards the end supports. On therchandFig. 10 illustrates that
the fundamental frequency decreases as the int@ataesupport goes far from the
optimum location towards the end supports of thanbeTherefore, if the elastic
support is not provided at the optimum location,olain less fundamental frequency
which requires much stiffness of the intermediatgp®rt (many times that required at
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the optimum location). It is of interest to mentithrat the percentage increase in the
normalized fundamental frequency of a clamped-simpupported beam with

intermediate support with sufficient stiffnessta bptimum location is 80.02% greater
than that without intermediate support.

Table 5: Normalized frequency (A*) and normalized support stiffness (y*) with respect
to the distance from the clamped edge of the clamped-simply supported beam.

x/L | 0.05| 0.10f 0.15| 020 025 030 035 040 0{45 q0.50
A* 4.080 | 4.254| 4.450| 4.672| 4.924| 5.212| 5.542| 5.920| 6.345| 6.783

. 2.180| 6.780| 3.760| 2.658| 2.145| 1.878| 1.720| 1.584| 1.360| 8.150
’ e6 eb5 eb5 eb5 eb5 eb5 eb5 eb5 eb5 e4
x/L | 0.55| 0.5575 0.60 | 0.65| 0.70f 0.78 0.80 0.85 090 0.5
A* | 7.059| 7.069 | 6.917 6.567| 6.202| 5.869| 5.575| 5.317| 5.092| 4.897
, | 3.588| 1.378 | 4.540| 1.005| 1.295| 1.515| 1.806| 2.380| 3.890| 1.118
’ e3 e3 e4 eb5 e5 eb5 eb5 e5 eb5 €6
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span to obtain the maximum fundamental frequency of a clamped-simply
supported beam.

Figure 9: Minimum normalized stiffness of an intermediate support through the
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Figure 10: Maximum normalized fundamental frequency of a clamped-simply
supported beam supported on an intermediate rigid support through the span.

3.4. Clamped-Free Beam

In the same manner, let the beam be of lehgihdx be the distance from the
left end support. Assume the beam to be clampdkeaeft end and free at right end.
The elastic intermediate support is provided atirdarval of 0.05 of the span in
addition to the optimum location of the intermediasupport at 0.7834 The
relationship between the normalized frequemtiyand the normalized stiffness of the
elastic supportyf is plotted to determine the minimum stiffnesstioé intermediate
support which provides the fundamental frequencythef rigidly supported beam.
Indeed, the plots at the intermediate supportaiainterval of 0.06) are similar to
those obtained iRig. 4 for the clamped-clamped beam.

Table 6 lists the values of the normalized frequendy)(and normalized
support stiffnessyt) with respect to the distance from the clampeceeaighe beam.
Also, Figs. 11 and 12 show respectively the minimum normalized stiffnedsan
intermediate support and the corresponding maximouonmalized fundamental
frequencies with respect to the distance from taenped edge of the clamped-free
beam. The horizontal lineld) represents the fundamental frequency of a clarmeed
beam without an intermediate support. It is cldat tthe optimum location of an
intermediate support is at 0.7&3#om the clamped edge. Also, the minimum stiffness
of the intermediate elastic support increases htimg far from the optimum location
towards the clamped support or the free edge. Tédsemum value of the normalized
stiffness is near the clamped edge. On the othed,h& can be seen that the
fundamental frequency decreases as the intermedigdport goes far from the
optimum location towards the clamped support or ftee edge of the beam. The
minimum value of the frequency is obtained when éhestic support is near the
clamped edge at which the value approaches thiiedbeam without an intermediate
support. It is interesting to mention that the petage increase in the normalized
fundamental frequency of a clamped-free beam wittermediate support with
sufficient stiffness at the optimum location is 1B® greater than that without
intermediate support.
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Table 6: Normalized frequencyAf) and normalized support stiffnesg) with respect
to the distance from the clamped edge ofcth@ped-free beam.

x/L | 005 | 0.10| 0.15 020 025 030 035 040 045 Q.50

A* | 1.948 | 2.028 2.117| 2.215| 2.324| 2.447| 2.586| 2.745| 2.928| 3.140

. | 1.960 | 5.465| 2.720| 1.722| 1.250| 9.920| 8.450| 7.470| 6.940| 6.630
7 6 e5 | e5 | e5 | E5 | e4 | e4 | e4 | e4 | E4

x/L| 055| 0.60| 0.65 0.70 0.75 0.7830.80| 0.85| 0.90| 0.9 1.00

A* | 3.389| 3.681| 4.018| 4.372| 4.637| 4.694| 4.680| 4.546| 4.344| 4.130| 3.925
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Figure 11: Minimum normalized stiffness of an intermediate support through the
span to obtain the maximum fundamental frequency of a clamped-free beam

5.0
4.0
3.0 1

2.0 - Ao

Funamental frequency

1.0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

x/L

Figure 12: Maximum normalized fundamental frequency of a clamped-free beam
supported on an intermediate rigid support through the span.
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4. CONCLUSIONS

The concept to increase the fundamental naturgLiéecy or eigenvalue of a
structure is commonly adopted to improve the dycapagrformance of the structure.
This paper investigates and discusses the minintifimess of an intermediate support
of a beam for maximum value of its fundamental decy. The study includes not
only the optimum location of the intermediate suppaut also various locations
through the span of the beam. Four cases of a lséesh model are investigated; 1)
clamped-clamped, 2) simply-simply, 3) clamped-syngind 4) clamped-free. A
parametric study is carried out to determine theimum stiffness of the intermediate
support which provides the fundamental frequencthefrigidly supported beam at an
interval of 0.05 of the span.

Based on the above results, it can be concludecthhe optimum location of
an intermediate support, we can obtain maximum domghtal frequency of the beam
with minimum stiffness of the intermediate suppdndeed, the optimum location
depends on the boundary conditions of the beais. df interest to mention that the
percentage increase in the normalized fundameneigiéncy of providing a beam with
an intermediate support at the optimum locatiorhsitfficient stiffness are 66.03%,
100%, 80.02% and 150.34% greater than those witiietmediate support for
clamped-clamped, simply-simply, clamped-simply andamped-free beams,
respectively. When the intermediate support isatdhe optimum location, there exists
a certain minimum stiffness of the support to dgike fundamental frequency of the
rigidly supported beam. Such minimum stiffness mme@non also occurs in the
buckling of beams. The normalized fundamental fezqy is deceased as the
intermediate support is moved far from the optimaoation with minimum value near
the end supports. However, the corresponding mimrstiffness of the intermediate
elastic support increases greatly as the interrteediapport is moved far from the
optimum location with maximum value at the end sarf(g). So, to make full use of an
intermediate elastic support, it should be providethe optimum location of the beam
or very near to it, otherwise stiffer support iguied with less fundamental frequency.
Finally, this work provides an important guide ftesigners to improve the dynamic
performance of beams with different end conditiaiia adding and/or changing
support positions with minimum stiffness prediction
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