
The Egyptian Int. J. of Eng. Sci. and Technology

Vol.14, No. 3 (Sept. 2011)

A NEW MEHODOLOGY USING QFD FOR TRACING REQUIREMENTS IN

OBJECT-ORIENTED SOFTWARE DESIGN PROCESS*

Ahmed A. Attia
(1)

 and Mohamed A-k. Soliman
(2)

**

(1)
 National Authority for Remote Sensing and Space Sciences, Egypt

(2)
 Computer Eng. Dept., Faculty of Engineering, Zagazig University, Egypt

ABSTRACT

It has been widely acknowledged that software products should be developed based on customer requirements

in order to achieve a high level of software quality and customer satisfaction. Tracing customer requirements

and their impacts through the software development life cycle is not a well-explored area. In this paper, a

framework is presented that uses quality function deployment (QFD) to trace customer requirements explicitly

through various phases, such as requirements elicitation, analysis, and design in object-oriented software

development, by assessing their impact on software artifacts of the next stages. QFD helps visualize the

complete tracing from customer requirements to class designs. Degrees of impact are clearly calculated and

presented in QFD automatically using a simple software (an excel sheet). The Analytical Hierarchy Process

(AHP) is used to prioritize and calculate the importance index of customer requirements and their impact on

design stages. In traditional QFD, the correlation between customer requirements and technical requirements is

determined by the members of a design team using linguistic expressions (e.g. weak, average, and strong).

These linguistic terms are then scaled into crisp values (e.g. 1-3-9) for the ranking of each alternative. This crisp

assessment for correlation evaluation in QFD analysis has difficulty coping with uncertainty among design team

members. Therefore, fuzzy sets are adapted in this paper. TRIZ methodology (Theory of Inventive Problem

Solving) is used to solve for contradicting technical requirements in Object-Oriented design process. An ATM

machine object-oriented software design example is developed to illustrate and validate the framework.

KEY WORDS: Analytical hierarchy, quality function, house of quality, software quality, fuzzy sets, object-

oriented software design, traceability, customer requirements, subsystem, Unified Modeling Language (UML),

Class Diagram.

UNE NOUVELLE METHODOLOGIE QFD UTILISER POUR TRAÇAGE EXIGENCES ORIENTEE

OBJET PROCESSUS DE CONCEPTION DE LOGICIELS

RÉSUMÉ

Il a été largement reconnu que les produits logiciels doivent être développés en fonction des besoins des clients afin

d'atteindre un haut niveau de qualité des logiciels et la satisfaction du client. traçage exigences des clients et de leurs impacts

à travers le cycle de vie du développement logiciel n'est pas une zone bien explorée. Dans ce papier, un cadre est présenté

qui utilise Qualité Fonction Déploiement (QFD) pour tracer les exigences des clients explicitement par différentes phases,

telles que l'élicitassions des exigences, d'analyse et de conception dans le développement logiciel orienté objet, en évaluant

leur impact sur les artefacts logiciels de prochaines étapes. QFD permet de visualiser la traçabilité complète des besoins du

client à des conceptions de classe. Degrés d'impact sont clairement calculés et présentées dans QFD automatiquement en

utilisant un logiciel simple (une feuille Excel). Le processus de hiérarchie analytique (AHP) est utilisée pour hiérarchiser et

calculer l'indice de l'importance des besoins des clients et leur impact sur les étapes de conception. En QFD traditionnelle, la

corrélation entre les exigences des clients et des exigences techniques est déterminée par les membres d'une équipe de

conception en utilisant des expressions linguistiques (par exemple, faible, moyenne et forte). Ces termes linguistiques sont

ensuite mis à l'échelle en valeurs nettes (par exemple 1-3-9) pour le classement de chaque solution. Cette évaluation nette

pour l'évaluation dans l'analyse de corrélation QFD a de la difficulté face à l'incertitude parmi les membres de l'équipe de

conception. Par conséquent, les ensembles flous sont adaptés dans ce papier. TRIZ méthodologie (Théorie de résolution des

problèmes inventifs) est utilisé pour résoudre pour contredire les exigences techniques dans les processus de conception

orientée objet. Un guichet automatique orientée objet par exemple un logiciel de conception est développée pour illustrer et

de valider le cadre
.

MOTS CLÉS: processus de hiérarchie analytique (AHP), Qualité Fonction Déploiement (QFD), maison de qualité (HOQ),

déploiement de la fonction des logiciels de qualité (SQFD), ensembles flous, la conception de logiciels orientés objet, de la

traçabilité, les exigences des clients, les exigences du système, sous-système exigences, les exigences de la classe, Langage

Modelées Unifie (LMU), Diagramme de classe, cas d'utilisation.

* Received: 23/ 1 / 2011, Accepted: 4 / 8 / 2011 (Original Paper)

** Contact author (mamas2000@gmail.com)

EIJEST

288

A NEW MEHODOLOGY USING QFD FOR TRACING REQUIREMENTS IN OBJECT ORIENTED SOFTWARE DESIGN PROCESS

Atia and Soilman

1. INTRODUCTION

Traditionally, traceability analysis provides

linkages between requirements and design

items. Although the linkage is necessary, it is

not enough to develop software products with

high customer satisfaction.

A tradeoff analysis that can be done to select a

suitable requirement prioritization method and

the results of trying one method, AHP is

described by Nancy ([1], [2]). AHP was

developed by Thomas Saaty [3] and applied to

software engineering by Karlsson [4] and

Karlson and Ryan [5]. AHP is a method for

decision making in situations where multiple

objectives are present. This method uses a pair-

wise comparison matrix to calculate the relative

importance of software requirements. By using

AHP, the requirements engineer can also

confirm the consistency of the result. AHP can

prevent subjective judgment errors and increase

the likelihood that the results are reliable.

The limitations of QFD house of quality in its

original form and also the advantages of

automating it are identified [6]. It simplifies the

construction of the house of quality by creating

it on Microsoft Excel. The standard format of

the automated house of quality (AHOQ) created

has been tested to be reusable and extendable

for multiple applications. It saves time and

effort and ensures accurate calculations of

absolute and relative values.

A method for mapping and prioritizing

customer requirements into functional features

and technical modules to optimize market

performance is described [7]. Although the

quality of a product can be dramatically

improved through a QFD exercise, the

traditional crisp scoring approach has a major

drawback. To overcome this problem, fuzzy

scoring for linguistic terms is proposed. The

implementation case of a low-end digital

camera design shows that the result of the

proposed fuzzy QFD model can reflect the

certainty level of an evaluation term, which is

designated for each correlation of customer

requirements and technical requirements

considered in design.

How different requirements have different

impacts on design items is analyzed [8]. A

design item that is impacted by more important

requirements deserves more attention than a

design item that is impacted by fewer important

requirements. Otherwise, if more resources are

given to design items with small impacts on the

requirements, it is a waste of limited resources.

The issue of requirements traceability is

addressed by assessing the degrees of impact

with the help of quality function deployment

(QFD). QFD, which was developed more than

30 years ago in Japan, is a methodology that

incorporates the voice of the customer into a

product, and it is an excellent method for

assuring that customers receive high quality

products [9]. QFD is a process that transforms

the desires of the customer at all levels into the

implementation of a product. Software quality

function deployment (SQFD) is the application

of QFD to software production, which focuses

on improving the quality of both the software

development process and the product [10]. The

ultimate goal is no longer zero-defect software,

but rather good software that provides very high

customer satisfaction. SQFD has been applied

to the improvement of software quality focusing

on three phases of the software development life

cycle. It uses a set of house of quality (HoQ)

matrices to translate customer requirements into

system, subsystem, and class requirements.

This paper addresses the issue of requirements

traceability by assessing the degrees of impact

with the help of quality function deployment

(QFD), House of Quality (HoQ). Analytical

Hierarchy Process (AHP) is used for the

purpose of prioritizing the customer

requirements during implementing the House of

Quality. The house of quality has been

automated using an excel sheets thereby saving

effort and time by using automated calculations.

Besides, it gives the possibility of adding more

customer or technical requirements to the HoQ

matrix. Fuzzy sets and the concept of linguistic

variables are adapted in this research. This

model uses a three-phase set of house of quality

(HoQ) matrices to translate customer

requirements into system, subsystem, and class

requirements. An application example about

developing ATM machine object oriented

software design process is used. The priorities

resulting from the above has been used to

prioritize the methods of design in the

application program. The structure of classes

corresponding to each phase of development has

been shown.

289

The Egyptian Int. J. of Eng. Sci. and Technology

Vol.14, No. 3 (Sept. 2011)

2. QFD METHODOLOGY FOR

OBJECT-ORIENTED SOFTWARE

DEVELOPMENT; A NEW

INTEGRATED FRAMEWORK

2.1 Phases of development

During the design and development phases, it

is helpful to know what the most important

design items are in terms of their correlation

with the requirements. Thus, a priority

assessment framework is provided to help find

the important design items phase by phase. In

this framework, HoQ incorporates customer

requirements into multiple phases of the object-

oriented software development life cycle,

including system, subsystem, and class designs.

There has been little research, however, on the

traceability of customer requirements through

object-oriented software developments. QFD

seems to be a natural solution to this problem

because it was developed to transform the voice

of customer into designs. The advantage of

using HoQ (from QFD) in this methodology is

that it traces customer requirements from the

very beginning to object class design. As a

result, it is easier for both customers and

developers to visualize which component is

designed to reflect which set of requirements

and to what extent these requirements are

implemented. Based on the assessment result,

limited resources can be allocated to more

important design items and the resultant

software product will achieve a higher level of

customer satisfaction.

A new integrated framework (see Fig. 1) for the

application of QFD to object-oriented software

development is developed. There are three

phases in this development life cycle that this

framework covers. They are:

Phase 1: Customer requirements are deployed

to both the product functions and the quality

factors of the whole system. The fuzzy sets are

used for correlation in this phase instead of crisp

numbers.

Phase 2: The system characteristics, which

reflect the voice of customers, obtained from the

previous phase are deployed into the important

subsystem functions and subsystem constraints.

Phase 3: The subsystem characteristics from the

previous phase are deployed to the important

class functions and class constraints.

Quality and functionalities are the two major

issues affecting the degree of customer

satisfaction. Thus, it is needed to relate

customer requirements with each one of the two

using HoQs. The HoQ relating customer

requirements with the quality factors is given

the name Q-HoQ; similarly, the HoQ relating

customer requirements with the functionalities

is given the name F-HoQ. The design point

analysis matrix is then used to combine the

quality factors and functionalities, both of which

now have weight values reflecting the impacts

from the customer requirements.

In Fig. 1, the matrices R2, S2 and C2 are Q-

HoQs; the matrices R1, S1 and C1 constitute F-

HoQs; and the matrices R3 and S3 are of the

type of design point analysis matrix. The

customer requirements serve as an input into R1

(F-HoQ) and R2 (Q-HoQ) requirement

elicitation matrices. The results of these two

requirements elicitation matrices serve as inputs

for the R3 matrix. Results of the R3 matrix are

used to combine the product functions and

quality factors into one set of subsystem-level

requirements, which are carried over to Phase 2

of the development life cycle where similar

steps are taken

Fig. 1 Integrated framework for object-oriented

software development [8].

2.2 Types of Matrices of QFD

2.2.1 The Q-HoQ Matrix (R2/S2/C2):

The structure of the Q-HoQ matrix is shown

in Fig. 2. The most important components of the

Q-HoQ are:

Requirements: They are identified from

customer statements or are obtained from the

previous phase.

290

A NEW MEHODOLOGY USING QFD FOR TRACING REQUIREMENTS IN OBJECT ORIENTED SOFTWARE DESIGN PROCESS

Atia and Soilman

Importance: Traditionally the importance

column in the matrix accommodates a list of

importance ratings (real values between 1 and 9)

for the requirements entered. Importance ratings

can be better achieved using the Analytical

Hierarchy Process (AHP) Technique

(Tables 1,2).

Fig. 2 The Q-HoQ Matrix [8].

Table 1: A questionnaire form for deciding on the

importance index of the customer requirements [3]

Table 2: Analytical hierarchy process for

prioritizing customer requirements [3]

Quality factors: The quality factors columns in

the matrix accommodate a list of quality factors

that contribute to the satisfaction of the

requirements. Quality factors specify the desired

quality attributes that need to be considered

during the development of a particular software

product, such as reliability, understandability,

and so on.

Correlation: The degree of impact of a quality

factor on the satisfaction of a requirement is

entered in a correlation matrix cell (the

intersection of the quality factor and the

requirement). Seven levels of impact are used to

fill these cells. The fuzzy set is used to

implement this correlation (Fig. 3). Most

researchers use special fuzzy numbers, such as

triangular fuzzy numbers, trapezoidal fuzzy

numbers, and R-L fuzzy numbers, to satisfy the

need of modeling fuzzy problems. For

simplicity, the most commonly used trapezoidal

fuzzy numbers are used for necessary

illustrations in this paper (Fig. 4). The proposed

fuzzy QFD model provides the ability for

changing the level of linguistic certainty for the

problem by altering the proposed linguistic

certainty index. That is, selecting different

spreads of fuzzy numbers will reveal different

levels of linguistic certainty (Fig. 5). A fuzzy

number with a wider spread possesses a more

ambiguous decision-making condition where

the design team is uncertain with the evaluation.

Conversely, a fuzzy number with a shorter

spread represents a more clear and confident

decision-making environment.

Fig. 3 A typical graph of a fuzzy number

described by the equation above, [7].

The membership function of a trapezoidal fuzzy

number will be:

Fig. 4 Linguistic terms for Correlation [7].

Fig. 5 Different fuzzy numbers revealing

different linguistic certainty levels [7].

Absolute coverage: The absolute coverage of a

requirement is examined against its

corresponding quality factors in the matrix. For

each requirement X, across all quality factors, Y

is calculated as:

 (1)

291

The Egyptian Int. J. of Eng. Sci. and Technology

Vol.14, No. 3 (Sept. 2011)

Relative coverage: The relative coverage of a

requirement is examined against those of all

requirements. For each requirement X, the

relative coverage is calculated as:

(2)

The relative coverage ensures that a high-

priority customer requirement receives coverage

proportional to its priority.

Weighted and relative importance: For each

quality factor X, across all requirements Y, the

weighted importance value can be calculated

from the importance values of the requirements

and the correlation values between this quality

factor and all requirements as follows:

(3)

With all the weighted importance values

calculated, the relative importance value of a

quality factor X can be obtained as follows:

(4)
Target: The development targets are set for

one’s product.

Roof: The roof contains the tradeoffs between

the quality elements. A plus sign (+) is used to

indicate a positive relation and a minus sign (-)

to indicate a negative relation. If improving the

satisfaction of one quality factor will harm

another, a negative relation exists between the

two. For instance, if the fault tolerance requires

more safety checking and recovering

calculation, it will very likely sacrifice the

efficiency of the system. Thus, fault tolerance

and efficiency are negatively related.

Conversely, if one quality factor improves

another, there is a positive relation.

2.2.2 F-HoQ Matrix (R1/S1/C1):

The structure of the F-HoQ matrix is shown in

Fig. 6.

It differs from the Q-HoQ by not having the

roof, because the functions are implementation

independent. Hence, negative correlations

among them are rare. In addition, the F-HoQ

deploys requirements to functions instead of

quality factors. The calculations of the absolute

and relative coverages for the requirements and

the weighted and relative importance values for

the functions are similar to Equations 1 to 4

used in the Q-HoQ.

Fig. 6 F-HoQ matrix [8].

It differs from the Q-HoQ by not having the

roof, because the functions are implementation

independent. Hence, negative correlations

among them are rare. In addition, the F-HoQ

deploys requirements to functions instead of

quality factors. The calculations of the absolute

and relative coverages for the requirements and

the weighted and relative importance values for

the functions are similar to Equations 1 to 4

used in the Q-HoQ.

2.2.3 Design Point Analysis Matrix

(R3/S3):

The structure of the design point analysis matrix

is shown in Fig. 7.

Fig. 7 Design point analysis matrix [8].

It is used to integrate functions and quality

factors by examining their impacts on each

other. The aim is to produce technical

requirements for the next phase so that the

original customer requirements are traced along

the design of the system components. Following

is the list of components in the design point

analysis matrix:

Quality factors and functions: These are

obtained from the Q-HoQ and F-HoQ matrices.

292

A NEW MEHODOLOGY USING QFD FOR TRACING REQUIREMENTS IN OBJECT ORIENTED SOFTWARE DESIGN PROCESS

Atia and Soilman

Initial priorities: These are obtained from the

relative importance values calculated in the Q-

HoQ and F-HoQ matrices.

Correlation: The degree of importance of a

quality factor on a function is entered in a

correlation matrix cell (the intersection of the

quality factor and the function) using crisp

values (Fuzzy sets are used instead of crisp

values in phase 1, requirements elicitation

phase). Three levels of impact are used for crisp

values to fill these cells (as shown in Fig. 8).

Fig. 8: Crisp correlation values [8].

Weighted priorities: For each quality factor X

and each function Y, the weighted priority can

be calculated from the initial priority values and

the correlation values as follows:

(5)

(6)

Final priorities: For each quality factor X and

each function Y:

` (7)

(8)

These final priorities are calculated for

traceability purpose. They reflect the level of

satisfaction of the original set of customer

requirements.

3. APPLICATION EXAMPLE

The design of ATM machine software,

through which bank customers can perform

several of the most common financial

transactions, was chosen as an example to

illustrate the QFD methodology for object-

oriented software development. The machine

consists of a display screen, a bankcard reader,

numeric and special input keys, a money

dispenser slot, and a receipt printer. The

methodology consists of three phases of object

oriented software design. In Requirements

Elicitation Phase, a number of requirements

were elicited. For instance, the software should

have an easy-to-use interface, real-time

updating capability of the account information,

and so on. From these requirements, the system

design starts with a number of major system

functionalities and system constraints. In the

subsystem design phase, the integrated system-

level functionalities and constraints become the

subsystem requirements from which the

subsystem constraints and functionalities are

obtained. Finally, In Class Design Phase, the

integrated subsystem-level constraints and

functionalities are used to develop class-level

functionalities and constraints. After the relative

importance values of the class constraints and

class functions are calculated, the original set of

customer requirements are successfully

transformed into the object class design in the

object oriented software development process.

The major contribution of the new

methodology is that it coordinates efficiently the

following tools and functions:

 Customer Requirements are prioritized

using the Analytical Hierarch Process

(AHP).

 Fuzzy set theory is used for the correlation

of requirements in the QFD, House of

Quality, in requirements elicitation phase,

for the purpose of increasing the

discriminating ability of QFD analysis,

removing the possible stakeholder’s bias

and increasing the accuracy of calculations.

 The House of Quality is automated on an

excel sheet in order to save time and effort

and ensure accuracy of calculating the

absolute and relative weightings of

technical requirements.

 TRIZ methodology is used in the Q_HoQ

for resolving the technical contradictions

between the feature parameters of the object

oriented design process.

 Requirements traceability diagrams are

demonstrated.

 Class diagrams and use cases are

implemented to depict graphically object

oriented software design process

3.1 Analytical Hierarchy Process

Categories of requirements are shown in

Table 3.

293

The Egyptian Int. J. of Eng. Sci. and Technology

Vol.14, No. 3 (Sept. 2011)

Table 3: Requirements categories of ATM machine [8]
No Customer Requirements System Requirements Subsystem Requirements Class Requirements

ID Title ID Title ID Title ID Title

1 CR1 Ease of use QF1 Time to learn SQF1 Accuracy CQF1 Reusability

2 CR2 Readable screen QF2 Data integrity SQF2 Efficiency CQF2 Security

3 CR3 Easy to correct QF3 Level of security SQF3 Operability CQF3 Fault tolerance

4 CR4 Access any account SR1 Access accounts SF1 Dispense cash CQF4 Recoverability

5 CR5 Real-time update SR2 Updates account SF2 Screen display CF1 Control ATM

6 CR6 Security SR3 Transfer funds SF3 Cash deposit CF2 Handle ATM

card

7 CR7 Fast response SR4 Display account

status

SF4 Read card CF3 Handle customer

data

8 CR8 Always available SR5 Validate access SF5 Access customer data CF4 Interface

9 CR9 Accuracy SR6 Provide receipt SF6 Account handler CF5 Manage account

The Analytical Hierarchy Process for prioritizing customer requirements (CR1, CR2… CR9) is

shown in Tables 4, 5.

Table 4: Questionnaire for CRs pair wise comparisons [3].

Table 5: AHP for prioritizing customer requirements of ATM machine software [3].

It is obvious from the consistency check of

the AHP process that the inconsistency ratio

(CI/RI) is about 1%. This is a very small ratio

(acceptable ratio is up to 10%) and indicates

that the inconsistency in judgment of the pair-

wise comparison of customer requirements is

negligible.

294

A NEW MEHODOLOGY USING QFD FOR TRACING REQUIREMENTS IN OBJECT ORIENTED SOFTWARE DESIGN PROCESS

Atia and Soilman

3.2 Design Phases

2.2.4 3.2.1 Phase 1: Customer

requirements – system requirements

The Quality, House of Quality (Q_HoQ), in

requirements elicitation phase is shown in

Fig. 9.

The Functional, House of Quality (F_HoQ),

in requirements elicitation phase is shown in

Fig. 10
The Design Point Analysis Matrix in

Requirements Elicitation Phase is shown in

Fig. 11.

Fig. 9 Q-HoQ in requirements elicitation phase

295

The Egyptian Int. J. of Eng. Sci. and Technology

Vol.14, No. 3 (Sept. 2011)

Fig. 10: F-HoQ in requirements elicitation phase

Fig. 11: Design point analysis matrix in requirements elicitation phase

296

A NEW MEHODOLOGY USING QFD FOR TRACING REQUIREMENTS IN OBJECT ORIENTED SOFTWARE DESIGN PROCESS

Atia and Soilman

The importance index of System

Requirements and Quality Factors, as an output

from the Requirements Elicitation Phase, is

shown in Table 6.

Table 6: Priorities of System Requirements and

Quality Factors
No Requirement Category ID Requirement Title Priority

1 System Requirement SR2 Updates Account 0.2964

2 System Requirement SR3 Transfer Funds 0.2196

3 System Requirement SR4 Display Account Status 0.1938

4 System Requirement SR1 Access Accounts 0.1317

5 System Requirement SR5 Validate Access 0.0813

6 System Requirement SR6 Provide Receipt 0.0615

1 Quality Factor QF2 Data Integrity 0.4676

2 Quality Factor QF3 Level of Security 0.2922

3 Quality Factor QF1 Time to Learn 0.2245

2.2.5 Phase 2: System Requirements –

Subsystem Requirements

The Quality, House of Quality (Q_HoQ), in

subsystem design phase is shown in Fig. 12

Fig. 12: Q-HoQ in subsystem design phase

The Functional, House of Quality (F_HoQ),

in Subsystem Design phase is shown in Fig. 13.

Fig. 13: F-HoQ in subsystem design phase

The Design Point Analysis Matrix in

Subsystem Design Phase is shown in Fig. 14.

Fig. 14: Design point analysis matrix in

subsystem design phase

The importance index of Subsystem Functions

and Subsystem Constraints, as an output from

the Subsystem Design Phase, is shown in

Table 7.

Table 7: Priorities of Subsystem Functions

and Subsystem Constraints
No Requirement Category ID Requirement Title Priority

1 Subsystem Function SF4 Read Card 3.490

2 Subsystem Function SF6 Account Handler 1.939

3 Subsystem Function SF1 Dispense Cash 1.794

4 Subsystem Function SF3 Cash Deposit 1.467

5 Subsystem Function SF5 Access Customer Data 0.954

6 Subsystem Function SF2 Screen Display 0.356

1 Subsystem Constraint SC1 Accuracy 5.010

2 Subsystem Constraint SC2 Efficiency 2.556

3 Subsystem Constraint SC3 Operability 2.434

2.2.6 Phase 3: Subsystem Requirements

– Class Requirements

The Quality, House of Quality (Q_HoQ), in

Class Design phase is shown in Fig. 15.

Fig. 15: Q-HoQ in class design phase

297

The Egyptian Int. J. of Eng. Sci. and Technology

Vol.14, No. 3 (Sept. 2011)

The Functional, House of Quality (F_HoQ),

in Class Design phase is shown in Fig. 16.

Fig. 16: F-HoQ in Class Design Phase

The importance index of Class Functions and

Class Constraints, as an output from the Class

Design Phase, is shown in Table 8.

Table 8: Priorities of Class Functions and Class

Constraints
No Requirement Category ID Requirement Title Priority

1 Class Function CF5 Manage Account 3.379

2 Class Function CF3 Handle Customer Data 2.987

3 Class Function CF1 Control ATM 1.862

4 Class Function CF2 Handle ATM Card 1.052

5 Class Function CF4 Interface 0.720

1 Class Constraint CC3 Fault Tolerance 4.333

2 Class Constraint CC4 Recoverability 2.854

3 Class Constraint CC2 Security 1.824

4 Class Constraint CC1 Reusability 0.989

The resultant priorities of requirements /

Functions / Constraints across the three phases

of object oriented software design process are

shown in Table 9.

Table 9: Priorities of Requirements / Functions / Constraints across the phases of design
Phase 1

Phase 2

Phase 3

Customer Requirements System Functions/Constraints Subsystem Functions/Constraints Class Functions/Constraints

ID Title Priority ID Title Priority ID Title Priority ID Title Priority

CR9 Accuracy 0.2414 SR2 Updates Account 0.2964 SF4 Read Card 3.490 CF5 Manage Account 3.379

CR8 Always available 0.2191 SR3 Transfer Funds 0.2196 SF6 Account Handler 1.939 CF3 Handle Customer Data 2.987

CR1 Ease of use 0.1540 SR4 Display Account Status 0.1938 SF1 Dispense Cash 1.794 CF1 Control ATM 1.862

CR4 Access any account 0.0846 SR1 Access Accounts 0.1317 SF3 Cash Deposit 1.467 CF2 Handle ATM Card 1.052

CR3 Easy to correct 0.0818 SR5 Validate Access 0.0813 SF5 Access Customer Data 0.954 CF4 Interface 0.720

CR5 Real-time update 0.0818 SR6 Provide Receipt 0.0615 SF2 Screen Display 0.356 CC3 Fault Tolerance 4.333

CR6 Security 0.0723 QF2 Data Integrity 0.4676 SC1 Accuracy 5.010 CC4 Recoverability 2.854

CR7 Fast response 0.0489 QF3 Level of Security 0.2922 SC2 Efficiency 2.556 CC2 Security 1.824

CR2 Readable screen 0.0162 QF1 Time to Learn 0.2245 SC3 Operability 2.434 CC1 Reusability 0.989

3.3 Requirements Traceability

Requirements traceability through all three

phases of ATM machine object oriented

software design is shown in the traceability

diagram, Fig. 17.

Requirements traceability can be

demonstrated in two ways: Forward

Requirements Traceability and Backward

Requirements Traceability.

Table 10 shows the Forward Requirements

Traceability (in phase 1: Requirements

Elicitation) for ATM machine object oriented

software design process.

Table 11 shows the Backward Requirements

Traceability (in phase 3: Class Design) for

ATM machine object oriented software design

process.

2.3 Solving Software Contradictions

using TRIZ Methodology

The feature parameters that may have

contradictions are shown in table 12 [11]:

Table 13 shows part of the dependence

(Contradiction) matrix of OOD.

The numbers in the above table indicate

which design plans that can solve the problem

as shown in Table 14

We can see from the Q-HoQ in the

subsystem design phase that the two

contradicting requirements (Quality

298

A NEW MEHODOLOGY USING QFD FOR TRACING REQUIREMENTS IN OBJECT ORIENTED SOFTWARE DESIGN PROCESS

Atia and Soilman

constraints) are: SC1 (Accuracy) and SC3

(Operability) and these two requirements have

priorities one and three respectively. So it is

needed to solve the contradiction between

them using the TRIZ methodology for OOD.

Fig. 17: Requirements traceability diagram for atm machine object oriented software design

process.

Table 10: Part of Forward Requirements Traceability Matrix

299

The Egyptian Int. J. of Eng. Sci. and Technology

Vol.14, No. 3 (Sept. 2011)

Table 11: Part of Backward Requirements Traceability Matrix

Table 12: Feature parameters of OOD [11]
No Class/Object/

Code/Interface

Feature Parameter

1 Class Quantity of class

2 Add super class

3 Add subclass

4 Add abstract class

5 Mend class

6 Combination of classes

7 Choose of classes

8 Design of class

9 Dependence of classes

10 Levels of class

11 Visit of class

12 Object Quantity of objects

13 Create object

14 Access of a cluster of objects

15 Collaboration of object

16 Code Repetitive code

17 Function design

18 Conditional logic

19 Branch statement

20 Rely on basic types of variables

21 Interface Add interface

22 Uniform interface

Table 13: Part of Dependence (Contradiction) Matrix [11]
Affected or dependent parameters

Im
p

ro
v
in

g

p
a

ra
m

e
te

r
s

Uniform

interface

Combination

of classes

Add

class

Function

design

Add class 8, 9, 18

Crate

Object

1, 3 4 1, 3,

4

12, 14, 20,

21, 23
Dependence

between Classes
6, 15 1, 5,

3

300

A NEW MEHODOLOGY USING QFD FOR TRACING REQUIREMENTS IN OBJECT ORIENTED SOFTWARE DESIGN PROCESS

Atia and Soilman

Table 14: Part of Design patterns of OOD [11]
No Design Pattern Explanation

1 Factory method Create a single entity

2 Singleton pattern Create a secure object exactly

3 Abstract factory

pattern

Create a cluster of objects

4 Prototype pattern Involving “mixed and matched”

5 Builder pattern Construct complex object

6 Façade pattern Provide interface for the collection of objects

7 Decorator pattern Increase object in the run-time

8 Composite

pattern

Express tree structure of the object

9 Adapter pattern Simplify the use of external feature
parameters

10 Flyweight pattern By using multiple examples to minimize

space consumption

11 Proxy pattern Provide a surrogate or placeholder for
another object to control access to it

12 Bridge pattern Abstract and realization of separation

14 Iterator pattern Visit the set of elements

20 Strategy pattern Make algorithm implementation independent

on its customers

21 Template method

pattern

Make subclass which don’t change the

structure of algorithm can re-define some

specific steps of the algorithm

22 Memento pattern Capture the internal state of an object and
save the state out of the object

23 Visitor pattern Through a unified interface to visit different

types of elements of the operation

In case of adding class, the dependence of

classes could be improved. In the contradiction

matrix, we choose the “Add class” from the

column (to account for SC3) and choose the

“Dependence of class” from the row (to

account for SC1), the solution is being 1, 5, 3,

and the concrete design plans is the factory

pattern, builder pattern and abstract factory

pattern. We can choose the factory pattern

“Create a single entity” to solve this

contradiction.

2.4 Class Diagram

UML class diagrams allow us to denote the

static contents of, and relationships between

classes. In a class diagram we can show the

member variables, and member functions of a

class. We can also show whether one class

inherits from another, or whether it holds a

reference to another. In short, we can depict all

the source code dependencies between classes

[12]. This can be valuable. It can be much

easier to evaluate the dependency structure of

a system from a diagram than from source

code. Fig. shows a simple class diagram of

part of the above ATM system. The diagram

immediately tells that WithdrawTransaction

talks to a CashDispenser interface. Note the

convention of horizontal association and

vertical inheritance. The diagram is separated

into three distinct zones. The transactions and

their actions are on the left, the various UI

interfaces are all on the right, and the UI

implementation is on the bottom.

The functions of the class design phase are

implemented according to their final priorities

as methods of the subsystem design phase.

Fig. 18: A simple class diagram of the above

ATM system [12]

301

The Egyptian Int. J. of Eng. Sci. and Technology

Vol.14, No. 3 (Sept. 2011)

UI.java
public class UI implements
 readCardUI,withdrawalUI,depositUI,transferUI

{

 private Screen itsScrean;
 private MessageLog itsMessageLog;

 public void displayMessage (String message)

 }
 itsMessageLog.logMessage (message);

 itsScreen.displayMessage (message);

 }
}

2.5 Use Cases

The ATM system behavior can be specified

by stating in use cases how users interact with

the system; it is not needed to know anything

about the inside of the ATM at all. Use cases

specify desired behavior; they do not dictate

how that behavior will be carried out. The

great thing about this is that it lets you (as an

end user and domain expert) communicate

with your developers (who build systems that

satisfy your requirements) without getting

hung up on details. Those details will come,

but use cases let you focus on the issues of

highest risk to you [13]. In the UML, all such

behaviors are modeled as use cases that may

be specified independent of their realization. A

use case is a description of a set of sequences

of actions, including variants that a system

performs to yield an observable result of value

to an actor.

Fig. 19: Use case diagram for the Subsystem

functions and constraints [12]

The use case diagram in Fig. 19 exhibits the

important functions and important constraints

and the actors of each.

4. CONCLUSION

It has been known that requirements

traceability in the object oriented software

development process is an important issue

across all the design and development phases.

Not only the requirements traceability is

required but also the impact of these

requirements on the design items which

improves the design quality on the basis of

limited resources. There isn’t much research

done relating to this work.

A new integrated methodology that

integrates the most recent quality tools with

the object oriented development process for

the purpose of performance improvement is

utilized.

 The new integrated methodology in this

case study, Design of ATM machine object

oriented software, improves the quality of the

design process by using the following tools

and techniques:

 Three phases of object oriented system

design are used.

 The automated Analytical Hierarchy

process (AHP) is used to prioritize

Customer Requirements

 Fuzzy set theory is used for the correlation

between customer requirements and

technical requirements to solve for the

vagueness and inaccuracies among the

members of the design team.

 The QFD, House of Quality is automated to

save time and effort and ensure accuracy of

calculations

 Traceability block diagram, forward

traceability, and backward traceability

tables are used to keep track of customer

requirements through all phases of design.

 Class diagram and use cases of the

development process are used to show

graphically the important design items that

should be taken care of.

 TRIZ methodology is used to solve the

technical contradiction of the object

oriented design process

Results obtained from this new methodology

in the subsystem design phase show the

following:

 Priorities of subsystem functions and

constraints are:

Read Card, Account Handler, Dispense

Cash, Cash Deposit, Access Customer

Data, Screen Display

302

A NEW MEHODOLOGY USING QFD FOR TRACING REQUIREMENTS IN OBJECT ORIENTED SOFTWARE DESIGN PROCESS

Atia and Soilman

Accuracy, Efficiency ,Operability

 The subsystem classes will include

attributes and methods of the following

design phase (class design phase) according

to their priorities as follows:

Manage Account, Handle Customer

Data, Control ATM, Handle ATM

Card, Interface

Fault Tolerance, Recoverability,

Security , Reusability

 TRIZ methodology for OOD is used to

solve the contradiction between the two

conflicting subsystem constraints:

Accuracy and Operability by using the

Factory Pattern to solve for the

contradiction between Dependence between

classes and Add class feature parameters

from the table explained before

3. REFERENCES

[1] Nancy R. Mead, Software Engineering

Institute, Carnegie Mellon University,

2008, “Requirements Prioritization

Case Study Using AHP”

[2] Nancy R. Mead, Software Engineering

Institute, Carnegie Mellon University,

2008, “Requirements Prioritization,

Introduction”

[3] Saaty, T. L., 1980, “The Analytic

Hierarchy Process”, New York, NY:

McGraw-Hill.

[4] Karlsson, J., 1996, "Software

Requirements Prioritizing," 110-116.

Proceedings of the Second International

Conference on Requirements

Engineering (ICRE'96). Colorado

Springs, CO, April 15-18, 1996. Los

Alamitos, CA: IEEE Computer Society.

[5] Karlsson, J. & Ryan, K., 1997, "Cost-

Value Approach for Prioritizing

Requirements" IEEE Software 14, 5

(September/October 1997): 67-74.

[6] Kanishka Bedi, U21Global, Singapore,

2006, ”Automating the Quality Function

Deployment House of Quality”, U21

Global, Graduate School for Global

Leaders

[7] Ming-Chyuan Lin , Chieh-Yuan Tsai ,

Chao-Chun Cheng , and C. Alec Chang ,

2004 “Using Fuzzy QFD for Design of

Low-end Digital Camera”, © 2004

Chaoyang University of Technology,

ISSN 1727-2394- International Journal

of Applied Science and Engineering -

2004. 2, 3: 222-233.

[8] Xiaoqing (Frank) Liu, Yan Sun, Praveen

Inuganti, and Chandra Sekhar Veera,

University of Missouri-Rolla, Yuji

Kyoya, Toshiba Corporation, 2007. “A

Methodology for Tracing the

Requirements in the Object-Oriented

Software Design Process Using Quality

Function Deployment”, SQP VOL. 9,

NO. 4/© 2007, ASQ.

[9] Akao, Yoji, ed., 1990, “Quality function

deployment: Integrating customer

requirements into product design”,

Cambridge, Mass.: Productivity Press.

[10] Liu, X. 2000, “Software Quality

function deployment”, IEEE Potentials

(Dec.-Jan.): 14-16

[11] Ma Jianhong, Zhang Quan, Wang

Yanling, Zhang Wei, 2009 IEEE,

“Research and Application of the

TRIZ Contradiction Matrix in

OOD”, DOI

10.1109/WCSE.2009.244.
[12] Robert Cecil Martin, Object Mentor Inc.,

2002, “UML for Java Programmers”.,

Prentice Hall, Englewood Cliffs, New

Jersey.

[13] Grady Booch, James Rumbaugh, Ivar

Jacobson, 1998, “UML User Guide

“, Addison Wesley.

303

