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SUMMARY <«

~Many  contingency tables  have ;|su|nc cells  that  contain
sructural  zeros  that  must  remain cmp(y under any fitted model.
This article focuses on  the  problem  of  obtaining  maximum
likelihood cestimates (MLE) for the paramcters of log-lincar modcls
under this type of incomplete tables.  The appropriate systems of
cquations are presented and the generalization of the proportional
fitting (PF) algorithm of Deming and Stephen (8] is suggested as
one of the possible methods for solving them.  The algorithm has
certain - advantages but the convergence tends to be somewhe
<oeer than for other alternatives.  Tests of (it for log-lincar
Ledids for incomplete tables are considered.  ‘The data for
palicats  with  strokes  (Bishop .md Fienberg (4D are used te

.ule the procedures discussed in llw arlicel.

KEY WORDS: Contingency  ftables;  Maximum - likelibood
Slimation;  Nested  medels; PF algotithmy;  Quasi-log-lincar  modcl;
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I INTRODUCTION

When analyzing sample tables of counts, we cncounter  Iwo
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Structuenl  zoro cell ovene i Wevernd  differemt  conteat,
Observations tor  cortain cells o co wngeney  table  are oltey
41, Watson WD, At other

o certinn combinations are dmpossible, and - zero probability Iy
attuohed to these cells (Knstenbaum ().  For example, when there
ivoon underlying ordee for the categories inoeach of two or more

fancated or not reported  (Goodiman |

volables, this ordering  may  constrain cortain cells o be zero a
priori  (Bishop  and Fienberg (2], Chen et al 13), Mantel and
Hatperin 17D To iMustrate, in an n:ml;sls of scores in games, il
one  variable s the winulng score and another  (he losing  score,
then the cells with losing scores  exceeding winning scores are all
zero a privri.  We ay wish to it a purametric model to one sct
of observed cell counts within a table and a second model to the
remaining colls (Fienberg 16], Goodman 19118], Savage and Deutsch
(3], In such situations, maximum Hkelihood  esthmation procedures
lead us to treat these setd of expected cell counts as being  the

nonzero ontries i two separate incomplete tables,

The proportivnal fittiog  (IPF) algorithm is applicd here Lo
obtain maximum likelibood estimates (MLEYS) for the expected ccll
frequencies  Tor incomplete  tables. ' Furthermore,  for - nested
sequences — of  models,  we  partition the  likelibood  ratio
govdness-of (it statistic into additive components.  ‘Tests of it for
loglincar  models are considered. A o result, we sugpest fitting
the model of Quasi independence,
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A brief review of the analysis of complete contingency tables
1"-"”""““ in the next section.  Section 3 is - devoted (o
oSt o incar models Tor incomplete multivay tables.  In Scction
4 (h woncept of scpcr',*;bilily IS introduced.  Section 5 is devoted
0 MLI’s for incomplete multiway tables.  The dafa are anatyzed

in Section 0.
2. COMPLETE CONTINGENCY TABLES

We consider a three-dimensinal contingency table I x J x K,
where the indices pertain to the variables AB.C, respectively.  For
the complete-table case we et Nk be the frequency in cell (,j.k)
and 5 =[x iik ) be its expected value.  Further, we let N
denote the sample size and Pie W5 IN.  Then, in the notation
of Bishop, Fienberg, and lHolland [1] the saturated model s

written as

log M= W U2 () Y3 (k) TU2G) T3 GR T 23 Gk) T 123 (ijk ) (2.1)

Where the subscripted u terms sum to zero when summed over
any subscript.  More parsimonious models arc postulated by setting

appropriate u terms cqual to zero.

The sampling schemes that generate the data are assuined (6
be (., independent  Poisson  distributions, (b)  multinomial, or (¢
Product multinomial distributions. It is well known that if the
f“”-f 4 statistics include the marginals that are fixed by design
e product multinomial distribution, the three sampling  schemes

s \
“d 1o the same MLE's (c.g., Haberman (19], Fienberg [7).

MLES for (e vectur  of  parameters m ‘or, P) o be
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obtained by equating  the estimated  and  olserved  manginals  that

correspond (o the o ferms in the model

For example, Tor the model ol independomoe

log mi]km U+ Uyt u“” T
the minimal sufficient - statistics are \i*; Bl oW lix, , Fld
‘)

and Ny o k=l KL (Indices summed over are replaced by +) The

likelihood equations Tor that model arg
{

m. = X. I P

3. QUASI-LOG-LINEAR MODELS

let S be llnl~ st of all cclls in an incomplete INAK
array that consists of ,;\ll cells not containing  structural
zeros, and g, the expected lmmhcr of individuals in the (Ljk)
=0 for (i,jk) g S. We can specify the most

We

three-wa)

cell, where m,
gencral log lincar moddl for those cells in S, Qe

log m‘)"* .Mt Wy " ‘12(,) g u}(k) . ulz(ﬂ) b ul-’(lk)

£3.1) -

i
' U230k) T Yi23(ik)
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for (LK) €8, wherg the u torms are doviations and s te 7ere
aver cach included vaiable, cg., N

;%) - ) (2)
P Mw " E % Yaap i e Y

’! {3.2)
w1 8 .
i Cijk M23Gik) = O
with 1
i
. 1 itUjx)eS
A (3.3)
ijk {0 otherwise -
q " (3.4)
0 otherwise
423) }l if 6‘!“ . | for some (} k) i
0 otherwise

ad simitar definitions for &), 840 a1 ana €1 we
note that (3.2) Includes some v terms not found In (AL Le, those
preceded by zero values of T We set those u-ters in (32)
which are not included in (31 cqual to an arbitrar) definite

quantity, so that cxpression (32) is well defined.

We restrict attention to hicrarchical models, where whenever
« porticular u-term Is zero, all of s higher-order rolathe must
o be zero (g, if U, (.In 0 for all pairs (L) for which it is
Gelid in (A), then v y3(;x) = 9 for all (Ljk) € S).
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3.1 Unsaturated Models and Log-Lincar Contrasts.

We  define  unsaturated  quasi-log-linear models by setting
u tarms in (30) equal to zero, and the corresponding odels can
always be described in terms of generalized notions of interaction
Fad
ontrasts.  'or ex: ', setti cd = ‘or all Gi.jk) e S
contrasts.  For example, setting U565 0 for all G.jk) e
corresponds  to  setting equal to zero all  gencralized  interaction

contrasts of the lorm

3 x (3.6)
- S Ph » 3.6
iil jzl kil ijk  Cijk & Mijk
( Vuk = 0 for some i,j.,k), where
' J K |
I Sk Vit E) SiikeVigk = &y Sk Vi = (3.7

Using (3.1) through (35), we can rewrite these (hree-factor

interaction contrasts as

1) K
iil ifl k)il 6ijk Vijk Y123(ijk) (3.8)

( v ik {0 for some i,jk). We also have three different sets of
two-factor interaction contrasts, which can be expressed in terms

of lincar contrasts of u-terms, suéh as

A TR
{:)..U. /0 for some Lj), where
() J  (3) )
- B Biw ¥ &: B =8 (3.10
MU St SN i e
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Any unsaturated  quasi-log-lincar model eah be specified by

lting equal tozero appropriate sets of interaction contrasts, and
model il

asts with

o cddl is noninteractive with: respect to a quasi log tinear
i is not included inoat deast one of (hese interaction: conts

ponzere coef ficient.

32 Puisson fikelihood Tunction and Other Sampling Models.

We suppose that the observed count }‘ijk in the (L) cell,
for (i,jk) € S bas a poisson distribution with mean m g2 the
apected value for the (LjX) cell, and (hat these poisson  vaciates

ae mutually independent. Then the kamel of the log- likelihood is

i = . . . 2 . H
ijk J(ijk log mijk O +):I pe DY ul(l) b ] x+]+ u2(‘1)
By Xk Y3k *Ea Mije U120 T T ik Yok Y13Gk)

by . 3.11
* By Xk Y23Gk) t Rijk Nijk Y123(jk) (3.11)

lince "lj = 0 implics x5 = 0. When, for example, u .5 0 for

WjK) € S, then the sufficient statistics are once again given by

y

Ihe (’unl'igurmiuug CIZ* {XU‘} * CZJ: ix*‘jk} , and L.”-.- i!"k}

Once again, as for complete  multinay tables, woe o s
e : ; : ! 1 or a st ol
s M single  multinomial  sampling mode ) a

"'"‘“"mnials based on cxactly one fixed onc-dimensional - or
i " Cimensional umrigur.umn, as long as the fived configuration is
]

‘ h‘““’ among the suf l'idclu statistic.
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4. SEPARABILITY IN MANY DIMENSIONS

We say that the Gjk) cel in an IxJXK table has [lirst
courdinate i, second j, and third coordinate k. Now if we let D
be some nonempty subset of the set of in(cgcrs{lﬂ,ﬁ, we say that
two colls are D-associdted it they do not contain struclural zeros
and it their  coordinates  corresponding (o the subset D coincide
(e.g., if iIu } in a 2x4x2 table, then cells (1,3,2) and (14,2)
are l)‘ associated it they do not contain structural zeros). We say
that a set of non-structural-zero  cclls I'»‘ (D, D,,D;)-connected if
any cell can be linked to any other cell via a chain of cells, any
two consecutive members of which must be cither D, -associated,
D, -associated, or Dy —associated.  Any sct of non-structural-zeroe
u'lls is (D;,D,,D; )- .';Lpar.\ble it it is not (D,,D,,D;)-connected.

We consider a set of non-structural-zero cells which is Dy,
D,,D, )-scparable.  We can divide this set up into subscts, each of
which is itself (Dy,Dz,D3)-connected but no two of which arc (Dy
B B )cnnncclul whencombined.  These subsets are referred to

as thc sopvrahlc components of the orlg,m.tl sct.

Cohien | 4] has suggested that the assessment of separability
ar ovparability of an incomplete mul’ti\\'ay table is best done in
twe steps.  The first step deals with the model, whether or not
the full array includes structural zf,crus;.l Suppose we have a d-way
(able and that D = 1l,—d § ,‘lhc set of integers from 1 to d. We
ot Dy pul¥g  be e subsets of D which correspond o the
highest order v terms i the log-lincar model.  Then the complete
d-way array is inscparable with respect to the wwodel if and only
if

m

U (D = D) -
i=1 :
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rqws separability eccurs when eachi of the subsets il)i} inclndes
common non-zero sub-subset.  D* e,

m *

Ao -Dp.

t=1"1

More generally, for any separable model the complefe array

iself is separable, and it can be broken into subtables, each one of
which corresponds to a cell in the cross-classification of the
rariables in D*. Then the log-lincar model for the full table can
be broken down inte scparate but paralledl log-lincar models for
each subtable.  In the assessment of separability for incomplete
multiway tables, models for which the complete array is separable

should be  considered only in terms of the log-linear models for
the subtables.

When  an  incomplete  table is  separable  for  a  given
uasi-*o-tincar model. then m:tximiTEiug;!Iw likelihood function for
hat medel turns out to be equivalent to maximizing separately the
(g v gl fikelihood  functions corresponding  to  cach  of  the
C¥Pable components  or mbtahlcs.r This is true because the
N m Jikelihood  equations take the form of linear constraints
| M the ~xpected ccll yalues,

5. MAXIMUM LIKELIHOOD ESTIMATION

ﬂ‘l = =
LOndiuuns for Fxistence of MLEs

'“’e require that:
The observed  marginal cunfigtralinns corresponding  to the
Minlnal gufficient statistics for the model must have positive

fa)
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entrivs - whenever  the  corresponding — expected  conbiguration
have positive enfrics
He Both the t\pu‘!%‘i andg the abserved fable must e insepairabl

gidor the model

When  there exist usigue  nonzerv MLES fer the aunzer
oypected celly of Gn icumpiide iill:'.‘.".s.l_\ table anG  a partcolar
quast-log Bncar tnodel these MLES  ate oniguely  determined by
seliing  avpedted marginal - cntigprations cqual to the ubserved
marginal  cealipurations corvesponding (e the minimal sulficient
satistios. L far o example, we are fitting the model pecified b,
dp3= 0 aroa three-way table, then the MLLES are given by the
ct Lallons

~n

TORL . VS L (5.1)

]
>
3>

where the subseripts in each set ot cequations range aver all sets

of values fur which the expected marginal values are positivee
22 Iterative Procedure far Determining M

We et use the gencrsbication o the Deming and Stephan
1] iterative Preportional Fitting (PI°T - procedure (v compute

estimrated cvpected cell values

I At the (th step, we ot

(0)
H\i}-k = 6|Jkl (5-2)

for al Lk when g,

iik iv deted by (33 above
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At each successive excle of the iter

L T

ation, there are as

many
steps “are there are configurations of

sufficient statistics, and

cach step consists  of a rescaling  relative  to one of  these

configurations, l'or Cxample, in a three way f{able fo

59" 0, at the y'h cycle we take

o) m(3v~3) s
3v- ) ijk ij+

ijk 4 ;o (v-3) (5.3)

k ijk

(et m(3kv-2) .
v-1) i) +jk ‘
R ST O4)

Kk Tijk

i m(3kv-l) v
3y " U = i+k :
T €175 ) I (5.5)

Lk ﬂlijk

3 We continue repeating the cycdes until  desired accuracy s
achieved.

|
This  iterative  procedure  always converges, but the

wnvergence  tends to be somewhat slower than for the related
i

procedure for complete mulliway tables.
i

33 Degrees of Freedom.

To compute degrees of  frecdom for incomplete  multiva

lables, we subtract the number of independent parameters used in
he model from the total number of cells to which the model is

’}\' g “ . . H \
“ngfitted.  This is somewhat more complicated  since we ma

" . - - . -
" Structural zero totals in the expected marginal configurations
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awodiated  with various  moedels. Thus we must use the rule givey

by
degrees of (reedom = V2 4 2 (3.0)

where Vois the number of degrees ul"l‘rumlum usually associated
with the model for llw‘mmplclc table case, z, is the number of
cells with zero expected values, and z, is the number of zero
entries  in the expected  marginal uinl‘iguralimlq, adjusted  for

passible zeros in the marginal totals of these configurations.

We must leok at each scparable component of a seperable
table by itself in order to compule the degrees of freedom
properly for a given model as applied to the table as a whele
This is because separability leads to additional lincar constraints on
the evpected cell values which are equivalent to our fitting extra
parameters in the model.  These constraints are "additional” in the
sense  that  they do not result  directly from the inclusion of

particular parameters in the model for a general incomplete table.

To compute degrees of freedom with an INJaK  incomplete
inscparable table for u,3 = 0, containing a total of z_ structural
T
zecos, we et

_ (3)
Lip = Wrly; o
s e A1)
o1 Sl L R (5.7)

5 (2)
Zy3 = K -1, &
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il'.. / 12 .’23 " a"d / ‘3 arg u“‘ ““"l'“ r “'» JUT 8 i“ tl"’ cx’“‘{l(‘d
el condigurations " " "R % i .
m:ugln.\l Coniig {2 i ’”.§ N T L"' "J. amd ( :

4

‘ pespectively,  Thus 7 7 ) TWRECE e di
{“‘”ki, | p 12 73 13 I urther o o
g o(23) o 1 s(13) - §(12) .

i ’i It § Y Js fk K { {5.8)

Then the number of degrees of freedom is:
(1-1)(J-1)(K-1) - Zo + (112 t2yy + 213). (5.9)
If the same table is inseparable for the model with u, = w3 =
0, the number of degrees of freedom for the latter model is thor
K(I-1)(J-1) - z, + (255 + 243)- (5.10)
Il ihere is one cmpty layer in the table and (5.8) no longer holds.
(. further adjustments in the degrees of [reedom formukas (5.9}
. (5.10) are necessary.  We must add one degree of freedom to

LY and (5.10). On the other hand, il there is one emply row in
..o waole, we add one degree of freedom to (3.9) but not to (5.400,

6. AN APPLICATION-DISABILITY SCORES

\ The data in table 6.0 arc presented originally in Bishop and
Vinberg (2] and  collected by Jones and Poskanzer al
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Vassachusetts  General  Hospital on 121 hospital  patients. On
Admission “and  on  discharge  the  patients  were graded on a
tive point scale (A "through 12) of increasing  severity according 1ty
their physical  disability following a stroke.  Since no patient w.,
discharged it he had becomne worse (except by death), a paticins
wure on the second examination could only be the same or better
thae on the original examination.  The ordering of the disabilit)
scores, combined \'\'ith this restriction, produces the block-triangu’r
fur.a of the table and form a two-way margin of multiway table.
A third dimension of ‘grcat interest sorted the patients on the basis
of whether the stroke corresponded (to a right (R) or left (L)
lesion of the brain. This version of the data is given in table
6.2a, for which the rating scalc has only three categorics, 1, 11,
and 1II, corresponding to the origianl categories in the following
way: '
A& B&=>]
C <=1,
D & E <=>IIL

The data have collapsed in this way on the basis of the original
definition of disability categorics as a result of the sparseness of
data in parts of the table.

We begin the analysis by looking at quasi independence
within each laver (e, for cach of “the two types of lesion).  This
can be  dune using closed-form  methods  for  triangular  tables.
either separately ter cach type of lesion or by iteration, when we

’

note that the conditienal quast-independence model is given by

AR MmN Ve * Mty Uiy ¥ Yatik) * Y23Gk)



Stroke Paticnts

T A e s o . e . At W A S e, . e 2 Mt i e et -

Initial State A
L 11

D 9

C 6

B -

A 5
Totals 35

(15)

Table 6.1 Initial and Iinal; Ratings on

I'inal State
B -

10 <
4 R
5

2 20

Source: Bishop and Fienbers [2]

D 3

Disability of

Totals

23 12 15 8
i

69
24
14

Table 6.2 Three Way Version of Jones and Poskanzer Data on

Stroke Patients

& Observed Data

R lesion
Final State
Wtial State J i 11

i 17 10 13
1 7 3
! 6

Fotagy 0 13 13

Totals

40
10

tn
o

L.-lesion
Final State

| 11 H1
A6 & 19
R} l

b

{7 0 ¢

Totals

5
1
h

63
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u =

b, Eapected Values for u ,= Uyog

[.-lesion
['inal State
I I1! Tutal

R-lesion
Final State
Initial State [ 11 (it Totals |

F——— L

A7 - 10 51.0(

——— o S 54 . — — - ——

{1 1751 949 13 4000 3559

11 649 3351 g 1000 347 053 : 4.00
{ 6 . - 6.00 8 i - 8.00
3000 1300 13.00 5600 4800 7.00 10.00 63.01

tn
-

Totals

SOp—— . ————— i ——— R—————— e SR Sl IR Ep————— el R —————— ]

¢. Fxpected values for u,,= Ug3= U153 = 0

i e i, T T o - - - - ————— - — i —— . i A8 P W T S 47 S Ml Ao S Ml (e Tl i i 7 S SER—————

R-lesion [.-lesion
[Final State Final State
Initial State I 11 111 Totals I I1 111 Total

i - e i s s . S A, i e W S S S i e e e s gt i et S o sy Y s S o e S

1l 20.33 10.78 13 4413 3189 4¢8 10 168
Il 419 222 - 6.41 657 102 - 7.59
I 546 - - 546 854 - - 8.54
Totals 30.00 13.00 1300 5600 47.00 6.00 10.00 63.0

- T o s —— v — — . —— . . o S - —_— — — | e
. —— —— — — —— e e
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o Eapected Values Tor v, = U3 = uyy— uyp3 = 0 (Complete Quasi
ndependence of Initial State, Vinal State, and Side of Lesion)

P L S 1" A ¢ - B e L T ———— I i RSP . = i

R Jesion L lesion
Findl State Final State
juitial State 1 11 11 Tetals 1 M Ml Totals
il 2459 741 1082 4282 2766 834 118 4818
A 3SHe 153 - 6.59 89 L7 - 741
1 6.59 - - 659 741 - - 741

CFotals 3614 894 1082 5600 4076 1006 1218 63.00

S - A —— ———— T 1~ o T > A o S 2t S e e s o et . e e R Sl A S MR S A e A e e e e e g e e e e .

The direct fitting is simple because the cdlis corresponding to the
states (LI) and (L) are cell isolates, and upon their deletion we
look at the remaining 2x2 table in cach layer. There are dearly
two degrees of freedom for this model and table (one for cadh
layer), and an cxamination of the observed and expected hvalues
sit,ws an excellent fit, with (';2 = 0.6.

We can look at two quasi log lincar meodcls

2]y =uypy =y =0,

(3] u = u = 0.

s St T Tl

The eapected values for these mo(lth which can also be wiiltan
in dosed  form, are .given in lahlu: G-L and 62d.  The
torresponding  goodness-of -Tit btallstics are G2 = 549 with fow
degrees of freedom and L = 1189 with six degrees of (reedom.
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respectively, neither of which is significant at the 5% level,

We note that models [ {21 and [3] form a nested sequence
with [1] as a special case of [21 and [2] a special case of [3] - for
soch  nested  sequences  we  can partition  the likclihood  ratio
goodness of -fit  statistic G2 into adgitive ("umpuncnls. Thus the
statistic for testing the fit of model (3] can be broken into two
parts, one for testing the fit of {;l, and the other for testing
whether [3] is the true modd gi\'m!] that [2] is also true.  This
second  components has a value of LS9 549 6.4 with twe
degrees  of  Treedom, which ds significant at the 5% level. even
though the ralue of G2 for model [3] is not.  We can break the
statistic Tor testing the fit of model [2] also into two parls, one
for testing the fit of [1), and the other for testing whether [2] fits
given (hat 1] does. ‘The value of the latter componcent is 5.49-0.60
- 489 with two degrees of freedom, which is not signilicant

the 8¢ level

To summarize, we have a nested sequence of three modds.
. of which fits the data reasonably well.  The difference
- ween [11 and [2] is not significant at the 8% level, and so we
opt for model (2] as cpposed to (1] because of its simpler form.
On the other hand, the difference  between 121 and [3] is

sipnificant, and this leadd us to chaose 121 over (3]

We can therefore conclude that modell 2], with 0, U3~ i
~ 0. is the appropriate one for the data at hand. and we an s
that initial state is  quasi independent of  Tinal state and  side of
lesion  jointy.  Since the rules for collapsing are applicable in this
sitmation Tor collapsing over the categories for side of  lesion, W

see  opee  again that  initial  state and  final  state are
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s independent,
quast indepat

7. CONCLLUSION

In this paper,d we hane  discussed quasi-lug-lincar models for
peomplete  INIXK theee-way — array, While “attention  has  heen
pestricted o hicrarchical models.  The inodel of quasi independence
i linked to the delinitions of  separability and connectivity (hat
depend in mwltivay tables both on the Idimension of the table and
on the  particular  model  being fitted. The generalization  for
three- way (ables is illustrated. 1t is shown that in the assessment
of separability  Tor incomplete multivay tables, models for which
the complete wray s soparabie should be considered only in ten.,

of the dog Hncar models Tor the subtables,

Conditienal guast independence moda @5 Litted (o the data e
Lo opationts and compared  with the fitting  of  two  simplar
(L leg-linear  mudels, A exauination  of  the observed and
wpedded values using proportional fitting  algorithm for the three
models shows an excellent fit for modelll] while neither of the
dher (wo models s significant at the 5% level.  Models [1 (2]
wd [3] form a nested sequence of theee wwodels, cach of which
fits the data reasonably well.  Modd[2] with u;, = wy3= vpp3- 0
N the appropriate one Tor the data and we see that initial state i

i independent of final state and side of Jesion julntly.
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{1
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(13

(14] Watson, G. §. (1959), “Some recént result in chi-square goodness-of fit tests,
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