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SUMMARY

The study objective was to compare heritability and correlations estimated from
linear model with those estimated from threshold model. Two simulation programs
were used, one to simulate two continuous traits with the same level of heritability
(h?) of 0.17 and another to modify these traits into binary traits. Fifteen replicates
were generated with two classes of fixed effect. Each replicate was analyzed twice,
once by GS algorithm and another by MTDFREML algorithm using animal model.
The concerned results from each analysis were heritability and genetic and residual
correlations. Bias and mean squared errors (MSE) of h? and genetic and residual
correlations estimates were used to assess the quality of h? and genetic and residual
correlations estimates obtained by different algorithms. For the two traits, the
statistical model used included type of algorithm (MTDFREML vs Gibbs sampling),
type of trait (continuous trait vs binary trait) on the bias of heritability and genetic
and residual estimates plus the 2-way interaction. For bias of heritability, all these
effects were significant (p<0.01). For genetic correlation estimates, none of the
effects and interaction were significant (p>0.05) while for residual correlation
estimates, all these effects were significant (p<0.0001). In estimation of heritabilities
for continuous traits, the GS algorithm is equivalent to MTDFREML algorithm. For
binary traits, the GS algorithm is the best. GS estimates of genetic correlations were
similar to MTDFREML estimates while for the residual correlation, the marginal
maximum likelihood (GS) estimates are superior to the estimates from the linear
model (MTDFREML).

Keywords: Continuous traits, binary traits, heritability estimates quality, Gibbs
sampling, bias, mean squared errors, genetic and environmental correlation

INTRODUCTION

For the estimation of genetic merit for normally distributed traits, best linear
unbiased prediction (BLUP) has been extensively used, because it yields the
maximum likelihood estimator of the best linear predictor (Wang et al., (1993).
However many studies (Meijering, 1985; Sorensen et al., 1995) have also used linear
models to predict the genetic merit of animals for traits that are recorded with
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discrete categories although the nature of such data violate the assumption of
normality (Luo et al., 2001).

In the last decade, Templeman, (1993) reported that nonlinear approaches for
analysis of discrete traits in animal breeding have been proposed as means to obtain
more accurate estimates of genetic parameters and better predictors of genetic merit
of candidates for selection. Mantysaari et al. (1991) reported that in predicting
breeding values, knowledge of genetic and phenotypic parameters, i.e., heritabilities
and genetic and phenotypic correlations, is essential. When the estimation is based
on discrete observations using a threshold model, similar parameters on an
underlying "liability" scale are required. Simulation studies have proposed that the
genetic correlation estimates are not much affected by the loss of information due to
the discreteness of the data (Gianola, 1982). Mantysaari et al. (1991) reported that in
studies, where the goal is estimation of environmental effects, the estimate of the
residual correlation might be more important than the heritability and the genetic
correlation. They also reported that the threshold model did not show significant
improvement over the much simpler method of estimation with the linear model,
except in the estimation of residual correlation.

The objective of the present study was to compare estimates of heritabilities,
genetic and environmental correlations estimated from a linear model to those
obtained from a threshold model.

MATERIAL AND METHODS

Simulation procedure:

Two methods of simulation were used to generate samples for the present study.
One is concerned with two underlying continuous response variables generation and
another with changing these two continuous variables into two binary variables each
with two categories 0 and 1. The first method is the Monte Carlo simulation
technique using SAS (1996) with assumed mean (0) and variance (1). Analla et al.
(1995) reported that this technique also assumed that the expected additive genetic
value of progeny Gy is equal to the average genetic values of the parents [sire (S;) and
dam (D;)] plus a deviation due to the Mendelian sampling as follows:

Gy = 0.5 (S; +D)) + X 0.5h%c°, Model 1
Where:
Gy is equal to the genetic value of an individual k, a progeny of sire (S;) and dam

X is a random number taken from normal distribution with mean 0 and variance 1,
h? is the heritability and
Gzp is the phenotypic variance.

Table 1 shows values of parametric phenotypic, genetic and residual variances,
genetic and residual covariances, genetic and residual correlations and heritability.

With the same level of h? 0.17 for the two traits, 15 replicates were simulated
with two levels of one fixed effect.

Each sample was categorized using a random variety from a binomial distribution
(RANBIN function) with SAS (1996) to obtain the binary response variables studies.
Two copies of each generated sample were obtained, the first contained the two
underlying continuous variables and the second contained the two binary responses.



Egyptian J. Anim. Prod. (2007) 195

Table 1. The assumed parametric values of phenotypic, genetic and residual
variances, genetic and residual covariances, genetic and residual correlations
and heritability for the two traits

Parameter Value of the two traits
Phenotypic variance 1.21052
Additive genetic variance 0.21052
Residual variance 1.0

Additive genetic covariance 0.10528
Residual covariance 0.30

Genetic correlation 0.50

Residual correlation 0.30
Heritability 0.17

The mean of the simulated variables was constant at 0.5 (the best mean value of the
simulated traits to maintain the average of the binary traits as it is in the continuous
traits). All the parameters above as indicated by Mantysaari et al. (1991).

Statistical analysis
Heritability estimates of the studied variables, genetic and environmental
correlations were estimated for each sample obtained from the animal model using
two algorithms (Multiple trait animal model program (MTDFREML) proposed by
Boldman et al. (1995) and Gibbs Sampling program (GS) proposed by Van Tassell
and Van Vleck (1995).
The linear animal model used for two continuous and binary traits was:

y=XB+Za+e
where,
y  isa vector of observations;
X is an incidence matrix for fixed effects;
B is a vector of an overall mean and parity (2 classes);
Z is an incidence matrix for random effect;
a isa vector of direct genetic effect of the animal; and
e is a vector of random errors normally and independently distributed with zero

. 2
mean and variance O I.

Bias and mean squared errors (MSE) were calculated to estimate the
correspondence between assumed and estimated values. Estimates of bias were
calculated considering the sign.

Bias = [E(b™)-B] (Neter et al., 1985)
Where,
b® is the expected value of the deviation of the biased estimator from the true
parameter B.

MSE = E(b®-B)= 6*(b")+ [E(b®)-B]* (Neter et al., 1985)
Where,
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bR is the expected value of the squared deviation of the biased estimator from the true
parameter B.

Analysis of variance

Analysis of variance was performed to study the effect of type of algorithm
(MTDFREML or GS) and type of trait (continuous or binary trait) on the bias in h?
and correlation estimates obtained from the study samples. To analyze the
correlations obtained in this study, correlation coefficients were transformed using
Fisher's formula (1921) to transform r to a normal deviate Z where, z=0.5In[(1+y)/(1-

The following model was adopted using SAS (1996) to analyze the bias of

heritability estimates and genetic and residual correlations:
Yik = up+a+t+ (at); + ey
Where,
Yijx  is the dependent variable (studied trait) of the n™ record in the i™ type of
algorithm, ™ type of trait;
n the overall mean of bias;
g the effect of the i type of algorithm, I = 1 (MTDFREML) to 2 (GS);
t; the effect of the j™ type of trait, j= 1 (continuous trait) to 2 (binary trait);
(at);j the effect of the interaction between the i"™ type of algorithm and the j™ type
of trait; and

ejc  the effect of random error, associated with each observation assumed to

be normally and independently distributed with 0 mean and variance 05 L.

RESULTS AND DISCUSSION

Analysis of variance of bias of h? estimates
Table (2) shows the analysis of variance for bias of h? estimates for the two traits.
This table shows that all main effects and interactions were significant (p<=0.001).

Table 2. Analysis of variance of bias for heritability estimates for the two traits

Source of variation D.F. Bias for trait no. 1 Bias for trait no. 2
M.S. Pr>F M.S. Pr>F

Type of algorithm 1 0.0313 0.0001 0.0395 0.0001

Type of trait 1 0.0269 0.0001 0.0273 0.0002

Algorithm*Trait 1 0.0163 0.0002 0.0256 0.0003

Error 56 0.0010 0.0018

C.V.% 599.441 904.046

R? 0.484 0.571

C.V=coefficient of variation, R’=coefficient of determination , Pr=probability of type I error

Figures (1-4) illustrate the 2-way interaction. Figures 1 and 2 show that the GS
had smaller magnitude of bias than MTDFREML whatever type of trait is and the
difference between binary and continuous traits increased by using MTDFREML.

For the first trait, Figure 3 and 4 shows that the binary trait had higher MSE than
continuous trait using MTDFREML while by using GS, a smaller difference in MSE
between continuous and binary traits was observed. This result confirms those
obtained by Mousa and Elsayed (2001) and Elsaid (2004) indicating that GS had
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consistently smaller MSE than MTDFREML, due to the influence of the prior
distribution of the variance components on the posterior distribution.
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Average h? estimates

The average values for the estimates of the 15 samples resulting from
MTDFREML and GS algorithms for continuous and binary traits are shown in Table
3. The estimates calculated from the continuous variable values are close to the true
parameters. This result is in agreement with those reported by Mousa and Elsayed
(2001) and Elsaid, (2004). Standard deviations of estimates are small (0.034 to
0.039); and the values of t statistic ranged from -0.714 to -3.485. When parameter
estimation is performed from the discrete scores, but assuming normality
(MTDFREML) the values of h? clearly are underestimated (0.106 and 0.095) and the
t statistics are large (6.9 to 9.8). When the binary trait was analyzed by GS, the value
of't statistics approached levels close to continuous variable estimates (-1.45).

Also, Table 3 shows that for continuous trait, the magnitude of average of bias of
h? resulting from MTDFREML was smaller than corresponding ones resulting from
GS (-0.01 vs -0.02). For binary traits, the magnitude of bias for the estimates
resulting from GS was smaller than those resulting from MTDFREML (-0.015 vs
0.064). This result is in line with previous works (Mantysaari et al., 1991; Matos et
al., 1997; Boettcher et al., 1999; Luo et al., 2001 and Elsaid, 2004) explaining the
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reason for this difference between MTDFREML and GS as the heritabilities from
MTDFREML (linear model) are expressed on observed scale while heritabilities
from GS (threshold model) are on an underlying liability scale. Therefore, threshold
model was statistically more appropriate than linear model for binary trait (either
single binary trait or multiple binary traits), yields greater estimates of h? and closer
to the real value.

Table 3. Estimates of heritabilities from data with two continuous and binary
variables

Algorithm
Traits MTDFREML  MTDFREML GS GS Binary
Continuous Binary Continuous

Trait 1

Heritability 0.181 0.106 0.194 0.185
SD 0.034 0.025 0.027 0.039
Bias -0.01 0.064 -0.024 -0.015
t -1.308 9.790 -3.485 -1.454
MSE 0.001 0.005 0.001 0.002
Trait 2

Heritability 0.179 0.095 0.189 0.188
SD 0.034 0.042 0.044 0.027
Bias -0.009 0.075 -0.019 -0.018
t -0.714 6.902 -1.684 -2.553
MSE 0.003 0.007 0.002 0.001

Also, the MSE for continuous trait resulting from MTDFREML is equivalent to
those resulting from GS for first trait (0.001 vs 0.001) while for the second trait, the
MSE resulting from GS were smaller than those resulting from MTDFREML (0.002
vs 0.003). For binary trait, the MSE resulting from GS were smaller than those
resulting from MTDFREML for each trait (0.002 vs 0.005 and 0.001 vs 0.007).

Analysis of variance of genetic and residual correlations

Table 4 shows the analysis of variance of genetic and residual correlations. This
table shows that for genetic correlation, all main effects and interaction were not
significant (P>0.05) while for the residual correlation, all main effects and the
interaction were significant (P<=0.0001).

Table 4. Analysis of variance of genetic and residual correlation estimates for
two traits

Source of variation D.F. Genetic correlation Residual correlation
M.S. Pr M.S. Pr

Type of algorithm 1 0.00170 0.756 0.1045 0.0001

Type of trait 1 0.00002 0974 0.1081 0.0001

Algorithm*Trait 1 0.00020 0917 0.0783 0.0001

Error 56 0.01714 0.0015

C.V.% 22.9 14.163

R? 0.002 0.78

C.V=coefficient of variation. R’=coefficient of determination
Pr=probability of type I error
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Figure (5) shows that the genetic correlation estimates of continuous traits are
equivalent to those of the binary traits with MTDFREML while a small difference
between continuous and binary traits was observed with GS. Also, this table shows
small difference in genetic correlation estimates between MTDFREML and GS. This
is in agreement with Mantysaari et al. (1991) who reported that marginal maximum
likelihood estimates of genetic correlations were similar to linear model estimates.

Figure (6) shows that with GS, the estimates of residual correlation for continuous
traits were close to corresponding ones resulting for binary traits while with
MTDFREML, the estimates of residual correlation for binary traits were lower than
those for continuous traits. This result is in agreement with Mantysaari et al. (1991)
who reported that when an accurate estimate of residual correlation is needed, the
marginal maximum likelihood estimates are superior to the estimates with the linear
model. Figure 7 shows the decision chart for estimating genetic and environmental
correlations for continuous and binary traits based on bias and MSE.
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Figure 7. Decision chart for recommending the best algorithm to estimate
genetic and environmental correlations based on bias and MSE

Table (5) shows the same trend as that in figure 5, 6 and 7, where the high
MSE for binary trait with MTDFREML compare to GS (0.015 vs 0.009). When
parameter estimation is performed from the discrete scores, but assuming normality
(MTDFREML) the values of residual correlation clearly is an underestimate (0.148)
and the t statistics are large (35.546). When the binary trait is analyzed by GS, the
value of't statistics approached levels close to continuous variable estimates (0.483).

Table S. Estimates of genetic and residual correlations from data with two
continuous and binary variables

Algorithm

Traits MTDFREML MTDFREML GS GS

Continuous Binary Continuous Binary
Genetic 0.511 0.513 0.509 0.52
correlation 0.027 0.122 0.082 0.090
SD -0.011 -0.013 -0.009 -0.020
Bias -0.402 -0.401 -0.411 -0.858
t 0.011 0.015 0.007 0.009
MSE
Residual 0.297 0.148 0.307 0.295
correlation 0.009 0.017 0.043 0.037
SD 0.003 0.152 -0.007 0.005
Bias 0.361 35.546 -0.598 0.483
t 0.001 0.023 0.002 0.001

MSE
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CONCLUSIONS

Based on bias and MSE, the present results indicated the following:

1- For continuous trait, the GS algorithm is equivalent to MTDFREML algorithm in
estimating the heritability.

2- For binary trait, GS is the best algorithm in estimating the heritability.

3- The MTDFREML algorithm is equivalent to GS algorithm in estimating genetic
correlation.

4- The threshold model (GS) is the best for estimating the residual correlation and
the estimate of the residual correlation might be more important than the
heritability and the genetic correlation if the aim is estimation of environmental
effects.
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