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SUMMARY 
 
 The study objective was to compare heritability and correlations estimated from 
linear model with those estimated from threshold model.  Two simulation programs 
were used, one to simulate two continuous traits with the same level of heritability 
(h2) of 0.17 and another to modify these traits into binary traits.  Fifteen replicates 
were generated with two classes of fixed effect.  Each replicate was analyzed twice, 
once by GS algorithm and another by MTDFREML algorithm using animal model.  
The concerned results from each analysis were heritability and genetic and residual 
correlations.  Bias and mean squared errors (MSE) of h2 and genetic and residual 
correlations estimates were used to assess the quality of h2 and genetic and residual 
correlations estimates obtained by different algorithms.  For the two traits, the 
statistical model used included type of algorithm (MTDFREML vs Gibbs sampling), 
type of trait (continuous trait vs binary trait) on the bias of heritability and genetic 
and residual estimates plus the 2-way interaction.  For bias of heritability, all these 
effects were significant (p<0.01).  For genetic correlation estimates, none of the 
effects and interaction were significant (p>0.05) while for residual correlation 
estimates, all these effects were significant (p<0.0001).  In estimation of heritabilities 
for continuous traits, the GS algorithm is equivalent to MTDFREML algorithm.  For 
binary traits, the GS algorithm is the best.  GS estimates of genetic correlations were 
similar to MTDFREML estimates while for the residual correlation, the marginal 
maximum likelihood (GS) estimates are superior to the estimates from the linear 
model (MTDFREML).  
 
Keywords: Continuous traits, binary traits, heritability estimates quality, Gibbs 
sampling, bias, mean squared errors, genetic and environmental correlation 
 
INTRODUCTION 
 
 For the estimation of genetic merit for normally distributed traits, best linear 
unbiased prediction (BLUP) has been extensively used, because it yields the 
maximum likelihood estimator of the best linear predictor (Wang et al., (1993).  
However many studies (Meijering, 1985; Sorensen et al., 1995) have also used linear 
models to predict the genetic merit of animals for traits that are recorded with 
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discrete categories although the nature of such data violate the assumption of 
normality (Luo et al., 2001). 
 In the last decade, Templeman, (1993) reported that nonlinear approaches for 
analysis of discrete traits in animal breeding have been proposed as means to obtain 
more accurate estimates of genetic parameters and better predictors of genetic merit 
of candidates for selection.  Mantysaari et al. (1991) reported that in predicting 
breeding values, knowledge of genetic and phenotypic parameters, i.e., heritabilities 
and genetic and phenotypic correlations, is essential.  When the estimation is based 
on discrete observations using a threshold model, similar parameters on an 
underlying "liability" scale are required.  Simulation studies have proposed that the 
genetic correlation estimates are not much affected by the loss of information due to 
the discreteness of the data (Gianola, 1982).  Mantysaari et al. (1991) reported that in 
studies, where the goal is estimation of environmental effects, the estimate of the 
residual correlation might be more important than the heritability and the genetic 
correlation.  They also reported that the threshold model did not show significant 
improvement over the much simpler method of estimation with the linear model, 
except in the estimation of residual correlation. 
 The objective of the present study was to compare estimates of heritabilities, 
genetic and environmental correlations estimated from a linear model to those 
obtained from a threshold model. 
 
MATERIAL AND METHODS 
 
Simulation procedure: 
 Two methods of simulation were used to generate samples for the present study.  
One is concerned with two underlying continuous response variables generation and 
another with changing these two continuous variables into two binary variables each 
with two categories 0 and 1.  The first method is the Monte Carlo simulation 
technique using SAS (1996) with assumed mean (0) and variance (1).  Analla et al. 
(1995) reported that this technique also assumed that the expected additive genetic 
value of progeny Gk is equal to the average genetic values of the parents [sire (Si) and 
dam (Dj)] plus a deviation due to the Mendelian sampling as follows: 

                   Gk = 0.5 (Si +Dj) + X 0.5h2σ2
p                                     Model 1 

Where: 
Gk is equal to the genetic value of an individual k, a progeny of sire (Si) and dam 
(Dj),  
X is a random number taken from normal distribution with mean 0 and variance 1,  
h2 is the heritability and  
σ2

p is the phenotypic variance. 
 
 Table 1 shows values of parametric phenotypic, genetic and residual variances, 
genetic and residual covariances, genetic and residual correlations and heritability. 
 With the same level of h2 0.17 for the two traits, 15 replicates were simulated 
with two levels of one fixed effect. 
 Each sample was categorized using a random variety from a binomial distribution 
(RANBIN function) with SAS (1996) to obtain the binary response variables studies.  
Two copies of each generated sample were obtained, the first contained the two 
underlying continuous variables and the second contained the two binary responses. 



Egyptian J. Anim. Prod. (2007) 195

 
Table 1.  The assumed parametric values of phenotypic, genetic and residual 
variances, genetic and residual covariances, genetic and residual correlations 
and heritability for the two traits 

Value of the two traits Parameter 
1.21052 
0.21052 

1.0 
0.10528 

0.30 
0.50 
0.30 
0.17 

Phenotypic variance 
Additive genetic variance 
Residual variance  
Additive genetic covariance 
Residual covariance 
Genetic correlation 
Residual correlation 
Heritability 
The mean of the simulated variables was constant at 0.5 (the best mean value of the 
simulated traits to maintain the average of the binary traits as it is in the continuous 
traits).  All the parameters above as indicated by Mantysaari et al. (1991). 
 
Statistical analysis 
 Heritability estimates of the studied variables, genetic and environmental 
correlations were estimated for each sample obtained from the animal model using 
two algorithms (Multiple trait animal model program (MTDFREML) proposed by 
Boldman et al. (1995) and Gibbs Sampling program (GS) proposed by Van Tassell 
and Van Vleck (1995). 

The linear animal model used for two continuous and binary traits was: 
 

y = Xβ + Zaa + e 
where, 
y      is a vector of observations; 
X     is an incidence matrix for fixed effects; 
β     is a vector of an overall mean and parity (2 classes); 
Z     is an incidence matrix for random effect; 
a     is a vector of direct genetic effect of the animal; and 
e   is a vector of random errors normally and independently distributed with zero 
mean and variance 2

eσ I. 
 

Bias and mean squared errors (MSE) were calculated to estimate the 
correspondence between assumed and estimated values.  Estimates of bias were 
calculated considering the sign. 

  
Bias = [E(bR)-B]                      (Neter et al., 1985) 

Where, 
bR is the expected value of the deviation of the biased estimator from the true  
parameter B. 

 
MSE = E(bR-B)= σ2(bR)+  [E(bR)-B]2    (Neter et al., 1985) 

Where, 
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bR is the expected value of the squared deviation of the biased estimator from the true 
parameter B. 
 
Analysis of variance 
 Analysis of variance was performed to study the effect of type of algorithm 
(MTDFREML or GS) and type of trait (continuous or binary trait) on the bias in h2 
and correlation estimates obtained from the study samples. To analyze the 
correlations obtained in this study, correlation coefficients were transformed using 
Fisher's formula (1921) to transform r to a normal deviate Z where, z=0.5ln[(1+y)/(1-
y)] 
 The following model was adopted using SAS (1996) to analyze the bias of 
heritability estimates and genetic and residual correlations: 

Yijk   = μ + ai + tj + (at)ij + eijk 
Where, 
Yijk    is the dependent variable (studied trait) of the nth record in the ith type of 
algorithm, jth type of trait; 
μ         the overall mean of bias; 
ai         the effect of the ith type of algorithm, I = 1 (MTDFREML) to 2 (GS); 
tj         the effect of the jth type of trait, j= 1 (continuous trait) to 2 (binary trait);  
(at)ij    the effect of the interaction between the ith type of algorithm and the jth type  
          of trait; and  
eijk     the effect of random error, associated with each observation assumed to  
          be normally and independently distributed with 0 mean and variance 2

eσ I. 
 
RESULTS AND DISCUSSION 
 

Analysis of variance of bias of h2 estimates 
 Table (2) shows the analysis of variance for bias of h2 estimates for the two traits.  
This table shows that all main effects and interactions were significant (p<=0.001). 
 
Table 2. Analysis of variance of bias for heritability estimates for the two traits 

Bias for trait no. 1 Bias for trait no. 2 Source of variation D.F. 
M.S. Pr>F M.S. Pr>F 

Type of algorithm 
Type of trait 
Algorithm*Trait 
Error 

1 
1 
1 
56 

0.0313 
0.0269 
0.0163 
0.0010 

0.0001 
0.0001 
0.0002 

0.0395 
0.0273 
0.0256 
0.0018 

0.0001 
0.0002 
0.0003 

C.V.% 
R2 

                  599.441 
                   0.484 

904.046 
 0.571 

C.V=coefficient of variation,  R2=coefficient of determination ,  Pr=probability of type I error 
 
 Figures (1-4) illustrate the 2-way interaction.  Figures 1 and 2 show that the GS 
had smaller magnitude of bias than MTDFREML whatever type of trait is and the 
difference between binary and continuous traits increased by using MTDFREML.   
 For the first trait, Figure 3 and 4 shows that the binary trait had higher MSE than 
continuous trait using MTDFREML while by using GS, a smaller difference in MSE 
between continuous and binary traits was observed.  This result confirms those 
obtained by Mousa and Elsayed (2001) and Elsaid (2004) indicating that GS had 
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consistently smaller MSE than MTDFREML, due to the influence of the prior 
distribution of the variance components on the posterior distribution.    
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Figure 1. Algorithm type-trait type  
interaction, trait 1 

Heritability of Trait 2

-0.04
-0.02

0
0.02
0.04
0.06
0.08

GS MTD

B
ia

s 
of

 h
2

CA
CO

 
Figure 2. Algorithm type - trait type 
interaction, trait 2 
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Figure 3. Algorithm type-trait type  
interaction, trait 1 
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Figure 4. Algorithm type-trait type interaction, 
trait 2 

 

Average h2 estimates 
 The average values for the estimates of the 15 samples resulting from 
MTDFREML and GS algorithms for continuous and binary traits are shown in Table 
3.  The estimates calculated from the continuous variable values are close to the true 
parameters.  This result is in agreement with those reported by Mousa and Elsayed 
(2001) and Elsaid, (2004).  Standard deviations of estimates are small (0.034 to 
0.039); and the values of t statistic ranged from -0.714 to -3.485.  When parameter 
estimation is performed from the discrete scores, but assuming normality 
(MTDFREML) the values of h2 clearly are underestimated (0.106 and 0.095) and the 
t statistics are large (6.9 to 9.8).  When the binary trait was analyzed by GS, the value 
of t statistics approached levels close to continuous variable estimates (-1.45).  
 Also, Table 3 shows that for continuous trait, the magnitude of average of bias of 
h2 resulting from MTDFREML was smaller than corresponding ones resulting from 
GS (-0.01 vs -0.02).  For binary traits, the magnitude of bias for the estimates 
resulting from GS was smaller than those resulting from MTDFREML (-0.015 vs 
0.064).  This result is in line with previous works (Mantysaari et al., 1991; Matos et 
al., 1997; Boettcher et al., 1999; Luo et al., 2001 and Elsaid, 2004) explaining the 
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reason for this difference between MTDFREML and GS as the heritabilities from 
MTDFREML (linear model) are expressed on observed scale while heritabilities 
from GS (threshold model) are on an underlying liability scale.  Therefore, threshold 
model was statistically more appropriate than linear model for binary trait (either 
single binary trait or multiple binary traits), yields greater estimates of h2 and closer 
to the real value.   
 

Table 3. Estimates of heritabilities from data with two continuous and binary 
variables 

Algorithm  
Traits MTDFREML 

Continuous 
MTDFREML 

Binary 
GS 

Continuous 
GS Binary 

Trait 1 
Heritability 
SD 
Bias 
t 
MSE 

 
0.181 
0.034 
-0.01 
-1.308 
0.001 

 
0.106 
0.025 
0.064 
9.790 
0.005 

 
0.194 
0.027 
-0.024 
-3.485 
0.001 

 
0.185 
0.039 
-0.015 
-1.454 
0.002 

Trait 2 
Heritability 
SD 
Bias 
t 
MSE 

 
0.179 
0.034 
-0.009 
-0.714 
0.003 

 
0.095 
0.042 
0.075 
6.902 
0.007 

 
0.189 
0.044 
-0.019 
-1.684 
0.002 

 
0.188 
0.027 
-0.018 
-2.553 
0.001 

 

 Also, the MSE for continuous trait resulting from MTDFREML is equivalent to 
those resulting from GS for first trait (0.001 vs 0.001) while for the second trait, the 
MSE resulting from GS were smaller than those resulting from MTDFREML (0.002 
vs 0.003).  For binary trait, the MSE resulting from GS were smaller than those 
resulting from MTDFREML for each trait (0.002 vs 0.005 and 0.001 vs 0.007). 
 

Analysis of variance of genetic and residual correlations 
 Table 4 shows the analysis of variance of genetic and residual correlations.  This 
table shows that for genetic correlation, all main effects and interaction were not 
significant (P>0.05) while for the residual correlation, all main effects and the 
interaction were significant (P<=0.0001). 
 

Table 4.  Analysis of variance of genetic and residual correlation estimates for 
two traits 

Genetic correlation  Residual correlation  Source of variation D.F. 
M.S. Pr M.S. Pr 

Type of algorithm 
Type of trait 
Algorithm*Trait 
Error 

1 
1 
1 
56 

0.00170 
0.00002 
0.00020 
0.01714 

0.756 
0.974 
0.917 

0.1045 
0.1081 
0.0783 
0.0015 

0.0001 
0.0001 
0.0001 

C.V.% 
R2 

22.9 
0.002 

14.163 
0.78 

C.V=coefficient of variation.   R2=coefficient of determination  
Pr=probability of type I error 
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 Figure (5) shows that the genetic correlation estimates of continuous traits are 
equivalent to those of the binary traits with MTDFREML while a small difference 
between continuous and binary traits was observed with GS.  Also, this table shows 
small difference in genetic correlation estimates between MTDFREML and GS.  This 
is in agreement with Mantysaari et al. (1991) who reported that marginal maximum 
likelihood estimates of genetic correlations were similar to linear model estimates.    
 Figure (6) shows that with GS, the estimates of residual correlation for continuous 
traits were close to corresponding ones resulting for binary traits while with 
MTDFREML, the estimates of residual correlation for binary traits were lower than 
those for continuous traits.  This result is in agreement with Mantysaari et al. (1991) 
who reported that when an accurate estimate of residual correlation is needed, the 
marginal maximum likelihood estimates are superior to the estimates with the linear 
model.  Figure 7 shows the decision chart for estimating genetic and environmental 
correlations for continuous and binary traits based on bias and MSE. 

Figure 5. Algorithm type - trait type interaction

Figure 6. Algorithm type - trait type interaction
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Table (5) shows the same trend as that in figure 5, 6 and 7, where the high 
MSE for binary trait with MTDFREML compare to GS (0.015 vs 0.009).  When 
parameter estimation is performed from the discrete scores, but assuming normality 
(MTDFREML) the values of residual correlation clearly is an underestimate (0.148) 
and the t statistics are large (35.546).  When the binary trait is analyzed by GS, the 
value of t statistics approached levels close to continuous variable estimates (0.483).  

 
Table 5. Estimates of genetic and residual correlations from data with two 
continuous and binary variables 

Algorithm  
Traits MTDFREML 

Continuous 
MTDFREML 

Binary 
GS 

Continuous 
GS 

 Binary 
Genetic 
correlation 
SD 
Bias 
t 
MSE 

0.511 
0.027 
-0.011 
-0.402 
0.011 

0.513 
0.122 
-0.013 
-0.401 
0.015 

0.509 
0.082 
-0.009 
-0.411 
0.007 

0.52 
0.090 
-0.020 
-0.858 
0.009 

Residual 
correlation 
SD 
Bias 
t 
MSE 

0.297 
0.009 
0.003 
0.361 
0.001 

0.148 
0.017 
0.152 
35.546 
0.023 

0.307 
0.043 
-0.007 
-0.598 
0.002 

0.295 
0.037 
0.005 
0.483 
0.001 

 
 

Figure 7. Decision chart for recommending the best algorithm to estimate 
genetic and environmental correlations based on bias and MSE 
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CONCLUSIONS 
 
Based on bias and MSE, the present results indicated the following: 
1- For continuous trait, the GS algorithm is equivalent to MTDFREML algorithm in 

estimating the heritability. 
2- For binary trait, GS is the best algorithm in estimating the heritability. 
3- The MTDFREML algorithm is equivalent to GS algorithm in estimating genetic 

correlation. 
4- The threshold model (GS) is the best for estimating the residual correlation and 

the estimate of the residual correlation might be more important than the 
heritability and the genetic correlation if the aim is estimation of environmental 
effects. 
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   دراسة محاآاه–  لصفتين متقطعتينية والبيئية الوراثلمعالمتقدير ا
  

  2، منال محمد أحمد سيد 1 أحمدرضا السعيد محمد
 

 قسم -2 ،فرع السادات،  جامعة المنوفية ،معهد الدراسات والبحوث البيئية م التمية المستدامة للبيئة ، ـقس -1
 ين شمس جامعة ع، آلية الزراعة الإنتاج الحيوانى ،

 
 تقدير المكافئ دقةاستهدفت هذه الدراسة تحديد نوع البرنامج المستخدم وآذلك نوع الصفة على مدى  
تين مستمرتين أجريت هذه الدراسة على برامج تقوم بعمل محاآاة لصف .  الإرتباطات الوراثية والبيئيةالوراثي و

 اتناتجة من تحويل الصف) 1صفر ، ( ذات مستويين تينمتقطعتين وأخر 0.17 قدره  مكافئ الوراثيذات
 .إدرار آتأثير ثابت وحيدن اموسمبكل منها  مكررة عشوائية 15خلقت . 0.5المستمرة ، وقد آان متوسط الصفة 

  و MTDFREML  المتقطعة  ببرنامجين هما ات  المستمرة  والصفاتأجرى تحليل  لكل  من  الصف 
Gibbs Samplingج  الحيوان  واستخدم  نموذ(Animal  model)  . وقد أستخدم  في  هذه  الدراسة   التحيز

(Bias) ومتوسط الخطأ مربعا (Mean squared errors) للمقارنة بين تقديرات المكافئ الوراثي  
أجرى تحليل تباين لدراسة تأثير نوع .  من البرامج المختلفةالمتحصل عليهاوالإرتباطات الوراثية والبيئية 

والتداخلات على التحيز بالنسبة لتقديرات )صفة مستمرة وصفة متقطعة(نامج المستخدم ونوع الصفة البر
آان تأثير آل من .  المكافىء الوراثى وتقديرات الإرتباطات الوراثية والبيئية وأيضا التداخلات بين هذه العوامل

ثى وآذلك الإرتباط البيئى أما فى حالة كافىء الورامهذه العوامل معنويا جدا بالنسبة للتحيز فى تقديرات ال
  . الإرتباط الوراثى فإن تأثير هذه العوامل لم يكن معنوياً

 :   نستخلص من هذه الدراسة 
فى تقدير  GS  برنامج لإستخدامئاًمكاف MTDFREML  برنامج في حالة الصفة المستمرة يكون استخدام-1

 .المكافىء الوراثى
 . الوراثىئفى تقدير المكاف MTDFREMLبرنامج  أفضل من GSيكون برنامج  في حالة الصفة المتقطعة -2
 ئايكون مكاف MTDFREML سواء بالنسبة للصفات المستمرة أو الصفات المتقطعة فإن إستخدام برنامج الـ -3

 . فى تقدير الإرتباط الوراثىGSلإستخدام برنامج الـ 
 .  هو الأفضل لتقدير الإرتباط البيئىGSالـ  بالنسبة للصفات المتقطعة فإن إستخدام برنامج -4

 


