
Journal of Engineering Sciences, Assiut University, Vol. 34, No. 1, pp. 79-87, January 2006

FAST ALGORITHM FOR MINING ASSOCIATION RULES

M. H. Margahny and A. Shakour
Faculty of Science, Computer Science Department, Assuit University,

Assiut, Egypt

Email : marghany@acc.aum.edu.eg

(Received August 31, 2005 Accepted November 22, 2005)

One of the important problems in data mining is discovering

association rules from databases of transactions where each transaction

consists of a set of items. The most time consuming operation in this

discovery process is the computation of the frequency of the occurrences

of interesting subset of items (called candidates) in the database of

transactions.

Can one develop a method that may avoid or reduce candidate

generation and test and utilize some novel data structures to reduce the

cost in frequent pattern mining ? This is the motivation of my study.

A fast algorithm has been proposed for solving this problem. Our

algorithm use the "TreeMap" which is a structure in Java language. Also

we present "Arraylist" technique that greatly reduces the need to traverse

the database. Moreover we present experimental results which show our

structure outperforms all existing available algorithms in all common

data mining problems.

KEYWORDS : data mining, association rules, TreeMap, ArrayList.

1. INTRODUCTION

The rapid development of computer technology, especially increased capacities

and decreased costs of storage media, has led businesses to store huge amounts of

external and internal information in large databases at low cost. Mining useful

information and helpful knowledge from these large databases has thus evolved into an

important research area [1–3]. Among them association rule mining has been one of

the most popular data-mining subjects, which can be simply defined as finding

interesting rules from large collections of data.

Association rule mining has a wide range of applicability such Market basket

analysis, Medical diagnosis/ research, Website navigation analysis, Homeland security

and so on.

Association rules are used to identify relationships among a set of items in

database. These relationships are not based on inherent properties of the data

themselves (as with functional dependencies), but rather based on co-occurrence of the

data items. Association rules, first introduced in [4]. The subsequent paper [5] is

considered as one of the most important contributions to the subject. It's main

79

mailto:marghany@acc.aum.edu.eg

M. H. Margahny and A. Shakour
__

80

algorithm, Apriori, not only influenced the association rule mining community, but it

affected other data mining fields as well.

Association rule and frequent itemset mining became a widely researched area,

and hence faster and faster algorithms have been presented. Numerous of them are

Apriori based algorithms or Apriori modifications. Those who adapted Apriori as a

basic search strategy, tended to adapt the whole set of procedures and data structures as

well [6–9]. Since the scheme of this important algorithm was not only used in basic

association rules mining, but also in other data mining fields (hierarchical association

rules [9–11], association rules maintenance [12–15], sequential pattern mining [16,17],

episode mining [18] and functional dependency discovery [19,20]).

Frequent pattern mining techniques can also be extended to solve many other

problems, such as iceberg-cube computation [21] and classification [22]. Thus the

effective and efficient frequent pattern mining is an important and interesting research

problem.

The reset of this paper is organized as follows. In section (2) we give a formal

definition of association rules and the problem definition. Section (3) introduces our

development. Experimental results are shown in section (4). Section (5) contains

conclusions.

2. ASSOCIATION RULE PROBLEM

Frequent itemset mining came from efforts to discover useful patterns in

customers' transaction databases. A customers' transaction database is a sequence of

transactions (T={t1,t2,….tn}), where each transaction is an itemset (Tti ). An

itemset with k elements is called a k-itemset. The support of an itemset X in T denoted

as support(X), is the number of those transactions that contain X, i.e. support(X)=

}:{ ji tXt  .An itemset is frequently if its support is greater than a support

threshold, originally denoted by min_supp. The frequent itemset mining problem is to

find all frequent itemset in a given transaction database.

 The algorithms were judged for three main tasks: all frequent itemsets mining,

closed frequent itemset mining, and maximal frequent itemset mining.

A frequent itemset is called closed if there is no superset that has the same support

(i.e., is contained in the same number of transactions). Closed itemsets capture all

information about the frequent itemsets, because from them the support of any frequent

itemset can be determined.

A frequent itemset is called maximal if there no superset that is frequent. Maximal

itemsets define the boundary between frequent and infrequent sets in the subset lattice.

Any frequent itemset is often also called free itemset to distinguish it from closed and

maximal ones.

Obviously, the collection of maximal frequent itemset is a subset of the collection

of closed frequent itemset which is a subset of the collection of all frequent itemsets,

the supports of all their subsets is not available, while this might be necessary for some

applications such as association rules. On the other hand, the closed frequent itemsets

from a lossless representation of all frequent itemsets since the support of those

itemsets that are not closed is uniquely determined by the closed frequent itemsets [23].

FAST ALGORITHM FOR MINING ASSOCIATION RULES
__

 81

Through our study to find patterns problem we can divide algorithms into two

types: algorithms respectively with and without candidate generation. Any Aprioi-like

instance belongs to the first type. Eclat [11] may also be considered as an instance of

this type. The FP-growth algorithm [24] is the best–known instance of the second type.

Comparing the two types, the first type needs several database scans. Obviously the

second type performs better than the first.

Table 1 summarize and provides a means to briefly compare the three algorithms. We

include in this table the maximum number of scans and data structures proposed.

Table 1: Comparisons of algorithms.

Algorithm Scan Data structure

Apriori M+1 HasTable&Tree

Eclat M+1 HasTable&Tree

FP-growth 2 Prefix-tree

3. PROPOSED ALGORITHM

The efficiency of frequent itemset mining algorithms is determined mainly by

three factors: the way candidates are generated, the data structure that is used and the

implementation details [25]. In this section we will show these points in our algorithm.

3.1. Data Structure Description
A central data structure of my algorithm is TreeMap, which is a collection in Java

Languages. TreeMap is a sorted collection. It stores key/value pairs. You can find a

value if you provide the key. Keys must be unique. You cannot to store two values

with the same key. You insert elements into the collection in any order. When you

iterate through the collection, the elements are automatically presented in sorted order.

Every time an element is added to a tree, it is placed into its proper sorting position.

Therefore, the iterator always visits the elements in sorted order.

If the tree contain n elements, then an average of log2 n comparisons are required

to find the correct position for new element. For example, if the tree already contains

1,000 elements, then adding a new element requires 10 comparisons. If you invoke the

remove method of the iterator, you actually remove the key and its associated value

from the map.

A large TreeMap can be constructed by scanning the database where each

different itemsets is mapped to different locations in the TreeMap, then the entries of

the TreeMap gives the actual count of each itemset in the database. In that case, we don

not have any extra the occurrences of each itemset.

By using this collection my algorithm runs as follows, during the first pass of our

algorithm, each item in the database is mapped to different location in the TreeMap.

The “Put” method of the TreeMap adds a new entry. If an entry of item does not exist

in the TreeMap construct a new ArrayList and add transaction number to it, otherwise

add current transaction number.

After the first pass, the TreeMap contains all elements of the database as the keys

and it’s transaction number as it’s values, which is the exact number of occurrences of
each item in the database. By making one pass only over the TreeMap and check its

M. H. Margahny and A. Shakour
__

82

values we can generate the frequent 1-itemsets (L1). Hence TreeMap can be used

instead of the original file of database.

In our algorithm we use the property that the transaction that does not contain any

frequent k-itemset is useless in subsequent scans. In order that in subsequent passes,

the algorithm prunes the database that represent the TreeMap at the present time by

discarding the transactions, which have no items from frequent itemsets, and it also

trims the items that are not frequent from the transactions.

3.2. How to Generate Candidate 2-Itemsets and Their Frequencies?

After getting L1 from the first pass, the TreeMap will include all the information

about the database such as the keys that represents the items and the values of the

transactions numbers. Then the candidate 2-itemsets will be generated from comparing

the ArrayLists and choosing the common elements between both of them. This will

lead us to get a new ArrayList of the candidate 2-itemsets (C2). In addition, L2 will be

generated using the same procedure for getting L1. The process continues until no new

Lk is found.

3.3. Example

3.3.1. Problem data
An example with a transactional data D contents a list of 4 transactions and

minsup=0.5.

D

TID List of items

1 1 2 4 6

2 2

3 3 4 5

4 2 5 6 7

3.3.2. Solution Procedure
1-Scan DB to construct TreeLarge Map
*TreeLarge Map has two parameters:

P1 : key = items

P2 : value= ArrayList

The elements of ArrayList (the transaction number that contains the item)

Treelarge Map

Key (item) Value (List of items)

1 ArList1(1)

2 ArList2(1,2,4)

3 ArList3(3)

4 ArList4(1,3)

5 ArList5(3,4)

6 ArList6(1,4)

7 ArList7(4)

FAST ALGORITHM FOR MINING ASSOCIATION RULES
__

 83

 2-Loop to construct L1(Large 1-itemset) ….. Lk (Large k-itemset) :
Directly from Treelarge Map can construct L1….. Lk :

by give the size of ArrayList and compare it with the minsup

L1

1-itemset Support

2 0.75

4 0.5

5 0.5

6 0.5

Treelarge Map

Key (item) Value (List of items)

2 ArList2(1,2,4)

4 ArList4(1,3)

5 ArList5(3,4)

6 ArList6(1,4)

L2

2-itemset Support

2,6 0.5

Treelarge Map

Key (item) Value (List of items)

2 ArList2(1,2,4)

6 ArList6(1,4)

L3= Null

4. EXPERIMENTAL EVALUATION

In this section, we present a performance comparison of our development with

FP-growth and the classical frequent pattern-mining algorithm Apriori. All the

experiments are performed on a 1.7 GHZ Pentium PC machine with 128 M.B main

memory, running on WindowsXP operating system. All programs were developed

under the java compiler, version 1.3. For verifying the usability of our algorithm, we

used three of the test datasets made of available to the Workshop on Frequent Itemset

Mining Implementations(FIMI'04) [26].

We report experimental results on one synthetic datasets and two real data sets.

The synthetic dataset is T10I4D100K with 1K items. In this data set, the average

maximal potentially frequent itemset size are set to 10 and 4, respectively, while the

number of transactions in the dataset is set to 100K. It is sparse dataset. The frequent

itemsets are short and not numerous.

We use Chess and Mushroom as real data sets. The test datasets and some of their

properties are described in Table 2.

Table 2: Test dataset description.

T= Numbers of transactions

I = Numbers of items

ATL=Average transactions length

Dataset (T) I ATL

T10I4D100K 100 000 1000 10

Chess 3196 75 37

Mushroom 8124 119 23

M. H. Margahny and A. Shakour
__

84

1- chess

0

500

1000

1500

2000

2500

3000

3500

95 94 93 90 85 80 70

Support(as a%)

T
im

e
(s

)

Apriori

fpgrowth

OurDev.

The performance of Apriori, FP-growth, our algorithm and these results are shown

in figures (1-Chess, 2-Mushroom, 3-T10I4D100K). The X-axis in these graphs

represent the support threshold values while the Y-axis represents the response times of

the algorithms being evaluated.

In these graphs, we see that the response times of all algorithms increase

exponentially as the support threshold is reduced. This is only to be expected since the

number of itemsets in the output, the frequent itemsets increases exponentially with

decrease in the support threshold.

We also see that there is a considerable gap in the performance of Apriori and FP-

growth with respect to our algorithm.

Figure 1: Chess database.

Figure 2: Mushroom database.

2- Mushroom

0

100

200

300

400

500

600

700

800

60 55 50 45 40

Support(a as a%)

T
im

e
(s

)

Apriori

fpgrowth

OurDev.

FAST ALGORITHM FOR MINING ASSOCIATION RULES
__

 85

Figure 3: T10I4D100k database.

5. CONCLUSION AND FUTURE WORK

Determining frequent objects is one of the most important fields in data mining. It

is well known that the way candidates are defined has great effect on running time and

memory need, and this is the reason for the large number of algorithms. It is also clear

that the applied data structure also influences efficiency parameters. In this paper we

presented an implementation that solved frequent itemset mining problem.

In our approach, TreeMap store not only candidates, but frequent itemsets as well.

By the way, the algorithm has the following advantages:

1. Candidate generation becomes easy and fast.

2. Association rules are produced much faster, since retrieving a support of an itemset

is quicker.

3. Just one data structure has to be implemented, hence the code is simpler and easier

to maintain.

4. Using unique TreeMap to store Lk and Ck reduce the usage of memory.

5. Dealing with TreeMap is faster than dealing with database file.

6. The original file isn’t influenced by the prunning process where its role ends as
soon as TreeMap is constructed.

7. The volume of the resulting database decreases each time we produce Lk, because

prunning items is not frequent.

8. Constructed TreeMap contains all frequent information of the database, hence

mining the database becomes mining the Treeap.

9. It provides features I haven’t seen in any other implementations of the Apriori-
generating algorithm. The most major one is that the frequent itemset generated are

printed in alphabetical order. This makes easier for the user to find rules on as

specific product.

3- T10I4D100K

0

50

100

150

200

250

300

350

0.1 0.8 0.06 0.04 0.02 0.01

Support

T
im

e
 (

s
)

Apriori

fpgrowth

OurDev.

M. H. Margahny and A. Shakour
__

86

With the success of our algorithm, it is interesting to re-examine and explore many

related problems, extensions and application, such as iceberg cube computation,

classification and clustering.

Our conclusion is that our development is a simple, practical, straight forward and

fast algorithm for finding all frequent itemsets.

REFERENCES

[1] R. Agrawal, T. Imielinksi and A. Swami, Database Mining: a performance
perspective, IEE Transactions on knowledge and Data Engineering, 1993.

[2] M. S. Chen, J.Han and P.S. Yu. Data Mining : An overview from a database
perspective, IEE Transactions on Knowledge and Data Engineering 1996.

[3] C.-Y. Wang, T.-P. Hong and S.–S. Tseng. Maintenance of discovered sequential
patterns for record deletion. Intell. Data Anal. pp. 399-410, February 2002.

[4] R. Agrawal, T. Imielinski, and A.Sawmi. Mining association rules between sets
of items in large databases. In proc. of the ACM SIGMOD Conference on
Management of Data, pages 207-216, 1993.

[5] R. Agrawal and R.Srikant. Fast algorithms for mining association rules. In Proc.
of Intl. Conf. On Very Large Databases (VLDB), Sept. 1994.

[6] J. S. Park, M-S. Chen, and P.S.YU. An effective hash based algorithm for
mining association rules. In M.J. Carey and D.A. Schneider, editors, Proceedings
of the 1995 ACM SIG-MOD International Conference on Management of Data,
pages 175-186, San Jose, California, 22-25. 1995.

[7] S. Brin, R. Motwani, J.D.Vllman, and S.Tsur. Dynamic itemset counting and
implication rules for market basket data. SIGMOD Record (ACM Special
Interest Group on Management of Data), 26(2): 255, 1997.

[8] H. Toivonen. Sampling large databases for association rules. In the VLDB
Journal, pages 134-145,1996.

[9] A. Sarasere,E.Omiecinsky,and S.Navathe. An efficient algorithm for mining
association rules in large databases. In Proc. 21St International Conference on
Very Large Databases (VLDB) , Zurich, Switzerland, Also Catch Technical
Report No. GIT-CC-95-04, 1995.

[10] Y. F. Jiawei Han. Discovery of multiple-level association rules from large
databases. In Proc. of the 21St International Conference on Very Large
Databases (VLDB), Zurich, Switzerland, 1995.

[11] Y. Fu. Discovery of multiple-level rules from large databases, 1996.
[12] D.W-L. Cheung, J.Han, V.Ng, and C.Y.Wong. Maintenance of discovered

association rules in large databases : An incremental updating technique. In
ICDE, pages 106-114,1996.

[13] D. W-L. Cheung, S.D.Lee, and B.Kao. A general incremental technique for
maintaining discovered association rules. In Database Systems for advanced
Applications, pages 185-194, 1997.

[14] S. Thomas, S.Bodadola, K.Alsabti, and S.Ranka. An efficient algorithm for
incremental updation of association rules in large databases. In Proc. KDD'97,
Page 263-266, 1997.

[15] N. F. Ayan, A.U. Tansel, and M.E.Arkm. An efficient algorithm to update large
itemsets with early prunning. In Knoweldge discovery and Data Mining, pages
287-291,1999.

FAST ALGORITHM FOR MINING ASSOCIATION RULES
__

 87

[16] R. Agrawal and R. Srikant. Mining sequential patterns. In P.S.Yu and A.L.P.
Chen, editors, Proc.11the Int. Conf. Data engineering. ICDE, pages 3-14. IEEE
pages, 6-10, 1995.

[17] R.Srikant and R.Agrawal. Mining sequential patterns. Generalizations and
performance improvements. Technical report, IBM Alamden Research Center,
San Jose, California, 1995.

[18] H. Mannila, H. Toivonen, and A.I.Verkamo. Discovering frequent episodes in
sequences. In proceedings of the First International Conference on knowledge
Discovery and Data Mining, pages 210-215. AAAI pages, 1995.

[19] Y. Huhtala, J. Karkkainen, P. Pokka, and H. Toivonen. TANE : An efficient
algorithm for discovering functional and approximate dependencies. The
computer Journal, 42(2) : 100-111, 1999.

[20] Y. Huhtala, J. Kinen, P. Pokka, and H. Toivonen. Efficient discovery of
functional and approximate dependencies using partitions. In ICDE, pages392-
401, 1998.

[21] K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and ice-berg
cubes. In Proc. 1999 ACM-SIGMOD Int. Conf. Management of Data
(SIGMOD’99), pages 359-370, Philadelphia, PA, June 1999.

[22] B. Liu, W.Hsu, and Y.Ma. Integrating classification and association rule mining.
In Proc. 1998 Int. Conf. Knowledge Discovery and Data Mining (KDD’98),
pages 80-86, New York, NY, Aug 1998.

[23] B. Goethals. Efficient Frequent pattern mining. PhD thesis, transactional
University of Limburg, Belgium, 2002.

[24] Han, J., Pei , J. ,and Yin ,y. . “Mining Frequent Patterns without Candidate
Generation : A Frequent-Pattern Tree Approach”. In Proc. ACM-SIG MOD Int.
Conf. Management of Data(SIG MOD'04) , pp. 53-87, 2004.

[25] F. Bodon. A Fast Apriori Implementation. Proc.1st IEEE ICDM Workshop on
Frequent Itemset Mining Implementations (FIMI2003,Melbourne,FL). CEUR
Workshop Pioceedings 90, A acheme, Germany2003.

 http://www.ceur-ws.org/vol-90/
[26] Frequent Itemset Mining Implementations (FIMI’03) WorkShop website,

http://fimi.cs.helsinki.fi, 2004.

 عد الترابطيΔ لϠبياناΕاخوارزϡ جديدة لتعدين القو

تنردام فر قصعرد طاصارصك يطارا جرم الرش اعج رصي فر قϭاعد ترااط اعناصررا اعجϭدرϭد
لذه اعنجلار لرϭ ابرصل اعتيرااااك علناصررا اعج تلمر اعجϭدرϭد إتجصش ف اعجϬش ϭاع ءاعطاصاصك

 قصعد اعطاصاصك. ف
ϭقرك قلار طصعجقصاارر فر تقرداش ااقر ددارد عابررصل لرذه اعتيرااااك فر ϭعرذع فياارص

 ϭاعتر لذا اعجدرص ϭاطارا اعميرا علرا ابرت دش إاردا اع ϭاا جارصك ف ططنض اع اق اعجناϭف
عغرر اعدصفررص ىإارردا ϭلررا عطررصا عررم تاياطررصك طاصاارر فرر " TreeMap, ArrayList" تبررجا

 عغصك اعاصبل(.
ϭعقرد ترش اعرد اعطاصارصك اعجناقجاص طإدااء طنض اعتدصال اعنجلا علرا طنرض قϭ فر برلمصوϭ

جقصاارر اعاتررصع جررم رراق جناϭفرر ϭابررت ناص ابررتاطص ام اع ااقرر اعجقتاارر تن ررا اتررصع اطرر
 جقصاا جم اع اق اأ اا.

http://www.ceur-ws.org/vol-90/
http://fimi.cs.helsinki.fi/

	Table 2: Test dataset description.

