
Informatics Bulletin, Faculty of Computers and Artificial Intelligence, Helwan University

Published Online Vol 3 Issue 1, January 2021

(https://fcihib.journals.ekb.eg)

16

Abstract— Code refactoring is an important procedure for

improving the code quality; it is used to improve the internal

structure without changing the external behavior of software. It

is achieved through various techniques e.g., extract methods,

move methods, rename methods, and classes in code. The main

goal is how code refactoring can be used to improve the quality.

Moreover, this study investigates the impact of code refactoring

on software internal and external quality attributes. As the

previous studies focus on the selected groups of either internal or

external quality attributes, the elected refactoring techniques can

be used to measure the impact on code quality enhancement.

According to the previous studies illustrated in this survey, we

demonstrate both internal and external quality attributes that

have positive or negative influences on the improvement of code

quality. This paper shows the internal quality attributes, which

have a positive improvement after refactoring operations such as

complexity, inheritance, coupling, and cohesion except size. In

addition, the external quality attributes having improvement on

code quality are maintainability, reusability, understandability,

and efficiency, except for performance has a negative effect.

Index Terms—code quality, refactoring, internal quality

attributes, external quality attributes, software metrics.

I. INTRODUCTION

Complexity of software systems has quickly increased

leading software companies to anticipate constant change.

Due to stakeholder's sustained requirements, companies will

be under continual pressure [1]. Software systems expose to

not only high levels of complexity but also different

weaknesses in code quality and sometimes failure.

Developers spend more than 60% of their time understanding

the code before maintenance, which means a huge cost [2].
The quality of code plays an important role in software

development. Provided the quality of a code reaches the

mark, it will be available, readable, testable and maintainable;

any high-quality code can be re-developed and re-used. In

case its quality has very low standards, the code will never

last and will use more time and energy [3].

Code Quality is a measurement in which there are some

principles and standards that together assure it and has good

qualities e.g., clarity, maintainability, documentation,

refactoring, well-tested, efficiency, usability, and

performance [4].

Refactoring is one of the important measurements that

improve code quality; it is used to modify the internal

structure of software component in such a way that is more

understandable and easily modifiable without making any

changes in the external behavior of software [5]. Developers

improve the structure of the code by applying some upgrades,

such as inserting code lines, which indicate adding the latest

functionality and reduce software complexity by repairing

these errors [5]. The basic objective of software refactoring is

the safe transformation to enhance quality. The advantage of

code refactoring is used to improve code quality by directly

measuring software metrics and indirectly the quality

attributes of software and enhancing its performance [6].

 Fowler [7] identifies refactoring techniques used to

refine the code. For the implementation of appropriate quality

attributes and metrics, different refactoring techniques are

created to keep the quality of code high such as move

method, inline class method, rename method, duplicate

observed data method, extract subclass and extract interface

method, etc.

Software quality is considered the basic standard by which

software includes a required set of properties used to improve

code quality and it is described as software characteristics by

which quality is represented and evaluated. It is divided into

two sets: internal and external software quality attributes.

Internal software quality attributes are defined as principles

of code quality evaluation according to the principles of

software design and clean code such as cohesion, coupling,

complexity, size, and inheritance [8]. Measuring the internal

quality attributes employs software quality metrics that are

used for estimating the value of the software quality attributes

such as weighted methods per class (WMC), the coupling

between object classes (CBO) and, lines of code (LOC) which

are defined as follows:

1) Response for Class (RFC): this is the number of methods

in an entity that can be executed when a message is

received by an object in this class.

2) Weighted Methods per Class (WMC): it represents the

number of methodological complexities.

3) Lack of cohesion between methods (LCOM): the number

of methods in a class, which does not have at least one

class.

A Survey of Refactoring Impact on Code Quality

Amany M. Draz Marwa S. Farhan Mai M. Eldefrawi

Software Engineering department, Information system department, Information system department,

Faculty of Computers and Faculty of Computers and Faculty of Computers and
Information, Artificial Intelligence, Artificial Intelligence,

Suez University, Suez, Egypt Helwan University, Cairo, Egypt Helwan University, Cairo Egypt

amany.mohamed@suezuni.edu.eg marwa.salah@fci.helwan.edu.eg mai.eldefrawi@fci.helwan.edu.eg

Informatics Bulletin, Helwan University, Vol 3 Issue 1, January 2021

17

4) Line of Codes (LOC): the number of lines in the code,

except for abandoned lines and comments, is counted.

5) Coupling between object classes (CBO): this indicates the

number of classes attached to a given class. Via field

access, arguments, method calls, return type, and

exceptions.

6) Cyclomatic Complexity (CC): it indicates the complexity

of a program. The number of linearly independent paths

measures it. Also, it is called McCabe.

7) Depth of inheritance tree (DIT): the length of the

hierarchy tree from the class to the parent class is

calculated.

8) Number of Children (NOC): this calculates the number

of the class's immediate descendants.

These software quality attributes are represented in the

category with its software metrics to be defined as shown in

Table I.

Table I

Internal Quality Attributes and Its Software Metrics [9]

Quality

Attribute

Software Metrics

Cohesion

LCOM

Coupling

CBO

RFC

Complexity CC

WMC
RFC

LCOM

Max Nest

Inheritance DIT
NOC

Polymorphism WMC

RFC
Encapsulation WMC

LCOM

Abstraction WMC

LCOM

Design Size LOC
CLOC

STMTC

NIM

 External software quality attributes are used to evaluate

software systems such as refactoring, maintainability,

readability, performance, security, reliability, and testability.

Fig 1 demonstrates the relation between software internal and

external quality attributes according to ISO / IEC-25010

standard [10].

Fig.1. The relation between software Internal and External Attributes [10]

The goal of this survey is to focus on how refactoring

enhances code quality and investigates its impact on both

internal and external software quality attributes.

The rest of this paper is organized as follows: section 2

introduces related work, section 3 describes the research

methodology, and section 4 explains the conclusion and

future work.

II. RELATED WORK

This section provides a detailed discussion on studies

related to this survey research. It covers how code refactoring

can be used to improve the quality of code. Also, it

investigates the impact of software refactoring on both internal

and external quality aspects.

Kaur et al. [6] analyze the software project for refactoring

and maintaining code collection releases for the project. The

ref-Finder is used to extract the refactoring code as well as

using it as a method not only to compare the effects of

previous releases but also to evaluate the present releases. The

code maintainability index is used to measure the code metrics

for each update. Adding some new functionality and using

better-refactoring approaches measures code metrics and

compares the latest release output to the current release results.

Kannangara et al. [11] investigate the effect of code

refactoring on software quality with five metrics by using ten

techniques. The result showed that refactoring has a positive

impact on software maintainability.

In another research, Kannangara et al. [12] aimed at

proving the request through which refactoring enhanced the

software quality. The objective is achieved by using both an

experimental study and refactoring techniques chosen for

analysis. The effect of each refactoring is developed based on

external estimates, and they are: analyzability, the behavior of

time, and the deployment of the resource. After the results of

the experiment were analyzed," Polymorphism with Replace

Conditional "was arranged between the top 10 refactoring of

techniques tested as it showed that the percentage of

enhancement in the quality of the code is high. Whereas

"Introduce Null Object" was classified as the worst on the

quality of the code, the results of the test hypotheses indicated

that the analyzability of the refactored code is less than the

non-refactored code for all the refactoring techniques tested,

except for "Replace conditional polymorphism."

Demeyer [13] develops a comparative study for checking

the influence of refactoring operation on software quality

attributes such as performance. It was found that the

performance of the software is improved after refactoring the

application.

Leitch et al. [14] check the effect of the refactoring

techniques such as extract and move methods through using

the dependency graph on maintainability attributes by two

applications. They found that refactoring of software can

improve software quality by decreasing design size, increasing

Informatics Bulletin, Helwan University, Vol 3 Issue 1, January 2021

18

the number of operations, minimizing dependencies of date,

and reducing software testability.

Bios et al. [15] establish a framework for analyzing the

influence of three software refactoring techniques on five

internal quality features of software such as cohesion,

coupling, complexity, inheritance, and size. The results

showed that refactoring has positive and negative effects on

the selected software measures.

 Bios et al. [16] evaluate a set of guidelines for improving

cohesion and coupling attributes. They used guidelines on a

software project and found that the refactoring influence is

ranged from negative to positive.

Moser et al. [17] provide internal software quality

attributes such as lines of code, CK, and MCC to verify the

effect of refactoring on software attributes reuse by a business

application, and they found that refactoring can improve

software reuse in the hard-to-reuse class.

Wilking et al. [18] propose an empirical study to verify the

effect of refactoring on external quality attributes e.g.,

maintainability and software modification. They investigated

the effect of software maintainability by including flaws in the

code. They also verified the modification of software by

adding new features and measuring line of code (LOC)

metrics, as well as calculating the time taken to develop these

features. The results showed that the effect of remodeling on

maintainability and modification is unclear.

 Spinellis et al. [19] developed four open-source software

projects to check the impact of the change happening after

refactoring the source code of these four open-source

software. They found that code refactoring had no measurable

effect on the software quality of the system.

Alshayeb [20] investigates the impact of refactoring on

software quality attributes using quantitative analysis. The

quality attributes focus on adaptability, maintainability,

reusability, understandability, and testability. He applied

software refactoring on three open-source software (e.g.,

terpPaint, UML, and Rabtpad). After these refactoring

operations, the result indicated that there was no necessity to

increase the quality of software.

Hegedus et al. [21] investigate the impact of software

refactoring operations on the traits of testing, false

vulnerability, and maintainability. The result shows that

refactoring has undesirable impacts, which can affect the

quality of software and reduce it.

Bavota et al. [22] employ RefFinder2 and that tool is used

not only to discover the refactoring but also to record the

history of the development for three open-source projects. In

particular, they check the relations between refactoring and

software quality. The results of the study show that 42% of the

refactoring operation was affected by the smell of code; only

in 7% of the items, refactoring was able to remove unpleasant

code smell.

Cedrim et al. [23] propose a study that contained 25

projects for checking the enhancement of the quality. They

analyze the relation between code refactoring and code smell

for identifying the refactoring processes based on the addition

or removal of code poor structures. The results show that only

2.24% of the reconstructions were deleted from software smell

and 2.66% were new scents.

Chavez et al. [24] investigate the impact of refactoring on

five software internal quality features such as cohesion,

coupling, complexity, inheritance, and size using 25 measures

of quality. The study shows that the processes related to root

canal refactoring improve or at least do not exacerbate internal

quality features. Also, 55% of operations related to dental

floss refactoring are used; these processes improved the

features, while the quality decreased by only 10%.

Kádár et al. [25] propose an examination of code

refactoring to produce the important open dataset for software

code metrics and to use refactoring across multiple versions of

the seven systems. Exploring the quality trait of duplicate

classes of source code and the efficiency of updating source

code metrics uses rebuilding techniques. Additionally, they

assessed the relationship between maintenance and rebuilding

methods, and they also looked at how the refactoring effect

was achieved for source code metrics. They propose a dataset

that includes data refactoring and over 50 software code

metrics for 37 versions for 7open-source software in the class

and action level.

Shahjahan et al. [26] propose a study to improve the

properties of the code by using graph theory techniques. Code

refactoring is a method to improve the quality without causing

any changes in its internal basic and external behavior.

Hypothesis techniques are used to relate the results that

occurred. In this study, response time is also enhanced. The

ability to analyze, to change, the behavior of time, and the use

of resources constitute the four main quality characteristics

used to enhance code quality.

Vasileva et al. [27] show an effective combination of the

quality of the code calculation in the software development

process. Inadequacy concepts are important pre-requisites for

code quality in addition to the selection of appropriate code

analysis tool. This study shows that the implementation of

measurement and didactic procedures in several iteration

cycles can ensure the long-term integration of quality aspects.

Simple refactoring techniques are used such as renames; they

have been successfully used by all teams. Their investigation

has shown that the time limit for working with tough

refactoring techniques is very complex for inexperienced

developers. They concluded that a good internal quality of the

code can be achieved without a high level of effort or

achievement. The quality of the code can be achieved at the

start of the project as early as in the design phase in case the

objective is set correctly. Therefore, they focus on the

beginning phase of their future research; also, they planned to

include calculations of the quality aspects of the model and

successful didactic methods to improve modeling results.

Fontana et al. [28] check the effect of refactoring of clones

on the internal quality attributes such as complexity, coupling,

and cohesion. They used three tools of clone detection on two

open-source programs, and they are: Ant and Ghantt Project.

The tool used for refactoring purposes is Intellij IDEA. They

Informatics Bulletin, Helwan University, Vol 3 Issue 1, January 2021

19

found that there was an enhancement in cohesion attribute and

a decrease in coupling, complexity, and code lines after

refactoring.

Shatnawi et al. [29] apply an empirical study to measure

the effect of refactoring on software quality by using many

techniques on two open-source software. The result of these

most refactoring techniques has a positive effect on software

quality however some refactoring techniques do not have any

noticeable impact on its external quality.

Stroulia et al. [30] check the effect of internal software

quality attributes, such as coupling and size on the quality

after making refactoring of software application. The result of

the attributes of coupling and size was decreased after

software refactoring.

Moser et al. [31] present a technique to investigate the

impact of refactoring on software reusability. Their analysis

shows that code refactoring had a positive effect on the

reusability of software.

Bavota et al. [32] check an empirical study on coupling

attributes. The study was conducted on three Java open-source

projects. The results showed that coupling measure allows it to

be the best one for the model of developers about the other

measures of coupling; the relations between classes are

encapsulated in the source code and cannot be easy to derive it

except by the only method calls.

Chapparo et al. [33] investigate the effect of software

refactoring techniques on software quality of source code via

Refactoring Impact Prediction (RIPE) by applying 12

refactoring operations and 11 software metrics. Also, RIPE is

used to measure the effect on 8,103 metric values, for 504

refactoring operations from 15 open-source systems. The

correct ratio of the measures is 38%, and the median of the

measures are approximately 5% with an average 31%.

Szoke et al. [34] use the 198 commits of refactoring of five

to check their impact on the software quality. The developers

identified the causes which made code was changed were

fixing coding bugs, enhancing the software metrics. The

results of this study show that a single refactoring of operation

had a negative impact on the software quality, however it

makes refactoring in blocks such as fixing code bugs or

enhancing the software quality metrics, which improve its

quality.

AL Dallal et al. [35] propose an empirical study analysis of

several, previous studies that summarize the effect of code

refactoring on software quality. Their results show that the use

of various refactoring techniques yielded opposite results on

the quality of refactored components.

Al Dallal [36] also proposed a framework to assess the

effect of various primary studies carried out on the assessment

of the impact of code refactoring on software quality

applications.

Jonsson in his work [37] applied on the software

applications, which were simultaneously being modified and

refactored. Its findings showed that refactoring had a positive

impact on measures of software quality application.

Ouni et al. [38] presented a multi-criterion refactoring

method where refactoring was done simultaneously in an

automated manner using various techniques. Their findings

showed that refactoring had a positive effect on software

cyclomatic complexity.

Pantiuchina et al. [39] applied an empirical study to check

The relation among seven software code metrics and the

enhancement of the quality. The result of the study showed

that quality metrics sometimes did not affect the quality

enhancement made by developers. They found that rarely the

changes of refactoring affected software quality.

In another research, Ouni et al. [40] develop an exploratory

study to measure the position between quality enhancement

and software metrics via 8 internal quality attributes and 27

software metrics. The results indicate that there are variety of

measures of enhancement and degradation of software quality.

Many of the metrics used to improve the quality attributes

(e.g., cohesion, coupling, and complexity) are assigned as key

software quality features capturing the developer's intentions

to improve the recorded quality in the confirmation letters, but

they are not assigned for some quality features.

Fernandes et al. [9] use 23 software systems with more

than 29 thousand refactoring activities, and almost 50% of

them were refactoring in o order to understand the effect of

refactoring and re-refactoring on any level. They assess five

factors that are cohesion, complexity, coupling, inheritance,

and size and combine explanatory analysis to statistical

studies. This analysis shows that 90% of refactoring and 100%

of re-refactoring are applied to code features with at least one

important attribute e.g., high elevation, which applied to code

features.

Kiyak [41] presents the use of data mining with refactoring

although automated refactoring does not provide the desired

performance; manual refactoring is time-consuming by

unsupervised learning algorithms that reduce the number of

refactoring options. Refactoring had a beneficial influence on

the quality of the software. It enhances code readability and

code maintainability of the source code; it reduces the

complexity of the software system.

Kaur et al. [8] check the effect of clones refactoring on

software quality by using four various open-source software

through the experimental study. The result shows that the

complexity attribute is decreased after the refactoring

operation. Also, the software functionality and reusability are

increased, while other software attributes such as

understandability, effectiveness, flexibility, and extendibility

are reduced. They conclude that refactoring techniques had a

positive or negative effect on software quality attributes.

Alawairdhi [7] investigates the effect of code refactoring

on both internal and external quality attributes such as

maintainability, performance, efficiency, and lines of code.

After refactoring, six internal and four external quality

measures were quantitatively evaluated for each component.

The findings show that refactoring had a substantial effect on

Informatics Bulletin, Helwan University, Vol 3 Issue 1, January 2021

20

the internal quality aspects of the application. However, the

effect of the refactoring code on external quality was limited.

Table II shows the summary of previous related work

about software internal and external quality attributes that are

used to measure the effect of software refactoring on code

quality.

Table II:

A summary of the effect of refactoring on internal software quality attributes and external software quality attributes

Study Year Software Metric Internal Quality Attributes External Quality Attributes

Hegedus et al. [21] 2010 CK Coupling, Complexity, Size Maintainability, Testability, Error

Proneness, Changeability

Stability, Analyzability
Shatnawi et al. [29] 2011 CK, QMOOD Inheritance, Cohesion, Coupling,

Polymorphism, Size, Encapsulation,

Composition, Abstraction, Messaging

Reusability, Flexibility,

 Extendibility, Effectiveness

Bavota et al.[32] 2013 ICP, IC-CD, CCBC

Coupling -

Szoke et al.[34] 2014 CC ,NOA ,NII ,NAni
LOC, NUMPAR, NMni, NA

Size, Complexity -

Bavota et al. [22] 2015 CK, LOC, NOA, NOO

C3, CCBC

Inheritance, Cohesion, Coupling

Size, Complexity

 -

Cedrim et al.[23] 2016 LOC, CBO, NOM, CC

FANOUT, FANIN

Cohesion, Coupling, Complexity -

Chavez et al.[24] 2017 CBO ,WMC , DIT ,NOC, TCC,
FANIN, FANOUT, CINT,

CDISP, CC, NPATH,

Max Nest, IFANIN , CLOC,
STMTC, CDL, NIV,

NIM, NOPA

Inheritance, Cohesion, Coupling,
Size, Complexity

 -

Pantiuchina et al. [39] 2018 LCOM, CBO, WMC, RFC

 B&W, LOC, LCOM2,

LCOM3, WOC

Cohesion, Coupling, Complexity Readability

Ouni et al. [37] 2019 LCOM, CBO, RFC, CC, WMC,
RFC, Max Nest, CLOC, CDL,

NIV, NIM, STMTC, FANIN

Cohesion, Coupling, Complexity,
Inheritance, Encapsulation,

Abstraction, Polymorphism,

Design, Size.

 -

Fernandes et al.[9] 2020 CBO, LOC, LCOM, DIT, TCC Cohesion, Coupling, Complexity,

Size, Inheritance

 -

Table III:

Comparison between Related Work on Code Quality

Reference Approach Result

Kannangara
et al. [11]

Evaluating ten refactoring
techniques to understand the

effect on software code for

quality
measures(maintainability)

Code refactoring had a
visibly positive effect on

maintainability.

Kiyak [41]

Using data mining with

refactoring. Although

automated refactoring did not
provide the required

performance, manual

refactoring was time-
consuming by unsupervised

learning algorithms.

Refactoring has had a

positive effect on the

quality of software
applications.

It enhanced code

readability and code
maintainability of the

source code and reduced
the complexity of the

software system.

Stroulia et

al. [30]

Investigating the influence of

internal quality aspects such
as size and coupling after

making the refactoring of the

software application.

size and coupling

metrics decreased after
refactoring

Moser et al.
[31]

Evaluating a technique to
determine the effect of

refactoring on the software

reusability.

Code refactoring has had
a positive effect on

software reusability.

Alawairdhi

[7]

Investigating the effect of

code refactoring on internal

and external software quality
aspects such as

maintainability, performance,

lines of code.

Code refactoring had a

significant effect on the

internal quality aspects
of the application such as

complexity.

As shown in Table III, we summarize all of the related

work in a nutshell; we come up with the following drawbacks

that include:

1) There is still no definitive conclusion of whether the

refactoring of code has a positive effect on the quality of

software as well as determining its degree.

2) Most of researches have concentrated on either internal or

external quality attributes. No one has extensively covered

both attributes of quality and impact investigation of

refactoring on every one of the quality attributes.

Informatics Bulletin, Helwan University, Vol 3 Issue 1, January 2021

21

3) There are not any systematic researches showing

experimental analysis for both external and internal quality

attributes and the possible relationships between them.

4) Most of researches focus on using the analysis quantitative

to measure the impact of software refactoring on both

internal and external quality attribute.

III. RESEARCH METHODOLOGY

The main goal of this study is to measure the impact of

refactoring on code quality using various internal and external

software quality attributes to enhance its quality. To achieve

the above goal, the study is conducted using two attributes:

internal and external attributes. Most of the previous studies

focus on either internal or external attributes. Thus, this study

mainly focuses on measuring both scales separately to

measure the effect of the refactoring on the quality of the

code.

Fowler in his study [7] classifies the 72 types of refactoring

techniques. In our study we identify the 10 techniques of

refactoring that can be used, and they are as follows:

1) Introduce Local Extension

2) Duplicate Observed Data

3) Replace Type Code with Subclasses

4) Replace Type Code with State/Strategy

5) Replace Conditional with Polymorphism

6) Introduce Null Object

7) Extract Subclass

8) Extract Interface

9) Form Template Method

10) Push Down Method

To apply 10 refactoring techniques to the source code project,

we identify the application that is implemented. The projects

are legacy systems.

The selected internal and external quality attributes are:

Internal quality attributes used to enhance the effect of code

refactoring on software quality. The attributes chosen from

ISO Quality organization used in our study are: Complexity,

Inheritance, Coupling, Cohesion, and size. To measure the

effect of refactoring on external quality attributes, the five

quality attributes used in this study are maintainability,

reusability, understandability, efficiency, and performance.

The software metrics are used to measure the effect of

refactoring on internal software quality in our study are

Cyclomatic Complexity, Depth of Inheritance, Class

Coupling, Lack of Cohesion of Methods, and Line of Code.

The following steps show the process of refactoring that

is applied to measure the effect of software refactoring on

both internal and external quality attributes for enhancing the

code quality:

1) Identifying the code that should be refactored.

2) Determining the refactoring techniques that be applied.

3) Undertaking that the applied refactoring techniques

maintain the behavior of software after refactoring.

4) Applying the selected refactoring techniques.

5) Evaluating the impact of refactoring techniques on both

internal and external software quality attributes.

6) Keeping the identification between the software that was

refactored and other software configurations.

Fig 2 illustrates the flow chart of refactoring steps applied to

measure the code quality.

Fig. 2. Flow chart of refactoring steps on code quality

The results of the study show that there are positive

improvements in code quality of the internal quality attributes

after refactoring operations as the effect of refactoring is

positive on the selected quality attributes except size. Also,

the external quality attributes show that the improvement is in

the maintainability, reusability, understandability, and

efficiency, except performance has a negative effect.

IV. CONCLUSION

This paper provides an extensive summary of research in

the area of code quality. We came to the fact that code quality

is essential for good software development; according to the

survey, we focus on code refactoring that can be used to

enhance the code quality. Also, it investigates the effect of

refactoring on both internal and external software quality

attributes. In this survey, we show the internal and external

quality attributes that have whether a positive or negative

effect on improvement of the code quality. Internal quality

attributes having an improvement on the quality of code after

refactoring operations are complexity, inheritance, coupling,

cohesion except size. Additionally, the external quality

attributes that have improvement on the code quality are

maintainability, reusability, understandability, and efficiency,
except for performance has a negative effect. After going

through the current studies, we came across two limitations:

one of them is that most researches rely on quantitative

analysis rather than experimental analysis with code

refactoring techniques. The second limitation is that

researchers focus on either internal or external quality

attributes. Moreover, there is no systematic research that

shows the experimental analysis for both external and internal

quality attributes and the possible relationships between them.

In future work, we intend to increase the scope of work by

focusing on more internal and external software quality

measures from the ISO quality organization.

REFERENCES

[1] S. Ling, and A. Finkelstein," Anticipating Change in Requirements

Engineering "In; /: Relating Software Requirements and

Architectures, Springer, Berlin, Heidelberg, 2011, DOI:
https://doi.org/10.1007/978-3642-21001-3_3.

[2] J. Börstler, “I know it when I see it–Perceptions of Code Quality," in

Proc of ACM Conference on Innovation and Technology in Computer
Science Education, Bologna, Italy, 2017, DOI:

http://dx.doi.org/10.1145/3059009.3081328.

https://doi.org/10.1007/978-3642-21001-3_3
http://dx.doi.org/10.1145/3059009.3081328

Informatics Bulletin, Helwan University, Vol 3 Issue 1, January 2021

22

[3] N. Rufus," Importance of Code Quality," 2019. [Online]. Available:
https://www.infognana.com/importance-of-code-quality/

[4] M. Török, "Comprehensive Guide to Code Quality Best Practices and

Tools,"2017[Online].Available:https://codingsans.com/blog/code-

quality.

[5] A. Bibiano, E. Fernandes, D. Oliveira, and A. Garcia, "A Quantitative
Study on Characteristics and Effect of Batch Refactoring on Code

Smells," ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement (ESEM), Porto de Galinhas, Recife,
Brazil, 2019, pp. 1-11, DOI: 10.1109/ESEM.2019.8870183.

[6] G. Kaur, and B. Singh, "Improving the quality of software by

refactoring," 2017 International Conference on Intelligent Computing
and Control Systems (ICICCS), Madurai, 2017, pp. 185-191, DOI:

10.1109/ICCONS.2017.8250707.

[7] M. Alawairdhi, "Code Refactoring and its Impact on Internal and
External Software Quality: An Experimental Study," IJCSNS

International Journal of Computer Science and Network Security,

VOL.19, No.6, June 2019.
[8] P. Kaur, and P. Mittal," Impact of Clones Refactoring on External

Quality Attributes of Open Source Software," International Journal of

Advanced Research in Computer Science, Vol. 8, No.5, June .2017.
[9] E. Fernandes, A. Chavez, A. Garcia, I. Ferreira, D. Cedrim, L. Sousa,

and W. Oizumi, "Refactoring Effect on Internal Quality Attributes:

What Haven’t They Told You Yet?, "Information and Software
Technology, 2020, DOI: https://doi.org/10.1016/j.infsof.2020.106347.

[10] R. Jabangwe, and J. Börstler, Smite, "Empirical evidence on the link

between object-oriented measures and external quality attributes: a
systematic literature review". Empirical Software Engineering 20, 640–

693, 2015. https://doi.org/10.1007/s10664-013-9291-7

[11] S. Kannangara, and W. Wijayanayake, “Measuring the Impact of
Refactoring on Code Quality Improvement Using Internal Measures,"

In Proc. of the International Conference on Business & Information,

Sri Lanka, December 2013.
[12] S. Kannangara, and W. Wijayanayake," Impact of Refactoring on

External Code Quality Improvement: An Empirical Evaluation”, In

Proc. of International Conference on Advances in ICT for Emerging
Regions, Sri Lanka, 2013.

[13] S. Demeyer," Maintainability versus performance: What’s the Effect

of introducing polymorphism," 2003.
[14] R. Leitch and E. Stroulia," Assessing the maintainability benefits of

design restructuring using dependency analysis," In Proceedings.5th

International Workshop on Enterprise Networking and Computing in

Healthcare Industry (IEEE Cat. No. 03EX717), 2003.

[15] B. Bois, and T. Mens," Describing the impact of refactoring on internal

program quality," In International Workshop on Evolution of Large-
scale Industrial Software Applications, 2003.

[16] B. Bois, S. Demeyer, and J. Verelst, "Refactoring-improving coupling

and cohesion of existing code, "In 11th working conference on reverse
engineering, IEEE, 2004.

[17] R. Moser, A. Sillitti, P. Abrahamsson, and G. Succi," Does refactoring

improve reusability?" In International Conference on Software Reuse,
Springer, 2006.

[18] D. Wilking, U. Kahn, and S. Kowalewski," An empirical evaluation of
refactoring," e-Informatics, 1(1):27–42, 2007.

[19] K. Stroggylos, and D. Spinellis, "Refactoring – does it improve

software quality?" In Proceedings of 5th International Workshop on
Software Quality (WoSQ’07: ICSE Workshops), 10–16, 2007.

[20] M. Alshayeb," Empirical investigation of refactoring effect on software

quality," Information and software technology, 51(9):1319–1326,
2009.

[21] G. Hegedus, G. Hrabovszki, and I. Siket, "Effect of object-oriented

refactoring on testability, error proneness, and other maintainability
attributes," In Proceedings of the 1st Workshop on Testing Object-

Oriented Systems, ACM, 2010.

[22] G. Bavota, A. Lucia, M. Penta, R. Oliveto, and F. Palomba, "An
experimental investigation on the innate relationship between quality

and refactoring, "Journal of Systems and Software, 107:1–14, 2015.

[23] D. Cedrim, L. Sousa, A. Garcia, and R. Gheyi, "Does refactoring
improve software structural quality? A longitudinal study of 25

projects," In Proceedings of the 30th Brazilian Symposium on Software

Engineering, ACM, 2016.
[24] A. Chávez, I. Ferreira, E. Fernandes, D. Cedrim, and A. Garcia., "How

does refactoring affect internal quality attributes? A multi-project

study, "In Proceedings of the 31st Brazilian Symposium on Software
Engineering, 2017.

[25] I. Kádár, and P. Hegedus, "A Code Refactoring Dataset and Its

Assessment Regarding Software Maintainability," IEEE 23rd
international conference on software Analysis, 2016.

[26] A. Shahjahan, "Impact of Refactoring on Code Quality by using Graph

Theory: An Empirical Evaluation," pp. 595–600, 2015.

[27] A. Vasileva, and D. Schmedding, "How to Improve Code Quality by
Measurement and Refactoring," 2016.

[28] F. Fontana, M. Zanoni, A. Ranchetti, and D. Ranchetti,"Software

Clone Detection and Refactoring," ISRN Software Engineering, 2013.

[29] R. Shatnawi, and W. Li, "An Empirical Assessment of Refactoring

Impact on Software Quality Using a Hierarchical Quality Model,"
International Journal of Software Engineering and Its Applications,

5(4):127–149, 2011.

[30] E. Stroulia, and R. Kapoor," Metrics of refactoring-based development:
An experience report," In OOIS 2001, Springer, 2001.

[31] R. Moser, P. Abrahamsson, W. Pedryc, A. Sillitti, and G.Succi," A

case study on the impact of refactoring on quality and productivity in
an agile team", In Proceeding of the Central and East-European

Conference on Software Engineering Techniques, Poznan, Poland,

2007.
[32] G. Bavota, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and A. De

Lucia, "An empirical study on the developers' perception of software

coupling," 2013 35th International Conference on Software Engineering
(ICSE),SanFrancisco,CA,2013,pp.692701,DOI:10.1109/ICSE.2013.660

6615..

[33] O. Chaparro, G. Bavota, and A. Marcus, "On the impact of refactoring
operations on code quality metrics," Software Maintenance and

Evolution (ICSME), IEEE International Conference on IEEE, 2014.

[34] G. Szóke, G. Antal, C. Nagy, R. Ferenc, and T. Gyimóthy," Bulk fixing
coding issues and its effects on software quality: Is it worth

refactoring? ,"In IEEE 14th International Working Conference on

Source Code Analysis and Manipulation, IEEE, 2014.
[35] J. Al Dallal, and A. Abdin, "Empirical Evaluation of the Impact of

Object-Oriented Code Refactoring on Quality Attributes: A Systematic

Literature Review," IEEE Transactions on Software Engineering, 2017.
[36] J. Al Dallal, "Evaluating quality of primary studies on determining

object-oriented code refactoring candidates," Proceedings of the

International Conference on Engineering & MIS ACM, 2015.
[37] A. Jonsson,"The Impact of Refactoring Legacy Systems on Code

Quality Metrics," 2017.

[38] A. Ouni, M. Kessentini, and H. Sahraoui,"Multi-criteria code
refactoring using search-based software engineering: An industrial case

study," ACM Transactions on Software Engineering and Methodology,

2016.
[39] J. Pantiuchina, M. Lanza, and G. Bavota, "Improving Code: The (Mis)

Perception of Quality Metrics, "IEEE International Conference on

Software Maintenance and Evolution (ICSME), Madrid, 2018, pp. 80-

91, DOI: 10.1109/ICSME.2018.00017.

[40] A. Ouni, E. Alomar, M. Mkaouer, and M. Kessentini, "On the Impact

of Refactoring on the Relationship between Quality Attributes and
Design Metrics," ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement (ESEM), Recife, Brazil, 2019,

pp. 1-11, DOI: 10.1109/ESEM.2019.8870177.
[41] E. Kiyak," Data Mining and Machine Learning for Software

Engineering", Data Mining - Methods, Applications, and Systems,

March 5th, 2020, DOI: 10.5772/intechopen.91448, [Online]. Available:
https://www.intechopen.com/online-first/data-mining-and-machine-

learning-for-software-engineering.

https://www.infognana.com/author/nishitha/
https://www.infognana.com/importance-of-code-quality/
https://www.infognana.com/importance-of-code-
https://codingsans.com/blog/code-quality
https://codingsans.com/blog/code-quality
https://ieeexplore.ieee.org/author/37087012300
https://ieeexplore.ieee.org/author/37277015100
https://doi.org/10.1016/j.infsof.2020.106347.
https://doi.org/10.1007/s10664-013-9291-7
https://www.researchgate.net/scientific-contributions/Marouane-Kessentini-71028926
https://www.researchgate.net/scientific-contributions/Houari-Sahraoui-69621831
https://www.intechopen.com/online-first/data-mining-and-machine-learning-for-software-engineering.
https://www.intechopen.com/online-first/data-mining-and-machine-learning-for-software-engineering.

