
Journal of Engineering Sciences, Assiut University, Vol. 34,  No. 1,  pp. 79-87,  January 2006 

FAST  ALGORITHM  FOR  MINING  ASSOCIATION  RULES 
_____________________________________________________________________________ 

 

M. H. Margahny  and   A. Shakour 
Faculty of Science, Computer Science Department, Assuit University, 

Assiut, Egypt  

Email : marghany@acc.aum.edu.eg 

 
(Received  August  31, 2005  Accepted  November 22, 2005) 

  
One of the important problems in data mining is discovering 

association rules from databases of transactions where each transaction 

consists of a set of items. The most time consuming operation in this 

discovery process is the computation of the frequency of the occurrences 

of interesting subset of items (called candidates) in the database of 

transactions.  

Can one develop a method that may avoid or reduce candidate 

generation and test and utilize some novel data structures to reduce the 

cost in frequent pattern mining ? This is the motivation of my study.  

A fast algorithm has been proposed for solving this problem. Our 

algorithm use the "TreeMap" which is a structure in Java language. Also 

we present "Arraylist" technique that greatly reduces the need to traverse 

the database. Moreover we present experimental results which show our 

structure outperforms all existing available algorithms in all common 

data mining problems.  
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1. INTRODUCTION 

 

The rapid development of computer technology, especially increased capacities 

and decreased costs of storage media, has led businesses to store huge amounts of 

external and internal information in large databases at low cost. Mining useful 

information and helpful knowledge from these large databases has thus evolved into an 

important research area [1–3]. Among them association rule mining has been one of 

the most popular data-mining subjects, which can be simply defined as finding 

interesting rules from large collections of data.  

Association rule mining has a wide range of applicability such Market basket 

analysis, Medical diagnosis/ research, Website navigation analysis, Homeland security 

and so on.  

Association rules are used to identify relationships among a set of items in 

database. These relationships are not based on inherent properties of the data 

themselves (as with functional dependencies), but rather based on co-occurrence of the 

data items. Association rules, first introduced in  [4]. The subsequent paper [5] is 

considered  as  one  of  the  most  important   contributions  to  the   subject.   It's  main  
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algorithm, Apriori, not only influenced the association rule mining community, but it 

affected other data mining fields as well.  

Association rule and frequent itemset mining became a widely researched area, 

and hence faster and faster algorithms have been presented. Numerous of them are 

Apriori based algorithms or Apriori modifications. Those who adapted Apriori as a 

basic search strategy, tended to adapt the whole set of procedures and data structures as 

well [6–9]. Since the scheme of this important algorithm was not only used in basic 

association rules mining, but also in other data mining fields (hierarchical association 

rules [9–11], association rules maintenance [12–15], sequential pattern mining [16,17], 

episode mining [18] and functional dependency discovery [19,20]).  

Frequent pattern mining techniques can also be extended to solve many other 

problems, such as iceberg-cube computation [21] and classification [22]. Thus the 

effective and efficient frequent pattern mining is an important and interesting research 

problem.  

The reset of this paper is organized as follows. In section (2) we give a formal 

definition of association rules and the problem definition. Section (3) introduces our 

development. Experimental results are shown in section (4). Section (5) contains 

conclusions.  

 
2.  ASSOCIATION  RULE  PROBLEM  

 

Frequent itemset mining came from efforts to discover useful patterns in 

customers' transaction databases. A customers' transaction database is a sequence of 

transactions (T={t1,t2,….tn}), where each transaction is an itemset ( Tti  ). An 

itemset with k elements is called a k-itemset. The support of an itemset X in T denoted 

as support(X), is the number of those transactions that contain X, i.e. support(X)= 

}:{ ji tXt   .An itemset is frequently if its support is greater than a support 

threshold, originally denoted by min_supp. The frequent itemset mining problem is to 

find all frequent itemset in a given transaction database. 

 The algorithms were judged for three main tasks: all frequent itemsets mining, 

closed frequent itemset mining, and maximal frequent itemset mining.  

A frequent itemset is called closed if there is no superset that has the same support 

(i.e., is contained in the same number of transactions). Closed itemsets capture all 

information about the frequent itemsets, because from them the support of any frequent 

itemset can be determined. 

A frequent itemset is called maximal if there no superset that is frequent. Maximal 

itemsets define the boundary between frequent and infrequent sets in the subset lattice. 

Any frequent itemset is often also called free itemset to distinguish it from closed and 

maximal ones.  

Obviously, the collection of maximal frequent itemset is a subset of the collection 

of closed frequent itemset which is a subset of the collection of all frequent itemsets, 

the supports of all their subsets is not available, while this might be necessary for some 

applications such as association rules. On the other hand, the closed frequent itemsets 

from a lossless representation of all frequent itemsets since the support of those 

itemsets that are not closed is uniquely determined by the closed frequent itemsets [23]. 
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Through our study to find patterns problem we can divide algorithms into two 

types: algorithms respectively with and without candidate generation. Any Aprioi-like 

instance belongs to the first type. Eclat [11] may also be considered as an instance of 

this type. The FP-growth algorithm [24] is the best–known instance of the second type. 

Comparing the two types, the first type needs several database scans. Obviously the 

second type performs better than the first. 
 

Table 1 summarize and provides a means to briefly compare the three algorithms. We 

include in this table the maximum number of scans and data structures proposed. 
 

Table 1: Comparisons of algorithms. 
 

Algorithm Scan  Data structure 

Apriori M+1 HasTable&Tree 

Eclat M+1 HasTable&Tree 

FP-growth  2 Prefix-tree 

 
3.  PROPOSED  ALGORITHM    

The efficiency of frequent itemset mining algorithms is determined mainly by 

three factors: the way candidates are generated, the data structure that is used and the 

implementation details [25]. In this section we will show these points in our algorithm.   

 

3.1. Data Structure Description 
A central data structure of my algorithm is TreeMap, which is a collection in Java 

Languages. TreeMap is a sorted collection. It stores key/value pairs. You can find a 

value if you provide the key. Keys must be unique. You cannot to store two values 

with the same key. You insert elements into the collection in any order. When you 

iterate through the collection, the elements are automatically presented in sorted order. 

Every time an element is added to a tree, it is placed into its proper sorting position. 

Therefore, the iterator always visits the elements in sorted order.  

If the tree contain n elements, then an average of log2 n   comparisons are required 

to find the correct position for new element. For example, if the tree already contains 

1,000 elements, then adding a new element requires 10 comparisons. If you invoke the 

remove method of the iterator, you actually remove the key and its associated value 

from the map.  

A large TreeMap can be constructed by scanning the database where each 

different itemsets is mapped to different locations in the TreeMap, then the entries of 

the TreeMap gives the actual count of each itemset in the database. In that case, we don 

not have any extra the occurrences of each itemset.  

By using this collection my algorithm runs as follows, during the first pass of our 

algorithm, each item in the database is mapped to different location in the TreeMap. 

The “Put” method of the TreeMap adds a new entry. If an entry of item does not exist 

in the TreeMap construct a new ArrayList and add transaction number to it, otherwise 

add current transaction number.  

After the first pass, the TreeMap contains all elements of the database as the keys 

and it’s transaction number as it’s values, which is the exact number of occurrences of 
each item in the database. By making one pass only over the TreeMap and check its 
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values we can generate the frequent 1-itemsets (L1). Hence TreeMap can be used 

instead of the original file of database.  

In our algorithm we use the property that the transaction that does not contain any 

frequent k-itemset is useless in subsequent scans. In order that in subsequent passes, 

the algorithm prunes the database that represent the TreeMap at the present time by 

discarding the transactions, which have no items from frequent itemsets, and it also 

trims the items that are not frequent from the transactions.  

 
3.2. How to Generate Candidate 2-Itemsets and Their Frequencies? 

After getting L1 from the first pass, the TreeMap will include all the information 

about the database such as the keys that represents the items and the values of the 

transactions numbers. Then the candidate 2-itemsets will be generated from comparing 

the ArrayLists and choosing the common elements between both of them. This will 

lead us to get a new ArrayList of the candidate 2-itemsets (C2). In addition, L2 will be 

generated using the same procedure for getting L1. The process continues until no new 

Lk is found.  

 

3.3. Example 
 

3.3.1. Problem data  
An example with a transactional data D contents a list of 4 transactions and 

minsup=0.5. 

D 

TID List of items 

1 1    2    4    6 

2 2 

3 3    4    5 

4 2    5    6    7 

 

3.3.2. Solution Procedure   
1-Scan DB to construct TreeLarge Map 
*TreeLarge Map has two parameters:  

P1 : key = items  

P2 : value= ArrayList  

The elements of ArrayList (the transaction number that contains the item)  
 

Treelarge Map 

Key (item) Value (List of items) 

1 ArList1(1) 

2 ArList2(1,2,4) 

3 ArList3(3) 

4 ArList4(1,3) 

5 ArList5(3,4) 

6 ArList6(1,4) 

7 ArList7(4) 
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  2-Loop to construct L1(Large 1-itemset) ….. Lk (Large k-itemset) : 
Directly from Treelarge Map can construct L1….. Lk : 

by give the size of ArrayList and compare it with the minsup  

 
L1  

 

1-itemset Support  

2 0.75 

4 0.5 

5 0.5 

6 0.5 

 

 
Treelarge Map 

 

Key (item) Value (List of items) 

2 ArList2(1,2,4) 

4 ArList4(1,3) 

5 ArList5(3,4) 

6 ArList6(1,4) 

L2 

2-itemset Support  

2,6 0.5 

 

 

Treelarge Map 

Key (item) Value (List of items) 

2 ArList2(1,2,4) 

6 ArList6(1,4) 

L3= Null  

 
4.  EXPERIMENTAL  EVALUATION 

  

In this section, we present a performance comparison of our development with 

FP-growth and the classical frequent pattern-mining algorithm Apriori. All the 

experiments are performed on a 1.7 GHZ Pentium PC machine with 128 M.B main 

memory, running on WindowsXP operating system. All programs were developed 

under the java compiler, version 1.3.  For verifying the usability of our algorithm, we 

used three of the test datasets made of available to the Workshop on Frequent Itemset 

Mining Implementations(FIMI'04) [26].  

We report experimental results on one synthetic datasets and two real data sets. 

The synthetic dataset is T10I4D100K with 1K items. In this data set, the average 

maximal potentially frequent itemset size are set to 10 and 4, respectively, while the 

number of transactions in the dataset is set to 100K. It is sparse dataset. The frequent 

itemsets are short and not numerous.  

We use Chess and Mushroom as real data sets. The test datasets and some of their 

properties are described in Table 2. 

 
Table 2: Test dataset description. 

 

 

 

 

 

 
T=  Numbers of transactions 

I =  Numbers of items 

ATL=Average transactions length 

Dataset (T) I ATL 

T10I4D100K 100 000 1000 10 

Chess 3196 75 37 

Mushroom 8124 119 23 
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The performance of Apriori, FP-growth, our algorithm and these results are shown 

in figures (1-Chess, 2-Mushroom, 3-T10I4D100K). The X-axis in these graphs 

represent the support threshold values while the Y-axis represents the response times of 

the algorithms being evaluated.  

In these graphs, we see that the response times of all algorithms increase 

exponentially as the support threshold is reduced. This is only to be expected since the 

number of itemsets in the output, the frequent itemsets increases exponentially with 

decrease in the support threshold.  

We also see that there is a considerable gap in the performance of Apriori and FP-

growth with respect to our algorithm.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 1: Chess database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2: Mushroom database. 
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Figure 3: T10I4D100k database. 

 

 
5. CONCLUSION  AND  FUTURE  WORK   

Determining frequent objects is one of the most important fields in data mining. It 

is well known that the way candidates are defined has great effect on running time and 

memory need, and this is the reason for the large number of algorithms. It is also clear 

that the applied data structure also influences efficiency parameters. In this paper we 

presented an implementation that solved frequent itemset mining problem.  

In our approach, TreeMap store not only candidates, but frequent itemsets as well. 

By the way, the algorithm has the following advantages:  
 

1. Candidate generation becomes easy and fast.  

2. Association rules are produced much faster, since retrieving a support of an itemset 

is quicker. 

3. Just one data structure has to be implemented, hence the code is simpler and easier 

to maintain.  

4. Using unique TreeMap to store Lk and Ck reduce the usage of memory. 

5. Dealing with TreeMap is faster than dealing with database file.  

6. The original file isn’t influenced by the prunning process where its role ends as 
soon as TreeMap is constructed.  

7. The volume of the resulting database decreases each time we produce Lk, because 

prunning items is not frequent.  

8. Constructed TreeMap contains all frequent information of the database, hence 

mining the database becomes mining the Treeap.   

9. It provides features I haven’t seen in any other implementations of the Apriori-
generating algorithm. The most major one is that the frequent itemset generated are 

printed in alphabetical order. This makes easier for the user to find rules on as 

specific product. 
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With the success of our algorithm, it is interesting to re-examine and explore many 

related problems, extensions and application, such as iceberg cube computation, 

classification and clustering.  

Our conclusion is that our development is a simple, practical, straight forward and 

fast algorithm for finding all frequent itemsets.  
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 عد الترابطيΔ لϠبياناΕاخوارزϡ جديدة لتعدين القو

تنردام  فر قصعرد  طاصارصك يطارا  جرم الرش اعج رصي   فر قϭاعد ترااط  اعناصررا اعجϭدرϭد  
لذه اعنجلار  لرϭ ابرصل اعتيرااااك علناصررا اعج تلمر  اعجϭدرϭد   إتجصش ف اعجϬش  ϭاع  ءاعطاصاصك 

 قصعد  اعطاصاصك.  ف 
ϭقرك قلار  طصعجقصاارر   فر تقرداش  ااقر  ددارد  عابررصل لرذه اعتيرااااك  فر ϭعرذع  فياارص 

 ϭاعتر لذا اعجدرص  ϭاطارا اعميرا  علرا ابرت دش إاردا اع ϭاا جارصك  ف ططنض اع اق اعجناϭف  
عغرر  اعدصفررص ىإارردا   ϭلررا عطررصا  عررم تاياطررصك طاصاارر  فرر " TreeMap, ArrayList" تبررجا

 عغصك اعاصبل( .
ϭعقرد ترش اعرد اعطاصارصك اعجناقجاص طإدااء طنض اعتدصال اعنجلا  علرا طنرض قϭ فر  برلمصوϭ

جقصاارر  اعاتررصع  جررم  رراق جناϭفرر  ϭابررت ناص ابررتاطص  ام اع ااقرر  اعجقتاارر  تن ررا اتررصع   اطرر  
 جقصاا   جم اع اق اأ اا.  
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