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Abstract

The objective of this study is to identify the appropriate sample size for specific
follow-up. The hazard function of the exponentiated exponential distribution (EE)
with shape parameter y and scale parameter A with covariates having coefficient B is
assumed. A test of the null hypothesis Hy : B = By versus the alternative hypothesis H;
: B=B; < Bo at a specified level of significance ( o, ) and a specified power (1-B,) is
considered. The hazard function and its reversed function can be used to compute the
Fisher information matrix of the unknown parameters A general sample size formula

for more than two dose groups for testing Hy versus H; at level of significance (a, )
and with power (1-3,) is derived. Applications involving three parameters, namely

the shape, scale, and the coefficient of the covariates variable are developed. A
numerical example will be carried out to illustrate the theatrical results using Mathcad
(2001).

It is clear that the sample size increases when the required power increases or
when the level of significance decreases, its increases when the length of the follow-
up periods increases. The scale parameter 1 increases as the sample size decreases.

Key words: the Follow-up studies; Exponentiated exponential distribution;
Proportional Hazard models; Fisher information matrix, Sample Size.

1. Introduction
Follow-up studies play an important role not only in the investigations of the
causes of chronic diseases and of the effects of preventive measures or treatments, but
also in the survival analysis of industrial produéts or projects. The study starts by

determining the sample size of individuals (patients or units of a certain product) to be

13



This follow-up period (or the perjoq

g three cvents occurs; the individual drops

g the follow-up period. B

followin
¢ lost ( or dies) during the study period or 4y,

65), George and Desu (1974), , Taulbee -

followed durin
ations) lasts till one of the

ogram study, the individual i

study is completed [Feigl and Zelen (19

1083), and Kung (1993).]

Many investigators considered the

ave studied estimation of

abser

out of the pr
Symons ( ; .

blem of estimating sample size. Among
e size Johnson(1962), Harman(1957)

(hwmh(’r(l070L(;‘01d1alc(l972),(icorge, and Desu, (1974), Narula, and Li, ( 1975y,
_Ashour and Shalaby (1983), Ashour et.al.(1996), Abd-Elfattah and Bakoban(2003),
The parti ample size determination for follgy,

xponentiated exponential distribution using approach of Saleh,(2002).
tion 2 the exponentiateq

pro

those who h sampl

cular problem of interest here is S

-

up studies ot e
This articl

exponential distribution
ortional hazard model. In section 4 the Fisher in
otic variances and covariances matrix are investigated. Section 5
the relationship between

e can be organized as follows. In sec

is introduced. Section 3 presents the exponentiateq

exponential prop formation matrix, the

approximate asympt
ofthe hypotheses about B. For illustrating

explains the tests
length of the studies a numerical example will be carried out in

sample size and the
section 6. In section 7 discussion and recommendations presents.

2. The Exponentiated Exponential Distribution.
The exponentiated exponential distribution (EE), also known as generalized

exponential distribution has been studied quite extensively by Gupta and Kundu
(1999, 2001a, 2001b, 2002,) and Nadarajah and kotz, (2006). It is observed that the
EE exponential distribution can be considered for situations where a skewed
distribution for a non-negative random variable is needed. Also, it is observed that it
can be used quite effectively to analyze lifetime data, particularly in presence of
censoring. It can be used as a possible alternative to the two-parameter Weibull and
gamma distributions in many situations. One major disadvantage of the gamma
distribution is that the distribution function cannot be expressed in a closed form if the
shape parameter is not an integer, while the EE distribution function has a closed
form. In addition, when the shape parameter of the Weibull and EE distributions are
.grcater than one, the hazard functions of both distributions are increasing. However,
in the case of the EE distribution it increases from a zero to a finite number, whereas

iI'l =1 1 2 - . . .
the case of the Weibull distribution it increases from zero to infinity. Therefore if it
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is known that the d; : .
data are from g regular maintenance environment, it is better to fit

the generalized exponential distribution than the Weibull distribution

The EE distribution has the following cumulative distribution function

Fihy,A)=(-e")y | y 150 (2.1)
The corresponding density function is:
SOy, A =pdA(l-e*)e* 4 250 (2.2)

for >0 and 0 otherwise. Here » is the shape and A is the scale parameters. If the
shape parametery =1, then the EE distribution coincides with the exponential
 distribution with a scale parameter. The EE distribution function is a strictly
decreasing function ify <1, whereas ify >1, it is a unimodal skewed density
function.

The survival and hazard functions of the BE are given respectively by:

Sy, A)=1-(1-e*), (2.3)
and,

)

1-(1-e™) (2.4)

hit,y,A) =

The reversed hazard function becomes quite popular in the recent time. The

reversed hazard function for the EE distribution is

_S&rA) _ e’
D sern T oA

It is observed that for all values ofy, the reversed hazard function is a decreasing

r(t; v,

function oft. Nanda and Gupta (2003) obtained several other properties of the
reversed hazard function of the generalized exponential distribution. The hazard
function and the reversed function can be used to compute the Fisher information
matrix of the unknown parameters,( see for example Efron and Johnstone (1990)). For

the EE distribution r(£7%,4) 1is in a convenient form and it can easily be used to

compute Fisher information matrix (see Gupta, and Kundu (2005)).
It can be noted that the EE(y,A) distribution has an increasing or decreasing

hazard function if ¥ >1 or y <1 respectively and for y =1 the hazard function is

constant. 15



According to Gupta and Kundu (2009) reversed hazard function of the BE
distribution will be used in this study
A, The Exponentinted Exponential Proportional Hazard Model.

The exponentiated prope sitional hazard model (EEP) was suggested firstly by
Cox (1972). He introduced the common form of the proportional hazard model anq ,
suitable method for analyzing such a model if the baseline hazard function jg
considered as a nuisance parameter and main interest being in the regression
parameters. The general form is:
k(| 2) = hy (1)C(ZB) (3.1)

where
< h(1]2) is the conditional risk of experiencing the event at ¢ for individuals baving

covanate vector Z consisting of b elcmeﬁts. h,(¢) is the underlying hazard rate, j ¢

the baseline function that depends on time and having covariate vector Z= 0 ( ja
under standard conditions). If one assume a particular form for A (t).a fully
parametric proportional hazard model obtained B is the bx1 columm vector of
unknown parameters through which the hazard depends on the covariates Z s,
1xb row vector of covariates associated with an observation whose lifetime is ¢
C(ZB) is a linking function between the hazard rate and the explanatory variables.
By the proportionality assumption model (3.1) can take the form:
h(EZ)=ho (™ 32)

with h,(¢) following a specific parametric distribution.

Then, in view of equation (3.2),

H(L\Z ) =hy(1)e™ , (3.4)

From equation (2.4)

, _ 73«8_1’ BZ,
rty,AZ,) = e (3.5)

Assume that the covariate Z is discretely distributed with possible values Z . where
j
=1,.,)1et S,(t,)=S,(t, | Z,) then

S(t, y,ﬁ.\ZJ,) =exp(- _E r(,t{zj)dx)
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=-~'exp(~ ye”” In(1- e ))
ne (l “p~b) 54 a'”r (3'6)
4. The Fisher information matrix:

The likelihood function summarizes the likelihood of all observation in the

sample (see Lawless1982). [ the observed individual; died at time¢, then
1@ =h@) S) (4.1 )
Suppose that there are # individuals under study, the associated lifetime of the

individual 18 7, and a fixed censoring time7,. The 7, are assumed to be survival
fiunction in equation (3.6). The exact lifetime 7, of an individual will be observed
only if T.< 7, (1.e. fixed time). The data from such an experiment can be represented
by the n pairs of random variables (¢,,5, ) where ¢, =min (7, , T, ), 8, = 1if ¢, <
T and &, =0if T,> I_. Let Z be the covariate variable with levelZ,, j=1,..,J,

the unites of a sample of size n ; are given dose j withlevel Z, , j =1,...,J and

7=l

Let T, be the observed lifetime for individual / receiving dose ;.

1 i Hal

8= (4.2)
0 if. T>T,

The likelihood function used (4.1) has the following form

fG7A2) =r(s|T.2,))" S¢|.,

Z}.)'"“x (4.3)

L, BT}y, 2,00 =1 my, j =0 ]) =flf{[r(tg|71,Z,-)S(t.-,-|Tc,Z,-)r [S(t,-IT.,,Z )

j=1 i=l

FiR |
LG Ao BTy Z sl = ooty = L) =[ [T ] r,|T..2,)" S,

j=1 i=l

B

The logarithm of the likelihood function is 17



o iy o i . " ' 44
Logl = 3.3 &, logr(t, |1 Z)) Vlog S(|7.. 2 ) (4.4)

fey i

Ascume that the shape parametery =y,. The approach here 18 to use modelg

re |1 2 yand 8@, 1. 2)

..| ;..1 1-e

o "
Logl. = "?f' S, lo ,\roﬁe .,.Q }+log{cxp(-}’oeaz’ n(—e "))

¥ " bz il
LogL = ZZ["‘” log (o2 e e ) ~log(1~e™ )]-70 " m(l~e*)»
yral il

vl o BZ ~AL,
LogL = 3 X[, log (roR) - 5,44, +5,BZ,) - 5, logll—e )= 7, ™ W1 —e™),

=l i=l

Log L = ZL:‘ log(y,A) — 121“} +r; BZJ,Z(l—— e ¥)—yye 'Z 111(1“'3—#" )]9 (4.5)

J=t i=] i=]
)
where r, =25g
i=

Fisher information matrix is obtained through evaluation the negative expected
values of the corresponding second order partial derivatives of the natural logarithm

of the likelihood function with respect to the parameters(A,B). The maximum

likelihood estimators of the model parameters are then asymptotically normally

distributed with the variance covariance matrix V given by the inverse of the
following Fisher information matrix.

-9 log L ~3*logL |
OA® OAOB
5 (4.6)
- 9? log L - log L
| OBOA oB? |
6LogL L a c te M ' BZ; , -,
rAT =)t — it _ Yoe le
‘Z;; {-; ; ‘é“ b g:‘ | ]
a2LagL 2 2. A, J' rip
=l — P A Yo€ 2ie”
aAZ [ # o (1 _ ‘Z‘zl (l - ) ] (47)
oLoglL

'Bz) G =
OB =rZ; -y,e Z;;: In(l - ™)
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azLo 1 e, B ”J.,
TaB: [ ¥i¥o € 7,%‘ (1~ e"%) (4.8)
'V‘O&{‘, ) {;, Yo y} rmnz_. oM

TR A Y
'32{‘35-1—' = - "Z Yo &, ’rPH" et

SAOB = (1 =e )“”' (4.9)
For simplicity of notation, let

o r_{ D, Du,.J 2
D,, D, (4.10)

To derive a formula the variance of B (maximum likelihood estimate of B)
4t Bl Tmbg,
| nD g1 NDg
Suppose that B is maximum likelihood estimate of B and A is maximum likelihood

estimate of 4 . Then, the variance- covariance matrix of (B,1)is

o nD D
Vi B)=r— . | = : |
6) "D (nD;)~n(D,,)*] " nlD, D, ~(D,,)’]
1
Ly, (4.11)

where w=v oY :
I:D;.DB - (D,w)z,l

S.Tests of the Hypotheses about B:

When the sample size is not predetermined and can be determined to satisfy required

(4.12)

levels of @ and f risks will be considered. Suppose that it is desired to test the null

hypotheses,
H,: B= B, & H:B=8B, (5.1)
with level of significance equals o, and probability of type II error equals B, . The

required sample size n satisfying these two conditions is developed below.

. . " . . = - W 2
The variance of the maximum likelihood estimator B of B is — , where n is the
n

cohort size, and w is given by equation (4.12 ) . It follows from large sample theory

that
19



(B-B) N

ol \)“-’/?I

Assume that the test decision rule for the testing situation given by equatioy,

(5. Daceepts Ho it B> C and reject Ho if B <G, for some specified number C. the,,

n(B - B, J;‘C - By) | »
Hdﬂ%J%— g K ,Hw]

v Jwo

where w, = w (B ~R&,4 ,¥,) is the value of w given by equation (5.1) evaluate d

a,. « P(rgectingt ,.,‘Hn) s P(}i < C

under X, Hence

:‘J’;l-((.'* B,) (5.2)

z \~a
W,

i

Ao = P(accepteHl  (|\H,)= PR »C

H )ﬁp[ﬁ'(ﬁ -8 Nn(C - B.)],

w, Wy
where w,= w (B xBn,iL,}fo). Hence

g, =GR | (53)
From equations (5.2) and (5.3), we obtain

n=(B,~-B,)" [Zﬁuﬁ i Zl—aoﬁ‘?o_r

Suppose that the lifetime t of individuals under study follows the EE distribution with

the following proportional hazard model having three parameters ( 4,7 B)

~ At
ﬂn%430=rﬂ£ e, (5.4)

0
1

where A and y, are the parameters of the EE distribution, Z; is the j the level ofa

covariate Z which reflects the dose (or concentration), j=1,...,J and B is the
parameter of the covariate Z.
Suppose that it is desired to test the null hypothesis

H, :B=Bo  versus H; B =B < By,

with specified level of significance ( a@=ea,) and the power (1- =1~ /).
Suppose that y =y, and the censoring time for all individuals is T, . The requifed
sample size to satisfy the requirements on the significance level and power is:

n=(B, - B)"* [Zﬂu,ﬁﬁ—z,,%,[ﬁﬂz : (5.5)

20



where W is the value of W evaluated under Ho and Cy is the value of W evaluated

under H, .

In any cohort study while determining its required sample size, say n, the
investigator faces the problem of choosing the appropriate length of follow-up period,
( or censoring 7)) needed to obtain the prespecified power. Thus, the researcher is
advised to use the following algorithm to find the value of n which gives the required
power
Step 1: Determine the null hypothesis ( H ) and the alternative hypothesis ( H v ):
Step 2: Choeose an appropriate value for T, =0.5(0.5)3.

Step 3: Given the values of A =02,04,1.0,7,=0.1.,8, =0,B, =-0.04.,7.and

Z, =1,2,3. Compute the variance- covariance matrix using equation (4.7), (4.8) and

(4.9).
Step 4: Compute W using equation (4.12) under the null hypothesis H,, and it is

denoted by #,. Compute W using equation (4.12) under the alternative hypothesis
H, and it is denoted by W, .

Step 5: Determine the value of o to specify the degree of precision and £ to
determine the required power. Use equation (5.5) to compute the sample size to

satisfy the power requirement.

6. HNlustrative Example :

Let us consider the example given in Taulbee and Symons (1983). In this
example the times, indicates years until death after the tumor implant. Taking to
follow the EE distribution, we sup;ﬁose that all individuals are given implants and that
the individuals are divided into three groups according to whether they will receive

doses of 0, 10 or 20 units of a compound which is believed to slow the spread of the

tumor. With units of dose as the covariate, Z ; » the hazard rate is expressed (5.4).

-
}/ﬂ. [ 8z,
e
A,

6y, A2,) =

|
| : :
In all examples given below, we use 0, :—3-,_1 =1,2,3,]=3 (ien; = 3;3 ,j=1,2,3)

Case 1: let 1=02,y=0.1and T, =0.5 year. The hypothesis is H,: B= B,= 0 and

Hi: B= B, < B, B, =-0.04 71



(or follow-up period), is the same for all individuals, and
0, 7o = 10 and Z3 = 20. Under Hj

The censoring time Ty
equal group size are used, j = 1, 2, and 3, where Z,=
Bo = 0, we get Wy = 0.01. Under the alternative hypoth
= 0, and By = -0.04, we obtain the following

esis H, where B = Bi= -0.04,

we have W= 0.032. Using (5.5) with By °
values of n under different values of e,
a) If @ =0.10and (1-, ) = 80% the samplc size equal 50.
b If @ =0.05and (1-,8) = 80% the sample size equal 63.
¢) If @ =001 and (1-,5) =80% the sample size equal 93.
Case 2 : suppose that A=02,y=01and T, =1 year.
Under Ho . Bo =0, we get Wo = 0.022. Under the alternative hypothesis H, where B =
) B,=-0.04, we have W= 0.063. Using (5.5) with Bo = 0, and B, = -0.04, we obtain the
following values of n under different values of «,
d) If @ =0.10and (1-,8) = 80% the sample size equal 102.
e) If @ =0.05and (1-,/4)=80% the sample size equal 131
f) If@=001and(1-,5)= 80% the sample size equal 193.

Table (1); Total sample size for three groups, the study period T, ranging
from 0.5 to 3 years for 1=0.2,y=0.1 , power ranging from 80% to 99% and

level of significance « equal 0.10, 0.05 and 0.01.

T | T~05 | Tl T~1.5 T2 T.=2.5 Te=3
1-p o i .
80 .10 50 102 161 293 361 716
05 63 131 208 306 484 1010
01 93 193 313 473 756 1661
90 .10 1 76 162 245 352 529 1008
05 93 196 297 447 675 1352
01 127 221, 420 625 992 2093
95 .10 110 217 330 494 729 1254
os | 129 256 400 599 900 1622
01| 171 342 540 812 1260 | 2445
99 .10 225 370 542 784 1089 1482
05| 206 420 625 915 1296 2235
01 ] 258 529 798 _11%0 1722 3187
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Table (2): Total sample size for three groups, the study period T, ranging
from 0.5 to 3 years for 1=04,5=0.1 , power ranging from 80% to 99% and

fevel of significance a equal 0.10, 0.05 and 0.01.

Ty Te=0.5 | Ty=L Te=1.5 Tew2 To=2.5 y )

1-f w
80 .10 41 30 121 156 218 256
05 52 100 163 210 250 333
01 76 150 | 240 315 430 518
20 .10 68 116 203 262 324 400
05 51 163 256 324 400 505
01 110 225 352 + 456 575 716
05 .10 90 176 281 359 452 540
03 110 210 342 430 540 630
01 144 280 452 583 742 900
99 .10 156 297 410 546 729 885
05 175 342 484 663 841 1024
o1 217 430 612 341 1089 1332

Table (3): Total sample size for three groups, the study period 7,
ranging from 0.5 to 3 years for A=1,y=0.1 , power ranging from 80% to

99% and level of significance « equal 0.10, 0.05 and 0.01.

Te T.=0.5 Te=1 Te=1.5 T2 T.=2.5 T=3
- «
B0 10 33 a6l 17 90 93 101
.05 42 77 100 116 121 128
0 150 156 182 190
01 60 : 11 . | -
.90 10 56 95 126 it 160 164
.05 68 115 156 175 189 197
264 274
.01 #' 90 156 2_1-'{_ 240
95 .10 81 121 175 203 210 225
.05 95 144 216 240 248 164
.01 121 189 280 115 333 351
99 .10 138 226 297 333 365 372
.08 157 257 342 3380 417 426
.01 193 315 430 473 523 535
L3
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